diff --git a/CVTH3PE b/CVTH3PE new file mode 160000 index 0000000..e79e899 --- /dev/null +++ b/CVTH3PE @@ -0,0 +1 @@ +Subproject commit e79e899b874806b134ea7cc50f2f02bbaefd9507 diff --git a/optical_detect_result/5606_demo.json b/optical_detect_result/5606_demo.json new file mode 100644 index 0000000..9163988 --- /dev/null +++ b/optical_detect_result/5606_demo.json @@ -0,0 +1,282 @@ +[ + { + "kps": [ + 419.0, + 154.0 + ], + "kps_scores": 1.0, + "index": 0 + }, + { + "kps": [ + 419.0521240234375, + 154.07498168945312 + ], + "kps_scores": 1.0, + "index": 1 + }, + { + "kps": [ + 418.5992736816406, + 154.3507080078125 + ], + "kps_scores": 1.0, + "index": 2 + }, + { + "kps": [ + 417.0777893066406, + 154.17327880859375 + ], + "kps_scores": 1.0, + "index": 3 + }, + { + "kps": [ + 416.8981628417969, + 154.15330505371094 + ], + "kps_scores": 1.0, + "index": 4 + }, + { + "kps": [ + 415.1317443847656, + 153.68324279785156 + ], + "kps_scores": 1.0, + "index": 5 + }, + { + "kps": [ + 413.2596130371094, + 153.39761352539062 + ], + "kps_scores": 1.0, + "index": 6 + }, + { + "kps": [ + 412.7089538574219, + 153.3645782470703 + ], + "kps_scores": 1.0, + "index": 7 + }, + { + "kps": [ + 409.3253173828125, + 152.9347686767578 + ], + "kps_scores": 1.0, + "index": 8 + }, + { + "kps": [ + 404.74853515625, + 152.21153259277344 + ], + "kps_scores": 1.0, + "index": 9 + }, + { + "kps": [ + 404.3977355957031, + 152.19647216796875 + ], + "kps_scores": 1.0, + "index": 10 + }, + { + "kps": [ + 396.53131103515625, + 152.09912109375 + ], + "kps_scores": 1.0, + "index": 11 + }, + { + "kps": [ + 393.76605224609375, + 151.91282653808594 + ], + "kps_scores": 1.0, + "index": 12 + }, + { + "kps": [ + 393.28106689453125, + 151.76124572753906 + ], + "kps_scores": 1.0, + "index": 13 + }, + { + "kps": [ + 383.2342834472656, + 152.3790740966797 + ], + "kps_scores": 1.0, + "index": 14 + }, + { + "kps": [ + 379.7545471191406, + 152.79055786132812 + ], + "kps_scores": 1.0, + "index": 15 + }, + { + "kps": [ + 379.8231506347656, + 152.8155975341797 + ], + "kps_scores": 1.0, + "index": 16 + }, + { + "kps": [ + 370.0028076171875, + 155.16213989257812 + ], + "kps_scores": 1.0, + "index": 17 + }, + { + "kps": [ + 366.5267639160156, + 155.72059631347656 + ], + "kps_scores": 1.0, + "index": 18 + }, + { + "kps": [ + 366.69610595703125, + 156.3056182861328 + ], + "kps_scores": 1.0, + "index": 19 + }, + { + "kps": [ + 359.8770751953125, + 158.69798278808594 + ], + "kps_scores": 1.0, + "index": 20 + }, + { + "kps": [ + 356.67681884765625, + 160.0414581298828 + ], + "kps_scores": 1.0, + "index": 21 + }, + { + "kps": [ + 348.1063232421875, + 163.32858276367188 + ], + "kps_scores": 1.0, + "index": 22 + }, + { + "kps": [ + 343.6862487792969, + 165.0043182373047 + ], + "kps_scores": 1.0, + "index": 23 + }, + { + "kps": [ + 339.2411804199219, + 167.18580627441406 + ], + "kps_scores": 1.0, + "index": 24 + }, + { + "kps": [ + 330.0, + 170.0 + ], + "kps_scores": 0.0, + "index": 25 + }, + { + "kps": [ + 322.0425720214844, + 174.9293975830078 + ], + "kps_scores": 1.0, + "index": 26 + }, + { + "kps": [ + 310.0, + 176.0 + ], + "kps_scores": 0.0, + "index": 27 + }, + { + "kps": [ + 305.0433349609375, + 178.03123474121094 + ], + "kps_scores": 1.0, + "index": 28 + }, + { + "kps": [ + 293.71295166015625, + 183.8294219970703 + ], + "kps_scores": 1.0, + "index": 29 + }, + { + "kps": [ + 291.28656005859375, + 184.33445739746094 + ], + "kps_scores": 1.0, + "index": 30 + }, + { + "kps": [ + 281.0, + 190.0 + ], + "kps_scores": 0.0, + "index": 31 + }, + { + "kps": [ + 272.0, + 200.0 + ], + "kps_scores": 0.0, + "index": 32 + }, + { + "kps": [ + 261.0457763671875, + 211.67132568359375 + ], + "kps_scores": 1.0, + "index": 33 + }, + { + "kps": [ + 239.03567504882812, + 248.68519592285156 + ], + "kps_scores": 1.0, + "index": 34 + } +] \ No newline at end of file diff --git a/optical_detect_result/5608_demo.json b/optical_detect_result/5608_demo.json new file mode 100644 index 0000000..a21c75f --- /dev/null +++ b/optical_detect_result/5608_demo.json @@ -0,0 +1,282 @@ +[ + { + "kps": [ + 474.0, + 215.00003051757812 + ], + "kps_scores": 1.0, + "index": 0 + }, + { + "kps": [ + 474.0710754394531, + 215.04542541503906 + ], + "kps_scores": 1.0, + "index": 1 + }, + { + "kps": [ + 476.81365966796875, + 215.0387420654297 + ], + "kps_scores": 1.0, + "index": 2 + }, + { + "kps": [ + 479.3288269042969, + 214.4371795654297 + ], + "kps_scores": 1.0, + "index": 3 + }, + { + "kps": [ + 479.3817443847656, + 214.49256896972656 + ], + "kps_scores": 1.0, + "index": 4 + }, + { + "kps": [ + 483.0047302246094, + 213.85231018066406 + ], + "kps_scores": 1.0, + "index": 5 + }, + { + "kps": [ + 484.1208801269531, + 213.64219665527344 + ], + "kps_scores": 1.0, + "index": 6 + }, + { + "kps": [ + 484.140869140625, + 213.63470458984375 + ], + "kps_scores": 1.0, + "index": 7 + }, + { + "kps": [ + 487.458251953125, + 213.45497131347656 + ], + "kps_scores": 1.0, + "index": 8 + }, + { + "kps": [ + 488.8343505859375, + 213.4651336669922 + ], + "kps_scores": 1.0, + "index": 9 + }, + { + "kps": [ + 488.899658203125, + 213.48526000976562 + ], + "kps_scores": 1.0, + "index": 10 + }, + { + "kps": [ + 493.831787109375, + 214.70533752441406 + ], + "kps_scores": 1.0, + "index": 11 + }, + { + "kps": [ + 495.60980224609375, + 215.26271057128906 + ], + "kps_scores": 1.0, + "index": 12 + }, + { + "kps": [ + 495.5881042480469, + 215.2436065673828 + ], + "kps_scores": 1.0, + "index": 13 + }, + { + "kps": [ + 502.015380859375, + 217.81201171875 + ], + "kps_scores": 1.0, + "index": 14 + }, + { + "kps": [ + 504.2356262207031, + 218.78392028808594 + ], + "kps_scores": 1.0, + "index": 15 + }, + { + "kps": [ + 504.2625427246094, + 218.81021118164062 + ], + "kps_scores": 1.0, + "index": 16 + }, + { + "kps": [ + 511.97552490234375, + 222.26150512695312 + ], + "kps_scores": 1.0, + "index": 17 + }, + { + "kps": [ + 514.9180908203125, + 224.3387908935547 + ], + "kps_scores": 1.0, + "index": 18 + }, + { + "kps": [ + 514.7620239257812, + 224.2892608642578 + ], + "kps_scores": 1.0, + "index": 19 + }, + { + "kps": [ + 524.9593505859375, + 230.30003356933594 + ], + "kps_scores": 1.0, + "index": 20 + }, + { + "kps": [ + 528.3402709960938, + 232.76568603515625 + ], + "kps_scores": 1.0, + "index": 21 + }, + { + "kps": [ + 528.371826171875, + 232.73399353027344 + ], + "kps_scores": 1.0, + "index": 22 + }, + { + "kps": [ + 538.7906494140625, + 240.9889678955078 + ], + "kps_scores": 1.0, + "index": 23 + }, + { + "kps": [ + 538.7630004882812, + 241.00299072265625 + ], + "kps_scores": 1.0, + "index": 24 + }, + { + "kps": [ + 550.0248413085938, + 248.24708557128906 + ], + "kps_scores": 1.0, + "index": 25 + }, + { + "kps": [ + 554.3512573242188, + 250.6501922607422 + ], + "kps_scores": 1.0, + "index": 26 + }, + { + "kps": [ + 554.0921020507812, + 250.47769165039062 + ], + "kps_scores": 1.0, + "index": 27 + }, + { + "kps": [ + 567.93212890625, + 266.1629943847656 + ], + "kps_scores": 1.0, + "index": 28 + }, + { + "kps": [ + 571.8528442382812, + 273.5104675292969 + ], + "kps_scores": 1.0, + "index": 29 + }, + { + "kps": [ + 571.9888305664062, + 273.5711669921875 + ], + "kps_scores": 1.0, + "index": 30 + }, + { + "kps": [ + 586.6533203125, + 309.09576416015625 + ], + "kps_scores": 1.0, + "index": 31 + }, + { + "kps": [ + 591.8392944335938, + 325.38385009765625 + ], + "kps_scores": 1.0, + "index": 32 + }, + { + "kps": [ + 592.3212280273438, + 325.2934265136719 + ], + "kps_scores": 1.0, + "index": 33 + }, + { + "kps": [ + 603.3639526367188, + 362.4980773925781 + ], + "kps_scores": 1.0, + "index": 34 + } +] \ No newline at end of file diff --git a/optical_detect_result/5609_demo.json b/optical_detect_result/5609_demo.json new file mode 100644 index 0000000..d3e26df --- /dev/null +++ b/optical_detect_result/5609_demo.json @@ -0,0 +1,282 @@ +[ + { + "kps": [ + 461.0, + 164.0 + ], + "kps_scores": 1.0, + "index": 0 + }, + { + "kps": [ + 460.9234619140625, + 164.2275390625 + ], + "kps_scores": 1.0, + "index": 1 + }, + { + "kps": [ + 460.93524169921875, + 164.19480895996094 + ], + "kps_scores": 1.0, + "index": 2 + }, + { + "kps": [ + 460.4592590332031, + 164.14320373535156 + ], + "kps_scores": 1.0, + "index": 3 + }, + { + "kps": [ + 459.9245910644531, + 164.054931640625 + ], + "kps_scores": 1.0, + "index": 4 + }, + { + "kps": [ + 459.8656921386719, + 164.08154296875 + ], + "kps_scores": 1.0, + "index": 5 + }, + { + "kps": [ + 456.9087219238281, + 163.1707305908203 + ], + "kps_scores": 1.0, + "index": 6 + }, + { + "kps": [ + 455.7566223144531, + 162.69784545898438 + ], + "kps_scores": 1.0, + "index": 7 + }, + { + "kps": [ + 455.740478515625, + 162.74818420410156 + ], + "kps_scores": 1.0, + "index": 8 + }, + { + "kps": [ + 449.8667907714844, + 161.95462036132812 + ], + "kps_scores": 1.0, + "index": 9 + }, + { + "kps": [ + 447.55975341796875, + 162.12559509277344 + ], + "kps_scores": 1.0, + "index": 10 + }, + { + "kps": [ + 447.5325012207031, + 162.12460327148438 + ], + "kps_scores": 1.0, + "index": 11 + }, + { + "kps": [ + 439.9998474121094, + 162.59873962402344 + ], + "kps_scores": 1.0, + "index": 12 + }, + { + "kps": [ + 437.3090515136719, + 162.88577270507812 + ], + "kps_scores": 1.0, + "index": 13 + }, + { + "kps": [ + 437.2088623046875, + 162.84994506835938 + ], + "kps_scores": 1.0, + "index": 14 + }, + { + "kps": [ + 429.199951171875, + 164.5860595703125 + ], + "kps_scores": 1.0, + "index": 15 + }, + { + "kps": [ + 429.32745361328125, + 164.66001892089844 + ], + "kps_scores": 1.0, + "index": 16 + }, + { + "kps": [ + 424.8293762207031, + 166.40106201171875 + ], + "kps_scores": 1.0, + "index": 17 + }, + { + "kps": [ + 419.6496887207031, + 168.80294799804688 + ], + "kps_scores": 1.0, + "index": 18 + }, + { + "kps": [ + 419.6795349121094, + 168.93418884277344 + ], + "kps_scores": 1.0, + "index": 19 + }, + { + "kps": [ + 414.8919677734375, + 172.65428161621094 + ], + "kps_scores": 1.0, + "index": 20 + }, + { + "kps": [ + 410.0992431640625, + 175.77218627929688 + ], + "kps_scores": 1.0, + "index": 21 + }, + { + "kps": [ + 410.0442810058594, + 175.911376953125 + ], + "kps_scores": 1.0, + "index": 22 + }, + { + "kps": [ + 400.20159912109375, + 184.33380126953125 + ], + "kps_scores": 1.0, + "index": 23 + }, + { + "kps": [ + 396.4606628417969, + 186.7172088623047 + ], + "kps_scores": 1.0, + "index": 24 + }, + { + "kps": [ + 396.3185119628906, + 186.76808166503906 + ], + "kps_scores": 1.0, + "index": 25 + }, + { + "kps": [ + 382.623291015625, + 192.941650390625 + ], + "kps_scores": 1.0, + "index": 26 + }, + { + "kps": [ + 376.8236999511719, + 195.2269744873047 + ], + "kps_scores": 1.0, + "index": 27 + }, + { + "kps": [ + 376.66937255859375, + 195.1109161376953 + ], + "kps_scores": 1.0, + "index": 28 + }, + { + "kps": [ + 362.7231750488281, + 209.30923461914062 + ], + "kps_scores": 1.0, + "index": 29 + }, + { + "kps": [ + 355.9901123046875, + 216.26303100585938 + ], + "kps_scores": 1.0, + "index": 30 + }, + { + "kps": [ + 356.3956298828125, + 216.3310546875 + ], + "kps_scores": 1.0, + "index": 31 + }, + { + "kps": [ + 343.6780090332031, + 235.2663116455078 + ], + "kps_scores": 1.0, + "index": 32 + }, + { + "kps": [ + 332.50238037109375, + 261.8990783691406 + ], + "kps_scores": 1.0, + "index": 33 + }, + { + "kps": [ + 332.8721923828125, + 261.7060546875 + ], + "kps_scores": 1.0, + "index": 34 + } +] \ No newline at end of file diff --git a/optical_flow_trajectory.ipynb b/optical_flow_trajectory.ipynb new file mode 100644 index 0000000..5e47e43 --- /dev/null +++ b/optical_flow_trajectory.ipynb @@ -0,0 +1,468 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 151, + "id": "b491ec50", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "import numpy as np\n", + "from pathlib import Path\n", + "import awkward as ak\n", + "from jaxtyping import Num, Array, Float, jaxtyped\n", + "from typing import TypeAlias, TypedDict, Optional, Sequence, Generator, Any, TypeVar\n", + "import jax.numpy as jnp\n", + "from app.camera import Detection, Camera, CameraParams\n", + "import jax\n", + "from datetime import datetime, timedelta\n", + "from beartype import beartype\n", + "from scipy.spatial.transform import Rotation as R\n", + "from more_itertools import partition\n", + "NDArray: TypeAlias = np.ndarray\n", + "DetectionGenerator: TypeAlias = Generator[Detection, None, None]" + ] + }, + { + "cell_type": "code", + "execution_count": 152, + "id": "ca140fe1", + "metadata": {}, + "outputs": [], + "source": [ + "class KeypointDataset(TypedDict):\n", + " frame_index: int\n", + " boxes: Num[NDArray, \"N 4\"]\n", + " kps: Num[NDArray, \"N J 2\"]\n", + " kps_scores: Num[NDArray, \"N J\"]\n", + "\n", + "T = TypeVar(\"T\")\n", + "\n", + "def unwrap(val: Optional[T]) -> T:\n", + " if val is None:\n", + " raise ValueError(\"None\")\n", + " return val\n", + "\n", + "\n", + "\n", + "class Resolution(TypedDict):\n", + " width: int\n", + " height: int\n", + "\n", + "\n", + "class Intrinsic(TypedDict):\n", + " camera_matrix: Num[Array, \"3 3\"]\n", + " \"\"\"\n", + " K\n", + " \"\"\"\n", + " distortion_coefficients: Num[Array, \"N\"]\n", + " \"\"\"\n", + " distortion coefficients; usually 5\n", + " \"\"\"\n", + "\n", + "\n", + "class Extrinsic(TypedDict):\n", + " rvec: Num[NDArray, \"3\"]\n", + " tvec: Num[NDArray, \"3\"]\n", + "\n", + "class ExternalCameraParams(TypedDict):\n", + " name: str\n", + " port: int\n", + " intrinsic: Intrinsic\n", + " extrinsic: Extrinsic\n", + " resolution: Resolution\n" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "id": "3df87e4e", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"获得所有机位的相机内外参\"\"\"\n", + "def get_camera_params(camera_path: Path) -> ak.Array:\n", + " camera_dataset: ak.Array = ak.from_parquet(camera_path / \"camera_params.parquet\")\n", + " return camera_dataset\n" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "id": "0c19ad25", + "metadata": {}, + "outputs": [], + "source": [ + "# 相机内外参路径\n", + "CAMERA_PATH = Path(\n", + " \"/home/admin/Documents/ActualTest_QuanCheng/camera_ex_params_1_2025_4_20/camera_params\"\n", + ")\n", + "# 所有机位的相机内外参\n", + "AK_CAMERA_DATASET: ak.Array = get_camera_params(CAMERA_PATH)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, + "id": "f6144d97", + "metadata": {}, + "outputs": [], + "source": [ + "@jaxtyped(typechecker=beartype)\n", + "def to_transformation_matrix(\n", + " rvec: Num[NDArray, \"3\"], tvec: Num[NDArray, \"3\"]\n", + ") -> Num[NDArray, \"4 4\"]:\n", + " res = np.eye(4)\n", + " res[:3, :3] = R.from_rotvec(rvec).as_matrix()\n", + " res[:3, 3] = tvec\n", + " return res\n", + "\n", + "def from_camera_params(camera: ExternalCameraParams) -> Camera:\n", + " rt = jnp.array(\n", + " to_transformation_matrix(\n", + " ak.to_numpy(camera[\"extrinsic\"][\"rvec\"]),\n", + " ak.to_numpy(camera[\"extrinsic\"][\"tvec\"]),\n", + " )\n", + " )\n", + " K = jnp.array(camera[\"intrinsic\"][\"camera_matrix\"]).reshape(3, 3)\n", + " dist_coeffs = jnp.array(camera[\"intrinsic\"][\"distortion_coefficients\"])\n", + " image_size = jnp.array(\n", + " (camera[\"resolution\"][\"width\"], camera[\"resolution\"][\"height\"])\n", + " )\n", + " return Camera(\n", + " id=camera[\"name\"],\n", + " params=CameraParams(\n", + " K=K,\n", + " Rt=rt,\n", + " dist_coeffs=dist_coeffs,\n", + " image_size=image_size,\n", + " ),\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 156, + "id": "4dc00edf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
[{name: 'AF_01', port: 5601, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AF_02', port: 5602, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AF_03', port: 5603, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AF_04', port: 5604, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AF_05', port: 5605, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AF_06', port: 5606, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AE_01', port: 5607, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AE_1A', port: 5608, intrinsic: {...}, extrinsic: {...}, ...},\n",
+       " {name: 'AE_08', port: 5609, intrinsic: {...}, extrinsic: {...}, ...}]\n",
+       "------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
+       "backend: cpu\n",
+       "nbytes: 2.3 kB\n",
+       "type: 9 * {\n",
+       "    name: string,\n",
+       "    port: int64,\n",
+       "    intrinsic: {\n",
+       "        camera_matrix: var * var * float64,\n",
+       "        distortion_coefficients: var * float64\n",
+       "    },\n",
+       "    extrinsic: {\n",
+       "        rvec: var * float64,\n",
+       "        tvec: var * float64\n",
+       "    },\n",
+       "    resolution: {\n",
+       "        width: int64,\n",
+       "        height: int64\n",
+       "    }\n",
+       "}
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(AK_CAMERA_DATASET)" + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "id": "dcf922cf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "camera_5606 = from_camera_params(AK_CAMERA_DATASET[5])\n", + "camera_5608 = from_camera_params(AK_CAMERA_DATASET[7])\n", + "camera_5609 = from_camera_params(AK_CAMERA_DATASET[8])\n", + "camrea_parames =[camera_5606, camera_5608, camera_5609]\n", + "display(camera_5606)" + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "id": "c262ca94", + "metadata": {}, + "outputs": [], + "source": [ + "# 导入光流检测结果\n", + "optical_result_file = [\n", + " \"optical_detect_result/5606_demo.json\",\n", + " \"optical_detect_result/5608_demo.json\",\n", + " \"optical_detect_result/5609_demo.json\",\n", + "]\n", + "# 以字典的形式存储数据,port_name: optical_result\n", + "optical_result: dict[int, Array] = dict()\n", + "for item_file in optical_result_file:\n", + " with open(item_file, \"r\") as f:\n", + " item = json.load(f)\n", + " port_name = item_file.split(\"/\")[-1].split(\"_\")[0]\n", + " optical_result[int(port_name)] = item" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "id": "98cdf0c5", + "metadata": {}, + "outputs": [], + "source": [ + "all_detections = []\n", + "camera_port = [5606, 5608,5609]\n", + "for index, port in enumerate(camera_port):\n", + " start_timestamp = datetime(2024, 4, 2, 12, 0, 0)\n", + " frame_interval_s = 1 / 24\n", + " for element_data in optical_result[port]:\n", + " frame_index = element_data[\"index\"]\n", + " timestamp = start_timestamp + timedelta(seconds=frame_index * frame_interval_s)\n", + " # 读取每个机位的光流检测结果\n", + " detection = Detection(\n", + " camera=camrea_parames[index],\n", + " keypoints=jnp.array([element_data[\"kps\"]])*3,\n", + " confidences=jnp.array([element_data[\"kps_scores\"]]),\n", + " timestamp=timestamp,\n", + " )\n", + " all_detections.append(detection)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "id": "639b70b1", + "metadata": {}, + "outputs": [], + "source": [ + "def triangulate_one_point_from_multiple_views_linear(\n", + " proj_matrices: Float[Array, \"N 3 4\"],\n", + " points: Num[Array, \"N 2\"],\n", + " confidences: Optional[Float[Array, \"N\"]] = None,\n", + ") -> Float[Array, \"3\"]:\n", + " \"\"\"\n", + " Args:\n", + " proj_matrices: 形状为(N, 3, 4)的投影矩阵序列\n", + " points: 形状为(N, 2)的点坐标序列\n", + " confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0]\n", + "\n", + " Returns:\n", + " point_3d: 形状为(3,)的三角测量得到的3D点\n", + " \"\"\"\n", + " assert len(proj_matrices) == len(points)\n", + "\n", + " N = len(proj_matrices)\n", + " confi: Float[Array, \"N\"]\n", + "\n", + " if confidences is None:\n", + " confi = jnp.ones(N, dtype=np.float32)\n", + " else:\n", + " # Use square root of confidences for weighting - more balanced approach\n", + " confi = jnp.sqrt(jnp.clip(confidences, 0, 1))\n", + "\n", + " # 将置信度小于0.1点的置信度均设置为0\n", + " # valid_mask = confidences >= 0.1\n", + " # confi = jnp.sqrt(jnp.clip(confidences * valid_mask, 0.0, 1.0))\n", + "\n", + " A = jnp.zeros((N * 2, 4), dtype=np.float32)\n", + " for i in range(N):\n", + " x, y = points[i]\n", + " A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0])\n", + " A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1])\n", + " A = A.at[2 * i].mul(confi[i])\n", + " A = A.at[2 * i + 1].mul(confi[i])\n", + "\n", + " # https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.svd.html\n", + " _, _, vh = jnp.linalg.svd(A, full_matrices=False)\n", + " point_3d_homo = vh[-1] # shape (4,)\n", + "\n", + " # replace the Python `if` with a jnp.where\n", + " point_3d_homo = jnp.where(\n", + " point_3d_homo[3] < 0, # predicate (scalar bool tracer)\n", + " -point_3d_homo, # if True\n", + " point_3d_homo, # if False\n", + " )\n", + "\n", + " point_3d = point_3d_homo[:3] / point_3d_homo[3]\n", + " return point_3d\n", + "\n", + "def triangulate_points_from_multiple_views_linear(\n", + " proj_matrices: Float[Array, \"N 3 4\"],\n", + " points: Num[Array, \"N P 2\"],\n", + " confidences: Optional[Float[Array, \"N P\"]] = None,\n", + ") -> Float[Array, \"P 3\"]:\n", + " \"\"\"\n", + " Batch‐triangulate P points observed by N cameras, linearly via SVD.\n", + "\n", + " Args:\n", + " proj_matrices: (N, 3, 4) projection matrices\n", + " points: (N, P, 2) image-coordinates per view\n", + " confidences: (N, P, 1) optional per-view confidences in [0,1]\n", + "\n", + " Returns:\n", + " (P, 3) 3D point for each of the P tracks\n", + " \"\"\"\n", + " N, P, _ = points.shape\n", + " assert proj_matrices.shape[0] == N\n", + "\n", + " conf = jnp.array(confidences)\n", + "\n", + " # vectorize your one‐point routine over P\n", + " vmap_triangulate = jax.vmap(\n", + " triangulate_one_point_from_multiple_views_linear,\n", + " in_axes=(None, 1, 1), # proj_matrices static, map over points[:,p,:], conf[:,p]\n", + " out_axes=0,\n", + " )\n", + "\n", + " # returns (P, 3)\n", + " return vmap_triangulate(proj_matrices, points, conf)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "id": "04a1db37", + "metadata": {}, + "outputs": [], + "source": [ + "def triangle_from_cluster(\n", + " cluster: Sequence[Detection],\n", + ") -> tuple[Float[Array, \"N 3\"], datetime]:\n", + " proj_matrices = jnp.array([el.camera.params.projection_matrix for el in cluster])\n", + " points = jnp.array([el.keypoints_undistorted for el in cluster])\n", + " confidences = jnp.array([el.confidences for el in cluster])\n", + " latest_timestamp = max(el.timestamp for el in cluster)\n", + " return (\n", + " triangulate_points_from_multiple_views_linear(\n", + " proj_matrices, points, confidences=confidences\n", + " ),\n", + " latest_timestamp,\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "id": "3c4d196d", + "metadata": {}, + "outputs": [], + "source": [ + "data = sorted(all_detections, key=lambda x: x.timestamp)\n", + "optical_3d_keypoints = []\n", + "for i in range(0,len(data),3):\n", + " # display(data[i:i+3])\n", + " result = triangle_from_cluster(data[i:i+3])\n", + " optical_3d_keypoints.append(result[0].tolist())\n", + "# display(optical_3d_keypoints)\n", + "\n", + "import orjson\n", + "with open(\"samples/optical_3d_points.json\", \"wb\") as f:\n", + " f.write(orjson.dumps(optical_3d_keypoints))" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "id": "d5e32754", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn4AAAKSCAYAAABMVtaZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnXeYVOXZ/79TtrfZ2QK7sH2XXXoV2EVBAQuKeTWxgA2NhcRCTDAmJlETa4wtmgjqKy5G8UdsMWoQC2IBQRG2994bO7Nleju/P3ifkzOz0+ecmTPwfK6LK3H2zHOeOefMOd+57+f+3hKGYRhQKBQKhUKhUE57pKGeAIVCoVAoFAolOFDhR6FQKBQKhXKGQIUfhUKhUCgUyhkCFX4UCoVCoVAoZwhU+FEoFAqFQqGcIVDhR6FQKBQKhXKGQIUfhUKhUCgUyhkCFX4UCoVCoVAoZwhU+FEoFAqFQqGcIVDhR6GEmNzcXNx4442hnsZpzbnnnotzzz031NOgeElnZyckEgl2797t1fYSiQR//OMfBZ0ThXK6QIUfJWyoq6vDlVdeifz8fMTGxiI1NRWrV6/Ghx9+OGXbc889FxKJBBKJBFKpFImJiSguLsb111+Pzz77zOO+vvzyS/b9nv6Jncceewzvv/9+qKcRNlitVpSXl+Pcc8+FUqlEVFQUcnNzcdNNN+GHH34I9fRCwh//+Ee7az42NhZz5szBH/7wB0xMTARlDvv27aPijkLhAXmoJ0CheEtXVxcmJyexZcsWZGZmQqfT4d1338WPfvQjvPTSS7jtttvstp85cyYef/xxAIBWq0Vrayvee+89vPHGG7jqqqvwxhtvICIiwum+Zs+ejddff93utfvuuw/x8fH4/e9/z+vnampqglQq3G+wxx57DFdccQUuu+wywfZxuqDX6/HjH/8Y+/fvx+rVq/G73/0OSqUSnZ2deOutt/Daa6+hu7sbM2fODPVUQ8LOnTsRHx8PjUaDTz/9FI8++ii++OILHD58mNcfQTk5OdDr9Xbfz3379uGFF15wKv70ej3kcvo4o1C8gqFQwhiLxcIsXLiQKS4utnt9zZo1zNy5c51uf/vttzMAmHvvvdenfc2dO5dZs2aN222sViuj1+t9Gldo4uLimC1btvA6pkaj4XU8oVmzZo3Hc8cwDHPHHXcwAJhnn312yt8sFgvz5JNPMj09PfxPUCBsNhuj0+kCHufBBx9kADAjIyN2r//4xz9mADDffvttwPvwBDk3FAolMGiqlxLWyGQyZGVlYWxszOvtn3/+ecyZMwd///vfMT4+HtD+JRIJ7rzzTuzZswdz585FVFQU9u/fDwB46qmnUFZWhpSUFMTExGDp0qV45513pozhbI3f2NgY7r77bmRlZSEqKgqFhYV44oknYLPZ7Laz2Wx47rnnMH/+fERHRyMtLQ0XXXQRm5KUSCTQarV47bXX2DQdd18VFRXYsGEDEhMTER8fj3Xr1uHo0aN2+9i9ezckEgm++uor3H777UhPT8fMmTNx8OBBSCQS/Otf/5rymd58801IJBIcOXLE5bFTqVS45557MH/+fMTHxyMxMREbNmxAVVWV3XYk7f7WW2/h0UcfxcyZMxEdHY1169ahtbV1yrgvv/wyCgoKEBMTg+XLl+Obb75xOQcuvb29eOmll3D++efj7rvvnvJ3mUyGe+65h432dXV14fbbb0dxcTFiYmKQkpKCK6+8Ep2dnXbvI8fv0KFD2LZtG9LS0qBQKLB161aYTCaMjY3hhhtuQHJyMpKTk3HvvfeCYRi7MWw2G/76179i7ty5iI6OxrRp07B161ao1Wq77XJzc7Fx40Z88sknWLZsGWJiYvDSSy8BAMrLy7F27Vqkp6cjKioKc+bMwc6dO706Nq5Yu3YtAKCjowPAqcj69u3b2eu2uLgYTz311JTP89lnn+Hss8+GQqFAfHw8iouL8bvf/Y79u+MavxtvvBEvvPACADhdZuFsjZ8v1/bhw4fxq1/9CmlpaYiLi8Pll1+OkZERu21/+OEHXHjhhUhNTUVMTAzy8vLw05/+1P+DR6GECBobp4QdWq0Wer0e4+Pj+OCDD/Dxxx/j6quv9vr9MpkMmzdvxv33349Dhw7hkksuCWg+X3zxBd566y3ceeedSE1NRW5uLgDgueeew49+9CNce+21MJlM2Lt3L6688kp89NFHbvep0+mwZs0a9PX1YevWrcjOzsa3336L++67DwMDA/jrX//KbnvzzTdj9+7d2LBhA2655RZYLBZ88803OHr0KJYtW4bXX38dt9xyC5YvX86mwgsKCgCcWjN5zjnnIDExEffeey8iIiLw0ksv4dxzz8VXX32FFStW2M3r9ttvR1paGh544AFotVqce+65yMrKwp49e3D55Zfbbbtnzx4UFBSgtLTU5edsb2/H+++/jyuvvBJ5eXkYGhrCSy+9hDVr1qC+vh6ZmZl22//5z3+GVCrFPffcg/HxcfzlL3/Btddei++++47dZteuXdi6dSvKyspw9913o729HT/60Y+gVCqRlZXl+iQC+Pjjj2GxWHD99de73Y5w7NgxfPvtt9i0aRNmzpyJzs5O7Ny5E+eeey7q6+sRGxtrt/1dd92F6dOn409/+hOOHj2Kl19+GQqFAt9++y2ys7Px2GOPYd++fXjyyScxb9483HDDDex7t27dit27d+Omm27Ctm3b0NHRgb///e+oqKjA4cOH7VKiTU1N2Lx5M7Zu3Ypbb70VxcXFAE6laefOnYsf/ehHkMvl+PDDD3H77bfDZrPhjjvu8OozO9LW1gYASElJAcMw+NGPfoSDBw/i5ptvxqJFi/DJJ5/g17/+Nfr6+vDss88COHXdbdy4EQsWLMBDDz2EqKgotLa24vDhwy73s3XrVvT39+Ozzz6bsgTDGb5e23fddReSk5Px4IMPorOzE3/9619x55134p///CcAYHh4GBdccAHS0tLw29/+FgqFAp2dnXjvvff8Om4USkgJccSRQvGZrVu3MgAYAIxUKmWuuOIKRqVS2W3jKtVL+Ne//sUAYJ577jmv9+ss1UvmUFdXN2V7xxSbyWRi5s2bx6xdu9bu9ZycHLtU7MMPP8zExcUxzc3Ndtv99re/ZWQyGdPd3c0wDMN88cUXDABm27ZtU/Zts9nY/+8q1XvZZZcxkZGRTFtbG/taf38/k5CQwKxevZp9rby8nAHAnH322YzFYrEb47777mOioqKYsbEx9rXh4WFGLpczDz744JR9cjEYDIzVarV7raOjg4mKimIeeugh9rWDBw8yAJjZs2czRqORff25555jADA1NTUMw5w6vunp6cyiRYvstnv55ZcZAB5Tvb/85S8ZAExFRYXb7QjOUqhHjhxhADD/+Mc/2NfI8bvwwgvtzktpaSkjkUiYn/3sZ+xrFouFmTlzpt1cv/nmGwYAs2fPHrt97d+/f8rrOTk5DABm//79Xs33wgsvZPLz8z1+VpLqbWpqYkZGRpiOjg7mpZdeYqKiophp06YxWq2Wef/99xkAzCOPPGL33iuuuIKRSCRMa2srwzAM8+yzzzpNG3Pp6OhgADDl5eXsa+5SvQDsrjdfr+3169fbnZtf/vKXjEwmY69rcr84duyYx2NFoYgdmuqlhB133303PvvsM7z22mvYsGEDrFYrTCaTT2PEx8cDACYnJwOez5o1azBnzpwpr8fExLD/X61WY3x8HOeccw5OnDjhdry3334b55xzDpKTk3Hy5En23/r162G1WvH1118DAN59911IJBI8+OCDU8bwtNDearXi008/xWWXXYb8/Hz29YyMDFxzzTU4dOjQlGrNW2+9FTKZzO61G264AUaj0S6F/c9//hMWiwXXXXed2zlERUWxRS1WqxWjo6Ns2s/ZMbrpppsQGRnJ/vc555wD4FTkEDiVihseHsbPfvYzu+1uvPFGJCUluZ0LAPbzJiQkeNwWsD+/ZrMZo6OjKCwshEKhcDr/m2++2e68rFixAgzD4Oabb2Zfk8lkWLZsGfuZgFPXQ1JSEs4//3y762Hp0qWIj4/HwYMH7faTl5eHCy+80O18x8fHcfLkSaxZswbt7e1eL3koLi5GWloa8vLysHXrVhQWFuI///kPYmNjsW/fPshkMmzbts3uPdu3bwfDMPj4448BAAqFAgDw73//e8rSBT7w59q+7bbb7M7NOeecA6vViq6uLrs5f/TRRzCbzbzPmUIJJlT4UcKOkpISrF+/HjfccAM++ugjaDQaXHrppVPWEblDo9EA8P4h7468vDynr3/00UdYuXIloqOjoVQqkZaWhp07d3p8yLa0tGD//v1IS0uz+7d+/XoAp9JOwKk0W2ZmJpRKpc9zHhkZgU6nY9OAXGbPng2bzYaenh6Pn7OkpARnnXUW9uzZw762Z88erFy5EoWFhW7nYLPZ8Oyzz6KoqAhRUVFITU1FWloaqqurnR6j7Oxsu/9OTk4GAHadG3lIFxUV2W0XERFhJwBckZiYCMD7HwN6vR4PPPAAu56NzH9sbMyr+RMx6piCTkpKslu719LSgvHxcaSnp0+5JjQaDXs9EFxdj4cPH8b69esRFxcHhUKBtLQ0dl2dt8Lv3XffxWeffYYvv/wSra2tqK2txdKlSwGcOv6ZmZlTvlOzZ89m/w4AV199NVatWoVbbrkF06ZNw6ZNm/DWW2/xJgL9ubY9XVtr1qzBT37yE/zpT39Camoq/ud//gfl5eUwGo28zJlCCSZ0jR8l7LniiiuwdetWNDc3O73ZO6O2thYAPIoTb+BGUgjffPMNfvSjH2H16tXYsWMHMjIyEBERgfLycrz55ptux7PZbDj//PNx7733Ov37rFmzAp6zPzj7nMCpqN8vfvEL9Pb2wmg04ujRo/j73//ucbzHHnsM999/P37605/i4YcfhlKphFQqxd133+1UBDhGGwm+CH53lJSUAABqamqwaNEij9vfddddKC8vx913343S0lIkJSVBIpFg06ZNPs3f2evcz2Sz2ZCenm4nrrmkpaXZ/bez89TW1oZ169ahpKQEzzzzDLKyshAZGYl9+/bh2Wef9Vp0rV69GqmpqV5t64qYmBh8/fXXOHjwIP7zn/9g//79+Oc//4m1a9fi008/dXmchMTTtSWRSPDOO+/g6NGj+PDDD/HJJ5/gpz/9KZ5++mkcPXqUzSBQKOEAFX6UsEev1wPwPmphtVrx5ptvIjY2FmeffbYgc3r33XcRHR2NTz75BFFRUezr5eXlHt9bUFAAjUbDRvjcbffJJ59ApVK5jfo5S/umpaUhNjYWTU1NU/7W2NgIqVTqsRiCsGnTJvzqV7/C//t//4/1XvOm2Oadd97Beeedh127dtm9PjY25pe4yMnJAXAqQkaqTYFTadiOjg4sXLjQ7fs3bNgAmUyGN954w6sCj3feeQdbtmzB008/zb5mMBi8rjD3loKCAnz++edYtWqVS/HtiQ8//BBGoxEffPCBXXTLMU0cCDk5Ofj8888xOTlpF/VrbGxk/06QSqVYt24d1q1bh2eeeQaPPfYYfv/73+PgwYMur3tvfQL5vLYdWblyJVauXIlHH30Ub775Jq699lrs3bsXt9xyi1/jUSihgKZ6KWGDY0oLOPVQ/8c//oGYmBin6+wcsVqt2LZtGxoaGrBt2zY2vcc3MpkMEokEVquVfa2zs9OrDhpXXXUVjhw5gk8++WTK38bGxmCxWAAAP/nJT8AwDP70pz9N2Y4bMYqLi5siRmQyGS644AL8+9//trMfGRoawptvvomzzz7b62OTmpqKDRs24I033sCePXtw0UUXeSXcZDLZlGjd22+/jb6+Pq/268iyZcuQlpaGF1980W7N5+7du70SY1lZWbj11lvx6aef4m9/+9uUv9tsNjz99NPo7e11Of+//e1vduecD6666ipYrVY8/PDDU/5msVi8+mwkosWd7/j4uFc/RLzl4osvhtVqnRLtffbZZyGRSLBhwwYAp2x8HCERVnep07i4OADw+Hn5vLYJarV6yrn2Zs4UihihET9K2LB161ZMTExg9erVmDFjBgYHB7Fnzx40Njbi6aefnpJuGR8fxxtvvAHglEUK6dzR1taGTZs2OX2Q8sUll1yCZ555BhdddBGuueYaDA8P44UXXkBhYSGqq6vdvvfXv/41PvjgA2zcuBE33ngjli5dCq1Wi5qaGrzzzjvo7OxEamoqzjvvPFx//fV4/vnn0dLSgosuugg2mw3ffPMNzjvvPNx5550AgKVLl+Lzzz/HM888g8zMTOTl5WHFihV45JFHWD+122+/HXK5HC+99BKMRiP+8pe/+PR5b7jhBlxxxRUA4PVx3bhxIx566CHcdNNNKCsrQ01NDfbs2ePVejxnRERE4JFHHsHWrVuxdu1aXH311ejo6EB5ebnXYz799NNoa2vDtm3b8N5772Hjxo1ITk5Gd3c33n77bTQ2NmLTpk3s/F9//XUkJSVhzpw5OHLkCD7//HOkpKT4NX9XrFmzBlu3bsXjjz+OyspKXHDBBYiIiEBLSwvefvttPPfcc+yxd8UFF1yAyMhIXHrppdi6dSs0Gg3+93//F+np6RgYGOBlnpdeeinOO+88/P73v0dnZycWLlyITz/9FP/+979x9913szZCDz30EL7++mtccsklyMnJwfDwMHbs2IGZM2e6jcCTtYTbtm3DhRdeCJlMxp4LR/i8tgHgtddew44dO3D55ZejoKAAk5OT+N///V8kJibi4osv9nk8CiWkhKaYmELxnf/3//4fs379embatGmMXC5nkpOTmfXr1zP//ve/p2y7Zs0a1vIFABMfH88UFRUx1113HfPpp5/6tX9Xdi533HGH0+137drFFBUVMVFRUUxJSQlTXl7O2mJwcbRzYRiGmZycZO677z6msLCQiYyMZFJTU5mysjLmqaeeYkwmE7sd6SZRUlLCREZGMmlpacyGDRuY48ePs9s0NjYyq1evZmJiYhgAdvs6ceIEc+GFFzLx8fFMbGwsc955503pwkAsL9xZWRiNRiY5OZlJSkryunOJwWBgtm/fzmRkZDAxMTHMqlWrmCNHjkzpskHsXN5++2279zuz/GAYhtmxYweTl5fHREVFMcuWLWO+/vprrzt3MMypY/rKK68w55xzDpOUlMREREQwOTk5zE033WRn9aJWq5mbbrqJSU1NZeLj45kLL7yQaWxsnHI+XR0/V90wtmzZwsTFxU2Z18svv8wsXbqUiYmJYRISEpj58+cz9957L9Pf389uk5OTw1xyySVOP9cHH3zALFiwgImOjmZyc3OZJ554gnn11VcZAExHR4fbY+Jqro5MTk4yv/zlL5nMzEwmIiKCKSoqYp588kk7q5QDBw4w//M//8NkZmYykZGRTGZmJrN582Y7+yJn59ZisTB33XUXk5aWxkgkErvvERzsXBgmsGubXHMHDx5kx9q8eTOTnZ3NREVFMenp6czGjRuZH374we3xoFDEiIRheFoZTaFQ/CIrKwsXXnghXnnllVBPxW8sFgsyMzNx6aWXTlmzR6FQKBTxQNf4USghhPi/BVopGWref/99jIyM2HWboFAoFIr4oGv8KJQQ8cknn2Dv3r3Q6/VYt25dqKfjF9999x2qq6vx8MMPY/HixVizZk2op0ShUCgUN1DhR6GEiD//+c9obW3Fo48+ivPPPz/U0/GLnTt34o033sCiRYuwe/fuUE+HQqFQKB6ga/woFAqFQqFQzhDoGj8KhUKhUCiUMwQq/CgUCoVCoVDOEKjwo1AoFAqFQjlDoMKPQqFQKBQK5QyBCj8KhUKhUCiUMwQq/CgUCoVCoVDOEKjwo1AoFAqFQjlDoMKPQqFQKBQK5QyBCj8KhUKhUCiUMwTaso1CoVAoFB6wWq0wm82hngblNCIiIgIymYzXManwo1AoFAolABiGweDgIMbGxkI9FcppiEKhwPTp0yGRSHgZjwo/CoVCoVACgIi+9PR0xMbG8vaAppzZMAwDnU6H4eFhAEBGRgYv41LhR6FQKBSKn1itVlb0paSkhHo6lNOMmJgYAMDw8DDS09N5SfvS4g4KhUKhUPyErOmLjY0N8Uwopyvk2uJr/SgVfhQKhUKhBAhN71KEgu9riwo/CoVCoVAolDMEKvwoFAqFQqGEBbm5ufjrX/8a6mmENVT4USgUCoUiAqxW4Msvgf/3/079r9Uq7P527tyJBQsWIDExEYmJiSgtLcXHH39st01ubi4kEgkkEgliYmKQm5uLq666Cl988YXLcTs7O9n3uPq3e/duv+Z87Ngx3HbbbX691xlnopCkwo9CoVAolBDz3ntAbi5w3nnANdec+t/c3FOvC8XMmTPx5z//GcePH8cPP/yAtWvX4n/+539QV1dnt91DDz2EgYEBNDU14R//+AcUCgXWr1+PRx991Om4WVlZGBgYYP9t374dc+fOtXvt6quvZre3Wq2w2WxezTktLU2UhTQmkynUU/AaKvwoFAqFQgkh770HXHEF0Ntr/3pf36nXhRJ/l156KS6++GIUFRVh1qxZePTRRxEfH4+jR4/abZeQkIDp06cjOzsbq1evxssvv4z7778fDzzwAJqamqaMK5PJMH36dPZffHw85HI5+9/79+9HRkYGPvjgA8yZMwdRUVHo7u7GsWPHcP755yM1NRVJSUlYs2YNTpw4YTe2Y4RubGwMt9xyC9LS0pCYmIi1a9eiqqrK7j0ffvghzjrrLERHRyM1NRWXX345AODcc89FV1cXfvnLX7KRSMK7776LuXPnIioqCrm5uXj66aenzOPhhx/GDTfcgMTERNx2221Yu3Yt7rzzTrvtRkZGEBkZiQMHDnh/YgSGCj8KhUKhUHiEYQCt1rt/ExPAtm2n3uNsHAD4xS9ObefNeM7G8Qar1Yq9e/dCq9WitLTU4/a/+MUvwDAM/v3vf/u1P51OhyeeeAKvvPIK6urqkJ6ejsnJSWzZsgWHDh3C0aNHUVRUhIsvvhiTk5Mux7nyyisxPDyMjz/+GMePH8eSJUuwbt06qFQqAMB//vMfXH755bj44otRUVGBAwcOYPny5QCA9957DzNnzmQjmgMDAwCA48eP46qrrsKmTZtQU1ODP/7xj7j//vunpKefeuopLFy4EBUVFbj//vtxyy234M0334TRaGS3eeONNzBjxgysXbvWr+MkBNTAmUKhUCgUHtHpgPh4fsZimFORwKQk77bXaIC4OO/Hr6mpQWlpKQwGA+Lj4/Gvf/0Lc+bM8fg+pVKJ9PR0dHZ2er8zDmazGTt27MDChQvZ1xzF0csvvwyFQoGvvvoKGzdunDLGoUOH8P3332N4eBhRUVEATomx999/H++88w5uu+02PProo9i0aRP+9Kc/se8j+1QqlZDJZGxEk/DMM89g3bp1uP/++wEAs2bNQn19PZ588knceOONdvPdvn07+98zZszAnXfeiX//+9+46qqrAAC7d+/GjTfeKCq7Hxrxo1AoFArlDKW4uBiVlZX47rvv8POf/xxbtmxBfX29V+9lGMZvQRMZGYkFCxbYvTY0NIRbb70VRUVFSEpKQmJiIjQaDbq7u52OUVVVBY1Gg5SUFMTHx7P/Ojo60NbWBgCorKzEunXrfJpbQ0MDVq1aZffaqlWr0NLSAiun4mbZsmV220RHR+P666/Hq6++CgA4ceIEamtr7cSiGKARPwqFQqFQeCQ29lTkzRu+/hq4+GLP2+3bB6xe7d2+fSEyMhKFhYUAgKVLl+LYsWN47rnn8NJLL7l93+joKEZGRpCXl+fbDv+PmJiYKaJxy5YtGB0dxXPPPYecnBxERUWhtLTUZeGERqNBRkYGvvzyyyl/UygU7H6EIs5JaPWWW27BokWL0Nvbi/LycqxduxY5OTmCzcEfqPCjUCgUCoVHJBLv060XXADMnHmqkMPZ+jyJ5NTfL7gA4KFNq0dsNpvdGjVXPPfcc5BKpbjssst42/fhw4exY8cOXPx/SrinpwcnT550uf2SJUswODgIuVyO3Nxcp9ssWLAABw4cwE033eT075GRkXZRPACYPXs2Dh8+PGVus2bN8tgrd/78+Vi2bBn+93//F2+++Sb+/ve/u90+FFDhR6FQKBRKiJDJgOeeO1W9K5HYiz8SEPvrX4URfffddx82bNiA7OxsTE5O4s0338SXX36JTz75xG67yclJDA4Owmw2o6OjA2+88QZeeeUVPP7442y0kA+Kiorw+uuvY9myZZiYmMCvf/1rtxG79evXo7S0FJdddhn+8pe/YNasWejv72cLOpYtW4YHH3wQ69atQ0FBATZt2gSLxYJ9+/bhN7/5DYBT1blff/01Nm3ahKioKKSmpmL79u0466yz8PDDD+Pqq6/GkSNH8Pe//x07duzw6nPccsstuPPOOxEXF8dWEIsJusaPQqFQKJQQ8uMfA++8A8yYYf/6zJmnXv/xj4XZ7/DwMG644QYUFxdj3bp1OHbsGD755BOcf/75dts98MADyMjIQGFhIa6//nqMj4/jwIEDrHjii127dkGtVmPJkiW4/vrrsW3bNqSnp7vcXiKRYN++fVi9ejVuuukmzJo1C5s2bUJXVxemTZsG4JRly9tvv40PPvgAixYtwtq1a/H999+zYzz00EPo7OxEQUEB0tLSAJyKJL711lvYu3cv5s2bhwceeAAPPfSQ12v1Nm/eDLlcjs2bNyM6Otr/AyIQEobxt/ibQqFQKJQzG4PBgI6ODuTl5QX8kLdagW++AQYGgIwM4JxzgpPeDScyMjLw8MMP45Zbbgn1VFxChOSxY8ewZMmSgMfj8xoDaKqXQqFQKBRRIJMB554b6lmIE51Oh8OHD2NoaAhz584N9XScYjabMTo6ij/84Q9YuXIlL6JPCGiql0KhUCgUiqh5+eWXsWnTJtx9991eGUyHgsOHDyMjIwPHjh3Diy++GOrpuISmeikUCoVC8RO+03AUiiN8X2M04kehUCgUCoVyhkCFH4VCoVAoFMoZAhV+FAqFQqFQKGcIVPhRKBQKhUKhnCFQ4UehUCgUCoVyhkCFH4VCoVAoIsJgtnreiELxEyr8KBQKhUIRCd+1j2LRQ5/i+w5VqKdCOU2hwo9CoVAoFJHw1KdNMJhtePKTxqDsb3BwEHfddRfy8/MRFRWFrKwsXHrppThw4EBQ9h9sent7ERkZiXnz5jn9u0QimfLv7LPP9mpslUqFa6+9FomJiVAoFLj55puh0WjstmEYBk899RRmzZqFqKgozJgxA48++mjAn8sXaMs2CoVCoVBEwJG2URzrVAMAjnWqcaRtFKUFKYLtr7OzE6tWrYJCocCTTz6J+fPnw2w245NPPsEdd9yBxsbgiE9vsVqtkEgkkEr9j1nt3r0bV111Fb7++mt89913WLFixZRtysvLcdFFF7H/HRkZ6dXY1157LQYGBvDZZ5/BbDbjpptuwm233YY333yT3eYXv/gFPv30Uzz11FOYP38+VCoVVKogR3cZCoVCoVAofqHX65n6+npGr9cHPNYVOw8z+b/9iMn5zUdM/m8/Yq7YeZiHGbpmw4YNzIwZMxiNRjPlb2q1mv3/Tz/9NDNv3jwmNjaWmTlzJvPzn/+cmZycZP9eXl7OJCUlMR9++CEza9YsJiYmhvnJT37CaLVaZvfu3UxOTg6jUCiYu+66i7FYLOz7DAYDs337diYzM5OJjY1lli9fzhw8eHDKuP/+97+Z2bNnMzKZjOno6GC+//57Zv369UxKSgqTmJjIrF69mjl+/LjHz2uz2Zj8/Hxm//79zG9+8xvm1ltvnbINAOZf//qXdweQQ319PQOAOXbsGPvaxx9/zEgkEqavr4/dRi6XM42NjT6Nzec1xjAMQ1O9FAqFQqGEGBLts/5fE1Ur89+onxCoVCrs378fd9xxB+Li4qb8XaFQsP9fKpXi+eefR11dHV577TV88cUXuPfee+221+l0eP7557F3717s378fX375JS6//HLs27cP+/btw+uvv46XXnoJ77zzDvueO++8E0eOHMHevXtRXV2NK6+8EhdddBFaWlrsxn3iiSfwyiuvoK6uDunp6ZicnMSWLVtw6NAhHD16FEVFRbj44osxOTnp9jMfPHgQOp0O69evx3XXXYe9e/dCq9X6eQTtOXLkCBQKBZYtW8a+tn79ekilUnz33XcAgA8//BD5+fn46KOPkJeXh9zcXNxyyy1Bj/hR4UehUCgUSoh55rMmyCT2r8kkp14XgtbWVjAMg5KSEo/b3n333TjvvPOQm5uLtWvX4pFHHsFbb71lt43ZbMbOnTuxePFirF69GldccQUOHTqEXbt2Yc6cOdi4cSPOO+88HDx4EADQ3d2N8vJyvP322zjnnHNQUFCAe+65B2effTbKy8vtxt2xYwfKyspQXFyM2NhYrF27Ftdddx1KSkowe/ZsvPzyy9DpdPjqq6/cfo5du3Zh06ZNkMlkmDdvHvLz8/H2229P2W7z5s2Ij49n/73//vsej9Hg4CDS09PtXpPL5VAqlRgcHAQAtLe3o6urC2+//Tb+8Y9/YPfu3Th+/DiuuOIKj+PzCV3jR6FQKBRKCOGu7ePCjfrxvdaPYRivt/3888/x+OOPo7GxERMTE7BYLDAYDNDpdIiNjQUAxMbGoqCggH3PtGnTkJubi/j4eLvXhoeHAQA1NTWwWq2YNWuW3b6MRiNSUv77WSMjI7FgwQK7bYaGhvCHP/wBX375JYaHh2G1WqHT6dDd3e3yM4yNjeG9997DoUOH2Neuu+467Nq1CzfeeKPdts8++yzWr1/P/ndGRoanQ+QVNpsNRqMR//jHP9jPvWvXLixduhRNTU0oLi7mZT+eoMKPQqFQKJQQQqJ9VidajET93i4o43WfRUVFkEgkHgs4Ojs7sXHjRvz85z/Ho48+CqVSiUOHDuHmm2+GyWRihV9ERITd+yQSidPXbDYbAECj0UAmk+H48eOQyWR223HFYkxMDCQS+1Doli1bMDo6iueeew45OTmIiopCaWkpTCaTy8/x5ptvwmAw2BVzMAwDm82G5uZmOwE6ffp0FBYWuj0ujkyfPp0VtQSLxQKVSoXp06cDOCUg5XK53b5mz54N4FQENFjCj6Z6KRQKhUIJEY5r+xwRaq2fUqnEhRdeiBdeeMHpOrexsTEAwPHjx2Gz2fD0009j5cqVmDVrFvr7+wPe/+LFi2G1WjE8PIzCwkK7f0QoueLw4cPYtm0bLr74YsydOxdRUVE4efKk2/fs2rUL27dvR2VlJfuvqqoK55xzDl599dWAP09paSnGxsZw/Phx9rUvvvgCNpuNFZurVq2CxWJBW1sbu01zczMAICcnJ+A5eAsVfhQKhUKhhAhna/scEWqt3wsvvACr1Yrly5fj3XffRUtLCxoaGvD888+jtLQUAFBYWAiz2Yy//e1vaG9vx+uvv44XX3wx4H3PmjUL1157LW644Qa899576OjowPfff4/HH38c//nPf9y+t6ioCK+//joaGhrw3Xff4dprr0VMTIzL7SsrK3HixAnccsstmDdvnt2/zZs347XXXoPFYgno88yePRsXXXQRbr31Vnz//fc4fPgw7rzzTmzatAmZmZkAThV7LFmyBD/96U9RUVGB48ePY+vWrTj//POnpLyFhAo/CoVCoVBCgKdoH0GoqF9+fj5OnDiB8847D9u3b8e8efNw/vnn48CBA9i5cycAYOHChXjmmWfwxBNPYN68edizZw8ef/xxXvZfXl6OG264Adu3b0dxcTEuu+wyHDt2DNnZ2W7ft2vXLqjVaixZsgTXX389tm3bNqWwwnH7OXPmOC1kufzyyzE8PIx9+/YF/Hn27NmDkpISrFu3DhdffDHOPvtsvPzyy+zfpVIpPvzwQ6SmpmL16tW45JJLMHv2bOzduzfgffuChPFlhSeFQqFQKBQWg8GAjo4O5OXlITo62qf3XvnitzjR5Vn4AaeifktykvH2z/hd60cRP4FcY86gET8KhUKhUIKMt9E+gtC+fpQzByr8KJQzFIZhYDKZMDExAZ1OB5PJBKvV6pPNA4VC8Y9nPmuCxMPaPkckAvr6Udzz2GOP2Xn7cf9t2LAh1NPzCWrnQqGcgdhsNlboWSwWWK1WGI1Gtg9mREQEZDIZ5HI526icQqHwg85kQUX3GHz9jcUwQEX3GPQmK2IiZZ7fQOGNn/3sZ7jqqquc/s1dYYkYocKPQjmDYBgGVqsVZrMZDMNAKpVCJpNBKpWCYRj27xaLhRV8RADK5XLIZDIqBCmUAImNlOO7363DpMH3StKEaDkVfSFAqVRCqVSGehq8QIUfhXKGwDAMzGYzrFYrALBij0AEnVQqZbdnGAYWiwVms9mlECTbUygU70mJj0JKfFSop0E5A6HCj0I5AyBRPpvNBqlUykbs3K3n80UIktQwFYIUCoUibqjwo1BOY4hQI+akXNHnK56EIBmfGw2kQpBCoVDEBRV+FMppis1mY6N8AHhfm+dKCJrNZphMJvbvVAhSKBSKeKDCj0I5zSCNx52ldoXEmRAk8yARQUchSKqGKRQKB7MeiAivSlFK+EB/elMopxHciBup2g2VsHJWCAIAZrMZOp0OGo0G4+Pj0Gg0MBgMsFgs1EOQQuk8DDyRB3R9G+qZUE5TqPCjUE4TiDcfsWIJpehzBlcIkmIQ4L9CsKenB52dndBoNDAajVQIUs5MvngYsOiBAw8FZXeDg4O46667kJ+fj6ioKGRlZeHSSy/FgQMHgrL/YNPb24vIyEjMmzfP6d9J5sLxnzf9dA0GA2688UbMnz8fcrkcl112mctt9Xo9lEolUlNTYTQa/f04fkFTvRRKmMMwDAwGA9RqNRQKhegEnyuIECSo1WpYrVYoFAp2jaCzYpFw+GwUil90fAN0Hzn1/7uPnPrvvHME211nZydWrVoFhUKBJ598EvPnz4fZbMYnn3yCO+64A42NjYLt2x+sVqvdchJ/2L17N6666ip8/fXX+O6777BixYop25SXl+Oiiy6ye02hUHg1v5iYGGzbtg3vvvuu223fffddzJ07FwzD4P3338fVV1/t0+cIBBrxo1DCGJLanZiYQFVVVdiIPmc4KwYhbeW0Wi0mJycxMTEBrVZLI4KU05ODjwKS//sxJJGd+m8Buf322yGRSPD999/jJz/5CWbNmoW5c+fiV7/6FY4ePcpu98wzz2D+/PmIi4tDVlYWbr/9dmg0Gvbvu3fvhkKhwEcffYTi4mLExsbiiiuugE6nw2uvvYbc3FwkJydj27ZtrI8oABiNRtxzzz2YMWMG4uLisGLFCnz55ZdTxv3ggw8wZ84cREVFobu7G8eOHcP555+P1NRUJCUlYc2aNThx4oTHz8swDMrLy3H99dfjmmuuwa5du5xup1AoMH36dLt/0dHRHsePi4vDzp07ceutt2L69Olut921axeuu+46XHfddS7nIRRU+FEoYQpps0ZSuwzD+CT6GIZBb28vqqqq0N7eDrVazVYAhwLu3F2ZRVMhSDltIdE+5v+EEWP9b9RPAFQqFfbv34877rgDcXFxU/7OjXBJpVI8//zzqKurw2uvvYYvvvgC9957r932Op0Ozz//PPbu3Yv9+/fjyy+/xOWXX459+/Zh3759eP311/HSSy/hnXfeYd9z55134siRI9i7dy+qq6tx5ZVX4qKLLkJLS4vduE888QReeeUV1NXVIT09HZOTk9iyZQsOHTqEo0ePoqioCBdffDEmJyfdfuaDBw9Cp9Nh/fr1uO6667B3715otVo/j6D/tLW14ciRI7jqqqtw1VVX4ZtvvkFXV1fQ9k9TvRRKmMH15iMFHI5dODxhNptRV1cHlUqFmTNnQqvVor+/HxaLBUlJSUhOTkZycjISEhKCar/i6jMQUUhSw8Q6hmEYGI1GmEwmAM59BMM1Ako5wyDRPua/ETE26pe3n/fdtba2gmEYlJSUeNz27rvvZv9/bm4uHnnkEfzsZz/Djh072NfNZjN27tyJgoICAMAVV1yB119/HUNDQ4iPj8ecOXNw3nnn4eDBg7j66qvR3d2N8vJydHd3IzMzEwBwzz33YP/+/SgvL8djjz3Gjrtjxw4sXLiQ3dfatWvt5vfyyy9DoVDgq6++wsaNG11+jl27dmHTpk2QyWSYN28e8vPz8fbbb+PGG2+0227z5s12y1AAoL6+HtnZ2R6PlTe8+uqr2LBhA5KTkwEAF154IcrLy/HHP/6Rl/E9QYUfhRJG2Gw2WCwWu7ZrJDrmrfAbHx9HZWUlYmNjUVpayq6ZYRgGOp0OarUaarUaPT09sNlsUCgUUCgUrBAUg5DiehKSSCBXCBqNRvZzkUISuVwe1qlwymkMd20fF27Uj+e1fr78UPz888/x+OOPo7GxERMTE7BYLDAYDNDpdIiNjQUAxMbGsqIPAKZNm4bc3FzEx8fbvTY8PAwAqKmpgdVqxaxZs+z2ZTQakZKSwv53ZGQkFixYYLfN0NAQ/vCHP+DLL7/E8PAwrFYrdDoduru7XX6GsbExvPfeezh06BD7GkmzOgq/Z599FuvXr7d7jYjTQLFarXjttdfw3HPP2c3jnnvuwQMPPBCUH9pU+FEoYQDXE4+kdB1To55u5AzDoLOzE62trSgoKEBeXh6bOiVjxMXFIS4uDjNnzgTDMNBqtawQJKkIIgKTk5MRFxfHm5AKZBx3QtBgMLDbECHI7TNMhSAl5DiL9hEEivoVFRVBIpF4LODo7OzExo0b8fOf/xyPPvoolEolDh06hJtvvhkmk4kVfhEREfbTlkicvkaWk2g0GshkMhw/fnxKdI0rFmNiYqZ8R7ds2YLR0VE899xzyMnJQVRUFEpLS9l7mTPefPNNGAwGu2IOcl9tbm62E6DTp09HYWGh2+PiL5988gn6+vqmFHNYrVYcOHAA559/viD75UKFH4UickgBB4nyOevA4Un4mUwm1NTUQKPR4KyzzmLX73jq1RsfH4/4+HhkZWWBYRhMTk5CrVZjdHQU7e3tkEqldkIwNjY2ICHF1xo9b4Wg4xpCKgQpQcdVtI8gUNRPqVTiwgsvxAsvvIBt27ZNWec3NjYGhUKB48ePw2az4emnn2ajUW+99VbA+1+8eDGsViuGh4dxzjm+fa7Dhw9jx44duPjiiwEAPT09OHnypNv37Nq1C9u3b58S3bv99tvx6quv4s9//rNPc/AXkm7+/e9/b/f6o48+il27dlHhR6Gc6ZAon9VqdStK3Am/0dFRVFdXQ6FQoKyszOmvcG+QSCRITExEYmIicnJyYLPZWCE4MjKC1tZWyOVyJCcns2LQ2a/1UOBKCNpsNioEKaHFXbSPIFDU74UXXsCqVauwfPlyPPTQQ1iwYAEsFgs+++wz7Ny5Ew0NDSgsLITZbMbf/vY3XHrppTh8+DBefPHFgPc9a9YsXHvttbjhhhvw9NNPY/HixRgZGcGBAwewYMECXHLJJS7fW1RUhNdffx3Lli3DxMQEfv3rXyMmxnWnk8rKSpw4cQJ79uyZsqZx8+bNeOihh/DII49ALj8licbGxjA4OGi3XUJCgtMiGEfq6+thMpmgUqkwOTmJyspKAMCiRYswMjKCDz/8EB988MEUH8EbbrgBl19+OVQqFZRKpcf9BAKt6qVQRAgp4DCZTB5FH/Bf8cYVfzabDS0tLThx4gQKCgqwaNGiKaKPvMefSJtUKkVSUhJyc3OxePFirF69GnPnzkVMTAyGhobw3Xff4dtvv0V9fT0GBgZYgeXuMwSrKpekfWUyGZv6lUqlsNlsMBqN0Gg0mJycxOTkJHQ6HXseaNUwhVccK3ldIVCFb35+Pk6cOIHzzjsP27dvx7x583D++efjwIED2LlzJwBg4cKFeOaZZ/DEE09g3rx52LNnDx5//HFe9l9eXo4bbrgB27dvR3FxMS677DIcO3bMYxHFrl27oFarsWTJElx//fXYtm0b0tPT3W4/Z84cp4Usl19+OYaHh7Fv3z72tZtuugkZGRl2//72t7959ZkuvvhiLF68GB9++CG+/PJLLF68GIsXLwYA/OMf/0BcXBzWrVs35X3r1q1DTEwM3njjDa/2EwgSht7JKBRR4U1q1xGj0YiDBw/iggsugFQqhV6vR3V1NUwmExYtWoSEhASn7yPdPrzZh69YrVaMj4+zawQnJycRFRXFpoWTk5MRFRXFbt/R0QG9Xo85c+bwOg9/4EYEOzs7ERERgZkzZ06pGqYRQYrBYEBHRwfy8vK88nqz49WLgJ7vPQs/4FTUL2s58FP+K3wp4iaga8wJNNVLoYgIIsRsNptPooIb8RseHkZNTQ2mTZuGpUuXsumLYCOTyaBUKtm0hcViwdjYGMbGxtDT04P6+nrExsayIpBr7BpqiBCWSqUwm83sf1utVtY30VlqWAgBTTlN8bS2zxEBK3wpZxZU+FEoIoBhGFitVrZq19dIEtm2sbERAwMDmDt3LjIyMoSarl/I5XKkpqYiNTUVwCl/rrGxMajVanR0dECr1UIul6O5uZldJ+gsNR0KiAgki9tJRNBisdgJQyoEKV5z8FEAEgC+JN0kgvn6UTyzYcMGfPON83T77373O/zud78L8oz8gwo/CiXEuPLm8wWdTgfg1KLksrIy1mJBzERERCAtLQ1paWkATrnZj42NgWEYtLW1QafTISEhgRWBCoUiZNFLR7gRQcC9ECQ+giQ1TKHApAV6j8E30YdT2/ceA0w6IFL83/HTjVdeeQV6vd7p34QuyOATcdxFKZQzEE/efN7S19eH+vp6AMDSpUt9WgMipmiUXC5HdHQ0iouLAZxat0jWBzY3N8NoNLJCMDk5GUlJSVP8v0KFJyEIOO8qQoXgGUpkHLC9CTCM+/7e6CQq+kLEjBkzQj0FXqDCj0IJAdy2a4B3BRyOWCwW1NfXY2RkBAsWLEBFRYVfQk5M4o9baxYVFcU2SAdOLXAmQrChoQEmkwlJSUmsdUxSUpJohJQrIWg2m922lxPL/ClBIC711D8KJchQ4UehBBmuNx9XHPjCxMQEKisrER0djVWrVrHVseFcpO9JgEZHR7PWCgzDQK/XQ61WY2xsTBR9ht3hTAiS64BEBCUSCRWCFApFcKjwo1CCBIny9fb2Ii0tDXK53OdoG8Mw6O7uRnNzM/Ly8lBQUGA3RjgLP8D7+UskEsTGxiI2NhYzZsxw2WfYUQiKJbpJ1v8RvBGC/lwvFAqF4ggVfhRKECBpPrPZjOrqapx77rk+V6yaTCbU1tZiYmICS5cunbKYOJgGyGIj1H2GA8WdECQ+i1zDaRIRFMv8KRRK+ECFH4UiMI7efP6gVqtRVVWFxMRElJWVITIycso24S78+BQx7voMq1QqQfoM84k3QhA4dW3Fx8dTIXiaYbAYEC0P3KiXQnEGFX4UikC48+az2Wxej9He3o729nYUFRUhJyfHr3694YJQ8w/nPsOAvRAkx4gUuSxfvpyNCDquERTL/Cne88PgD/j55z/Hi+e/iKXTloZ6OpTTELpymEIRAG5qF7D35vNWoBkMBhw7dgx9fX1Yvnw5cnNzPfbrDXfhFyx86TOs0+nY6msx4FgoQoQewzAwmUzQarWYnJzExMQEtFotjEYjLBYLvTbChL9V/A0GqwHPn3g+KPsbHBzEXXfdhfz8fERFRSErKwuXXnopDhw4EJT9B5ve3l5ERkZi3rx5Tv9Ovl+O//bu3evV+NXV1TjnnHMQHR2NrKws/OUvf5myzV//+lcUFxcjJiYGWVlZ+OUvf+mxlzmf0IgfhcIzJMrnqu2aVCr1+BAeGRlBTU0NUlNTsWTJEq+Mi8Nd+IUyOiWVStmUL2DfZ3h0dBTj4+M4efKkyz7DoYJrA+QYEbTZbDAajW7tY2hEUFwcGzyGE8MnAAAnhk/g2OAxnDX9LMH219nZiVWrVkGhUODJJ5/E/PnzYTab8cknn+COO+5AY2OjYPv2h0CcEAi7d+/GVVddha+//hrfffcdVqxYMWWb8vJyXHTRRXavKRQKj2NPTEzgggsuwPr16/Hiiy+ipqYGP/3pT6FQKHDbbbcBAN5880389re/xauvvoqysjI0NzfjxhtvhEQiwTPPPOP35/IFGvGjUHiC69Pmru2aO4Fms9nQ2NiIyspKFBcXY8GCBV53qwh34QeIpyqZ9BkuKChAamoqsrOzUVxcjIiICPT09ODw4cM4evQompqaMDw8zIqrYOLqWDnrGkJ+bBiNRuh0OjYiqNPpYDQaYbVaRXPsz2T+XvF3yCSnBLxMIsPfK/4u6P5uv/12SCQSfP/99/jJT36CWbNmYe7cufjVr36Fo0ePsts988wzmD9/PuLi4pCVlYXbb78dGo2G/fvu3buhUCjw0Ucfobi4GLGxsbjiiiug0+nw2muvITc3F8nJydi2bZtdT26j0Yh77rkHM2bMQFxcHFasWIEvv/xyyrgffPAB5syZg6ioKHR3d+PYsWM4//zzkZqaiqSkJKxZswYnTpzw+HkZhkF5eTmuv/56XHPNNdi1a5fT7RQKBeshSv55Y4y/Z88emEwmvPrqq5g7dy42bdqEbdu22Qm6b7/9FqtWrcI111yD3NxcXHDBBdi8eTO+//57j+PzBRV+FAoPkAIObwyZXQk0nU6H7777DqOjoygtLfXZJf50EH5iRSqVIiUlBYWFhTjrrLNwzjnnsFY6nZ2dOHToEL777js0NzdjZGSETfELjTcRO2cVwUQIGgwGaLVaTExMsELQZDJRIRgCSLTPypwSRlbGykb9hEClUmH//v244447EBcXN+Xv3AiXVCrF888/j7q6Orz22mv44osvcO+999ptr9Pp8Pzzz2Pv3r3Yv38/vvzyS1x++eXYt28f9u3bh9dffx0vvfQS3nnnHfY9d955J44cOYK9e/eiuroaV155JS666CK0tLTYjfvEE0/glVdeQV1dHdLT0zE5OYktW7bg0KFDOHr0KIqKinDxxRdjcnLS7Wc+ePAgdDod1q9fj+uuuw579+6FVqv18whO5ciRI1i9erVd8d2FF16IpqYmqNVqAEBZWRmOHz/OCr329nbs27cPF198MW/z8ARN9VIoAcCttnSV2nVEKpVOKe4YGBhAXV0dMjMzUVxc7FcrsnAXfuGUdnTsM2wymTA2Nga1Wh20PsP+nmvH9DDpKkKEINlGKpUiIiKCTQ3700Oa4j0k2keEH/DfqN9rG17jfX+tra1gGAYlJSUet7377rvZ/5+bm4tHHnkEP/vZz7Bjxw72dbPZjJ07d6KgoAAAcMUVV+D111/H0NAQ4uPjMWfOHJx33nk4ePAgrr76anR3d6O8vBzd3d3IzMwEANxzzz3Yv38/ysvL8dhjj7Hj7tixAwsXLmT3tXbtWrv5vfzyy1AoFPjqq6+wceNGl59j165d2LRpE2QyGebNm4f8/Hy8/fbbuPHGG+2227x585R7cH19PbKzs90ep8HBQeTl5dm9Nm3aNPZvycnJuOaaa3Dy5EmcffbZrLfrz372M/zud79zOzafUOFHofgJSe2S1IW3D0auQLNarWhoaMDQ0BDmz5/P3iT8wV/hJybBKJZ5+EpkZCTS09ORnp4OwL7PcEtLCwwGgyB9hvkQYt4KQWIiTYUg/3DX9nHhRv34Xuvny3ft888/x+OPP47GxkZMTEzAYrHAYDBAp9MhNvZU3+DY2FhW9AGnBE9ubi7i4+PtXhseHgYA1NTUwGq1YtasWXb7MhqNSElJYf87MjISCxYssNtmaGgIf/jDH/Dll19ieHgYVqsVOp0O3d3dLj/D2NgY3nvvPRw6dIh97brrrsOuXbumCL9nn30W69evt3uNiNNA+fLLL/HYY49hx44dWLFiBVpbW/GLX/wCDz/8MO6//35e9uEJKvwoFD/gtl3z9QFIhNbk5CSqqqogl8tRVlaGmJiYgOYkJgHnD6eTiPCmz3BiYqKdEPR1wbqQ1jfOhCApFjEYDJBKpVOKRagQ9B9n0T6CUFG/oqIiSCQSjwUcnZ2d2LhxI37+85/j0UcfhVKpxKFDh3DzzTfDZDKxws/RkF4ikTh9jWQ7NBoNZDIZjh8/PuVHEFcsOrNV2rJlC0ZHR/Hcc88hJycHUVFRKC0tdbvW9s0334TBYLAr5iDXdXNzs50AnT59OgoLC90eF2dMnz4dQ0NDdq+R/yb3gvvvvx/XX389brnlFgDA/PnzodVqcdttt+H3v/99UNo0UuFHofgA8eazWCxep3adMTw8jJ6eHuTm5qKgoICXL3u4Cz8gfCN+nnDWZ5ikhgPpMxwMoeW4XpUIQavVCqvVCqPR6NRHkApB73AV7SMIFfVTKpW48MIL8cILL2Dbtm1T1vmNjY1BoVDg+PHjsNlsePrpp9lr8q233gp4/4sXL4bVasXw8DDOOeccn957+PBh7Nixg10X19PTg5MnT7p9z65du7B9+/Yp0b3bb78dr776Kv785z/7NAdnlJaW4ve//z3MZjMrej/77DMUFxezjgE6nW7Kd9uxIl9oqPCjULzE39QuF+Lt19vbiyVLltilNALldBB+ZwLcPsOZmZl+9xkO1bl29BF0JgRJpbBSqbTrM0yF4FTcRfsIQkX9XnjhBaxatQrLly/HQw89hAULFsBiseCzzz7Dzp070dDQgMLCQpjNZvztb3/DpZdeisOHD+PFF18MeN+zZs3CtddeixtuuAFPP/00Fi9ejJGRERw4cAALFizAJZdc4vK9RUVFeP3117Fs2TJMTEzg17/+tduMSWVlJU6cOIE9e/ZMWdO4efNmPPTQQ3jkkUfYdbhjY2MYHBy02y4hIcFpEQyXa665Bn/6059w88034ze/+Q1qa2vx3HPP4dlnn2W3ufTSS/HMM89g8eLFbKr3/vvvx6WXXsrL8g9voMKPQvECT9583jA2NoaqqiowDIM5c+bwKvqA8Bd+YhYFQs7N1z7DCoWCTYWJ4Zg5E4IqlQqjo6Nsms7ZGkEqBD1H+whCRf3y8/Nx4sQJPProo9i+fTsGBgaQlpaGpUuXYufOnQCAhQsX4plnnsETTzyB++67D6tXr8bjjz+OG264IeD9l5eX45FHHsH27dvR19eH1NRUrFy50m2BBnAqenfbbbdhyZIlyMrKwmOPPYZ77rnH7fZz5sxxWshy+eWX484778S+ffvwox/9CABw0003Tdnu8ccfx29/+1u380pKSsKnn36KO+64A0uXLkVqaioeeOAB1sMPAP7whz9AIpHgD3/4A/r6+pCWloZLL70Ujz76qNux+UTChPOTgkIRGFJ1RTof+CP6GIZBZ2cnWltbUVhYiP7+fhQWFgZUyOGMb7/9FgUFBT6NS6KYDMOE/CE8MDCAgYEBLFmyJKTzcKShoQHR0dFTqvWCBbfP8NjYGMbGxiCVShETEwODwYDFixeLqs8wcCr1plarsWDBArs1guQ6c/QZJKnhcMRgMKCjowN5eXleeb1x2fLxFlSNVLmN9hFkEhkWpi0UpMKXIm4CucacQSN+FIoLbDYbLBZLQKldo9GImpoaaLVanHXWWVAoFBgcHBQkMhfuET+Kc1z1Ge7t7YVWq8WxY8dE2WeY26LQWWrYYrHAbDazf3fsKhKuQtBbvI32EYSs8KWcWZze3ywKxQ9Iz9PJyUm7FkG+PkhHR0fx7bffslW7xBDVmY8fH4S78Av3+QcL0mc4PT0dsbGxbvsMDwwMQK/XB32O7iLI3EIQEvGTSCQwm812XUU0Gg0MBgO7xOJ04+8Vf4cEvt1TJJAI3s2D4poNGzYgPj7e6T/iOxgO0IgfhcKBpD6HhobQ1NSEs88+22fBZ7PZ0Nraiq6uLpSUlGDmzJl2YwglcPwdV6fTISIiYor1AkXcEHHlrs9wX18fGhsbERUVFdQ+w74sHXAVESTtD0/HiKDOrEP1SDUY+PZ9ZcCgeqQaeoseMfLA7J8ovvPKK6+4/CGlVCqDPBv/ocKPQvk/uN58MpkMNpvNZ9Gn1+tRVVUFi8WClStXIiEhYco2YhF+NpsNTU1NrOlpoL5yFHFA+gyTB5HFYmGFYE9PD+rr6xEbG8uea4VCYddiig8Cub6dCUHy3SSt8ByFIKkaDhdiI2Jx4KoD0Jg0njd2ID4ynoq+EOFrG02xQoUf5YzHmTcf6WXqC0NDQ6itrcW0adMwe/Zsl6X5Ykj16nQ6VFVVwWazsYamrnzllEqlUzsRvhFrqleMcwK8n5dcLkdKSgpbRW42m9lz3dnZCY1Gg7i4ODshGGj0l89iIVIIwh2bCEESESS9iB2rhsWMMloJZXT4RIkopw9U+FHOaFx58/ki/KxWK5qamtDf34+5c+ciIyPD7fahjvgNDQ2hpqYGmZmZmDVrFmw2G2w2GzIzM536ypGIICkcSE5ORlxcnOgfrGcC/pyDYPQZFrJK3BchyK0aFvp6PR3XIVLEAd/XFhV+lDMWm80Gk8nk1JuP21rIHRqNBlVVVZBKpSgrK2PbF7kjVMKPpHb7+vpYgUoemo7jOPrKETuR0dFRtLW1sVWk5F+g7ebIfinew9c1JESf4WDaA3GFIDkmzoSg4xpBvuYXGRkJqVSK/v5+pKWlITIykl7LFF4ghYYjIyOQSqW8Lcmgwo9yxkFSu8S/zlnFrjfp2L6+PtTX1yM7OxtFRUVer4kLhfAjqV2GYVBaWurRgd5xXEc7kYmJCahUKgwMDKCpqYm34gGxplXFihACg48+w6HyheT2GCbzAP77I89oNMJms2FsbAwZGRm8CEGpVIq8vDwMDAygv7+fnw9CoXCIjY1FdnY2b+uuqfCjnFF4683nTkRZLBbU19fj5MmTWLRoEZsy8xZvo4m+4mrO3NRucXFxwG2BpFIpmwIETqW6SaqQFA/4s2aMRkl8I1gi2Z8+w2IwBAecC0GdTof6+noolUqYTCYACDgiGBkZiezsbLt7C4XCB0IUL1HhRzkj4K4D4nYPcIWriN/ExAQqKysRHR2NsrIyv1zU/Skc8QZH4cdN7c6bN4+N4PCNTCabUjxAIkTcNWNKpdJjqpBG/Hwj2OLK2z7Dcrkc0dHRmJiYCEphkLdwTaUjIiJY6xiGYWA0GgMSgmRMaotEETtU+FFOe7ht1wB4FH1kG/JeIqi6urrQ0tKC/Px85Ofn+/0wC0aqN5DUbqBEREQ4XTOmUqnYVKFjxTC1jvEdMYhkV32Gm5qaYDKZUFlZCWBqn+FQCkGyppfMnxsVdBSCRqORXSMYERHBCkF/+3VTKGKACj/KaQ3Xm4/rDeYJsp3NZoPVakVNTQ0mJyexbNky1ijXX4RO9XJTuyUlJW4/szciOFC4a8ZIqpBEiHp7e2Gz2VgvOavVKpo0YTggtuMkkUjYTgZyuRz5+fmYnJzE2NgYVCoV2tvb2aUCJDUc7D7DnrqKuBKCBoOB3YYKQUo4Q4Uf5bTEmTefLzdmsq1KpUJdXR0SExNRVlbGS1WVkH51w8PD6OjoEDS1GwjcVOGMGTPYCJFKpcLQ0BD0ej0OHToEhULBpobF0HdWjIgh4ucKMjduYVB2djbbZ1itVmNkZAStra2Qy+V2QlDo8+1PVxHAvRB09BCkQpAiZqjwo5x2uPLm8wWyfUVFBYqLi5Gdnc3bjVyINX46nY4t+ffWVkYMcCNEsbGxaG1txezZs6FWqzE0NISWlhZERESwokCpVArebiycEKu4cCWuSJ/hpKQk5ObmwmazYXx8HGNjYxgaGkJzczMiIyPtCoP4sAriwk31+oorIWiz2VghSAzgqRCkiBUq/CinFe68+bzFYDCgqqoKALBkyRKkpqbyOke+U72Dg4Oora1FdHQ00tLSwkb0OUIeqlxh4KzvbExMjJ11DF1MLz68japx+wzn5eUFpc8w311FnAlBq9UKq9UKg8FAhSBFdFDhRzkt8MabzxtGRkZQXV2NtLQ0qNVqQYoi+Er12mw2NDY2or+/H/PmzYNKpeJhdqHF8bg46ztL1ot1dHSgtrYW8fHxbDQwKSnJ5y4T4YqY10L6O7dg9BkWuquIY59hrhB0LBbhWnWI9VxSTj/OjDsk5bSGj9SuzWZDc3Mzenp6MGfOHMyYMQMDAwOCVd8GGvHT6XRsxSRJ7arVar/mG04PHLlcjtTUVDYKazKZ2EKRpqYmGI1Gj+bCFOHhS1wJ0WeY/DAMBu6EoMViYf/urM9wOH0vKeEFFX6UsIZE+QJJ7RIRxTAMysrK2CifN907/CHQNX4ktTtjxgwUFxfbWVP4M65YigT8OXeRkZGYNm0apk2bBgB2FcNcc2FSKCImT7lAOR0jfp7wts8w1z7GMQJss9lCdtxcCUGLxQKz2QyJRMIuVUlOTmY9BOmPFwqfUOFHCUvIzbK+vh45OTmIjo7262Y+MDCAurq6KSIKCJ7Rsrc4pnYdq3aFsokJJoEe75iYGMTExEwxF1apVOjq6gLwX085pVIZdCuRM4VgiVJ/+gyLSTA7E4Kjo6MYHR3F3Llz7SKCJDVMhSAlUKjwo4QdxJvPZrOht7cXmZmZPlf+WSwWNDY2YmhoCAsWLGAfHFyC3VrNHc5Su3yMKyb4fhg7MxcmViKjo6Noa2uDXC63Kxzgu4JUSMR+rkMhrrzpMxwdHQ2bzQa1Wo3ExMSAWxjyCbdQhNtZhEQEAeddRagQpPgCFX6UsIHbdo2kdv2Jyk1OTqKyshKRkZEoKytz+bAXUvj5Mq6r1K6zccUuBjwh5Py5nnI5OTmslYharcbAwACamprYClKSGubDt1FIxBK5ckQsUTVnfYY7OztZf06yFID4Roqhiww3Fe0qNWw2m2Eymdi/UyFI8QUq/ChhgasCDl/W4TEMg56eHjQ1NSE3NxcFBQVub5BCpXq9HddqtaKpqQn9/f2YP38+u47NFaeD8AsmXCsRwL6CtKurC3V1dYiLi2N/cFgsFlFVDIv5XItxbsQ8PCkpCSaTCQsXLrTrM0y6yJB2gqFaE+rOZ9CZECQ/hklE0FEIkqphCoUgnrsYheICbts1xwIOb4Wf2WxGbW0txsbGsGTJErZK0B2hTPVqtVpUVVVBIpF4bcgc7sIv1A8nZxWkarUa7e3tUKvV+Oabb6asFwt1mjDUx8wVYon4OYNr9+SszzARgtw1oWRdaDD6DPtiME3W/xG4QtBZRJBbNUw5c6HCjyJavGm75o3wGxsbQ2VlJeLj47Fq1Sqv03ehKu5wV3ASyLjhgJjmHxERgfT0dJw8eRIxMTHIyMiYsl6MRIdCkSYU07FyRMzCz1VVL7eLTFZWFrsmlFQNd3R0BKXPcCB2M94IQalUOqVYRKzniiIMVPhRRIm33nzuxA7DMOjo6EBbWxsKCwuRm5vr0w1OSDsXZ+P6mtp1xF/hJ5abvljm4QyJROJ0vZhjmpArCoIRHRLrMROz8PN2bqHqM8yn3Yy3QtBxjaBYzx2FH6jwo4gOX7z5XIkoo9GI6upq6HQ6LF++HElJST7PQ6gImrNx/UntejNuuBEu8yfrxWJjYzFjxgwwDAONRsMKQRIdcqwY5vOBKuZjJWbh52+v3mD1GbbZbIK1IeQKQXL9kDaX3K4iVAie3lDhRxENxLbAYrF43XbNmfA7efIkqquroVQqUVZW5vdNVKiIn6NA8ze162lcSvCQSCRISEhAQkKCXXRIpVI5FQVKpTLgnrNkv2JEzMKPr7kJ1WfYX2HqK1zrGIAKwTMJKvwoooBUTfrado0rzmw2G1pbW9HV1YXZs2djxowZAd2ghI74Wa1WNDY2YnBw0K/Urqtx/XmfGBDLPPiAGx1yJgoaGhrses4mJyf7/ANFzCL/TBB+jvjSZ5ikh52tNw5mSzkuzoQg+Wc0GmEymdhtpVIpoqOjqRAMU6jwo4QU7poTckP2Zx2eXq9HVVUVLBYLSktLER8fH/DchFzjZ7FYcPToUUilUpSWlvqV2nXkdIj4hfv8XeEoCrg9Zzs6OlBbW4v4+HjWPzApKUlU1jH+IFYxECxh5arP8NjYmJ1dkGOf4WBF/DzBvRfLZDJWBE5MTKCmpgYrV65kI4KkUEQul/vdOpMSPML7zkIJaxwLOHwVfeQ94+PjaG5uRkZGBkpKSniz2BBKSKnVauh0OuTm5mLWrFm83eRPB+F3puCs56xKpYJarUZTUxOMRiMSExPtrGOcXSdifcCKOeIXql693vYZNpvNiIiIEJ1vJPf+TNK/RAwaDAZ2GyIESWqYCkHxIZ6rinJG4c6bz1usVis0Gg0MBgMWLFgwpXdtoPAd8SOp3f7+fkRGRqKkpIS3sQH/hR+5eYcasT4cgnFsIiMj7VqNcSuG+/v7YbFY7KpHExISRC2uxD43MUTUXPUZbm1txcjICAYGBkTnGwmcuneT9K6ziKCjECSRQCoExQMVfpSg4o03nzdoNBpUVVXBbDYjOzubd9EH8BtB02q1qKyshFQqxbx589DU1MTLuFxOh4hfuM+fL2JiYhATE4PMzEwwDAOdTsdGBImxcEREBCIjI6HVagXxkwsEMZ9HIatmA4H0Ge7v70dmZiYUCsUU30huFDhUfYbJj3VHXAlBm83GCkHSZpMKwdBChR8laHjrzedpDLI4Pjs7GyaTSbCbH18Rv/7+ftTV1SErKwuzZs3CxMRESIyhxQ69+TuH22GCayzc2toKvV6PY8eOQS6XT7GOCSVij/iJdW7Af6t6HX0jDQbDlCgw6TNMhGAwIpnerkF0JwSNRiMMBgMVgiGCCj9KUCAWAYFE+SwWC+rq6jA6OopFixYhLS0N9fX1ghRgAIG3bLNarWhoaMDQ0BAWLlzIpnSC6Q8YboT7/IMB11g4Pj4ehYWFbPXowMAAmpqaEBUVxRaKuKoeFRIxiysxzw1wvgZRIpE4jQKHos+wv8Unjmu4iRC0Wq2wWq129jHcYhF/1n5T3EOFH0VQyBebVO36K/rGx8dRVVWFmJgYlJWVITo6GoBw/XSBwFq2cVO7ZWVldhEYMQk/vV6PyspK6PV6Vijw5TFHERZyrrl+csB/bURUKtWU6lGlUgmFQiF40YCYxZVY1vi5whthxY0Cu+ozzDCMnXUMX51k+Ko6JoKOjMUVghaLhf274xpBKgQDhwo/imCQtR2VlZVYsGAB++vNFxiGQVdXF1paWpCfn4/8/Hy7MaRSKZs65ht/RaVjatfxJimUWPVV+I2MjKC6uhrp6enIycnB+Pi4ncccN2IUjOpCejP3HWfHzNFGhFs9StLDQhcNiFn4haqq11v8EVYSSfD6DJPiDr5xJQQtFgvMZrNLIShmES9WqPCj8A7Xm89qtWJkZMSvB4HJZEJNTQ0mJyexbNkyNqLBRSqVwmw28zX1KWP7IqRcpXYDHddbvBV+XKPruXPnIj09HWazGampqQD+6zemUqnQ1tbGCgWux5xQN1ua6vUeb79TjtWj3LViDQ0NMJvNSExMZM9vQkJCwOdXzMJPzHMD+IlIcpcD8N1n2FVxB9/4IgRJapgKQe+gwo/CK9y2a8B/XeB9jXCpVCpUVVVBoVCgrKzM5RoloUyWgVM3Hm+jiaTKWCaTTUntOhs3VMLPaDSiqqoKRqMRK1euREJCwpTP6Og3RoSCSqWysxYhQoGvFBLFd/w57o5FA8Q6RqVSoaenBzabjRUESqUScXFxfu1HrNfE6ZDq9RVf+gyTc+/qHhYqg2lPQhD4r78gt72cmM91qKDCj8Ib3Cgf9wvqS2qTYRi0tbWho6MDxcXFyMrKcvsAEVL4eRuZI6nd7OxsFBUVebU+h9y0+Hw4ehJ+REwrlUosWbLE6/Sto1Aga4lUKhWbQuL2oPW3olSsQkGs8PHjQSKRIDY2FrGxsZgxYwYYhoFGo2Ejgo7n19vIkJijauGQ6hV6fu76DPf397MFQs76DIuts4ijEDSbzeju7obVakVWVhYVgk6gwo8SMJ68+bwVZwaDAVVVVTCZTFixYgUSExM9vkfISlZP8/Y2tesIOTbBEn4Mw6CjowNtbW1eiWlP++CuJSIpJJVKhcHBQTQ3NwdUUUpTvb7Bt0CQSCRISEhAQkKCXYpQpVJNiQyRc+ysEEjMwk/McwNCE5H0pc+wXq9ni+vEBFcIGgwG9l5iNpvZiKBEIrETgv6sOz8doMKPEhDeePN5I/yGh4dRU1OD9PR0LF261OtolNCpXldCRKPRoLKyEnK53GNq1xHuL1Q+cTZfsk5So9Fg+fLlSEpKcvo+f+GmkPLy8pxWlHJ70CoUCpcLw8/EG7DYcTy/3MiQoyAg/yIiIkQt4MWc6iXro0M9P3d9hicmJqBSqTA+Pj6lz7BYsNlsrLgjcNeem0wmVigSIcitGj7docKP4jfeevO5E2c2mw1NTU3o7e3F3LlzkZmZ6dMchE71Ohvb19SuI9yIH584Cr/x8XFUVFQgISEBZWVlQbkxO6soJR0nGhsbYTKZkJSUxGshwZlKKCJX3MhQQUEBKwhIWri2tpZtJzc2NoaoqChRtBnjIuZUL9eiR0xw1/2aTCZER0cjISHBrs9wfHy8nRAMZZ9hq9U6JRJNCkEIzoSgVCqdUiwi1mslEKjwo/iMr958rgSUVqtFVVUVAKCsrAxxcXE+zyWYET9uapcYSPs7LiCc8GMYBj09PWhqakJBQQHy8vI83ryEurlxe9A6FhJ0d3cDAFsoEhsbK+pIkdgQw7FyLAQi/Wbr6+vR0dGBpqYmts2YUqkMWncJd4g51UvuZWKdH/DflnfO+gyPjY2hpaUFBoOBtQxSKBRuI/1C4E3lsbdC0HGNoJjPjbdQ4UfxCX/arjkTZyRqNnPmTBQXF/v9MAhWxC+Q1K6zcQHfK509QYpoqqqqoFarsXTpUnbNjhhwVkjAtZgYHx8HANTX11Mj6TAlKioK6enpqK+vx7Jly2Cz2dhCkdraWrYiXOjuEu4Qc6qX3BPEOj/AeXEH6TNMeqZzLYNIpD+YfYb98RrkCkHyo4pktbhdRU4HIUiFH8VrSJTP17ZrXAFlsVjQ0NCA4eFhnwoi3I0tVOSDRNACTe06GxfgP2Kj0+lgsVhgMplQVlYmetHE9RrLycmBTqfD0aNHERkZid7eXjQ0NLAdJ4JpJB1OiPGhQ65rZ23GHLtLALA7v/6aCvsCTfUGhjeiKtR9hq1Wa0DCklwfp6sQpHdRikccvfl8bbtGhN/k5CQqKysRGRmJVatW8VIZJmTLNgCYnJxEQ0NDQKldR4QQfn19fairq4NEIsFZZ50VFjcfR8hNtqCgABKJJKRG0uGAGFK9zuAKPy7OKsI1Gg1UKpWdqTDXGkiI6lGxp3rF3pLMVwNnZz8ASJ/hsbExp32G4+PjA/pu820y7UwIkn9GoxEmkwnAqWfd4cOHIZfLccEFF/C2f76hwo/iFrLmgbv2xNebkkQiwcjICGpqapCbm4vCwkLebmxOU71mPRDhfyoWOJXabW1thdVqxTnnnMP7A4gvGxruusPZs2ejoaFB1A8NX3BmJE0KRaiR9CnE+HldCT9HpFIpG/Hlmgqr1WoMDAygqakJ0dHRdhFBX6yB3M1PrD8YxByNJARadSyReNdnmLskwNfvtlBt5bifgSsGuULw/fffR1xcHBV+lPCDu9DV19QuF7PZDJ1OB41GgyVLlrDVnnzhKPwk3UcQ8c9NMG/6J5islX6N2dfXh/r6eqSmpkKn0wkSdeBjbaJOp0NFRQWkUinKysrYG0+44yoiEx0djczMzClpQ0cjaSIEA1mHGQ6I/Vz7er/gmgoDp5aFkIphrjVQoJWjYhZXYrBy8QTfc3SMBDszEZdIJD4tCQg01evPZyDz0Wq1AS9hEhoq/ChT8KeAwxlqtZqt2s3Ly+Nd9AFTBZT8q8cgsegh/+oxmK/7wKexrFYr6uvrMTw8jEWLFoFhGDQ3N/M9ZQCBR/yGhoZQU1ODGTNmsMUxer1e9GLAHb5cY87ShhMTE06jRUQIislnjC/EKGC8jfh5Qi6XIzU1le0hbTKZWCHoWDlKUv/ePOzFnOoVczSSILQ4dWUi7kuf4WD1E3aGVqtFfHx8SPbtLVT4Uezgtl3zV/AxDIP29na0t7ejqKgIarVasC8hV/hJug5D2vvdqdd7jkLSdRhMziqvxiFVuxEREez6w5MnTwpeOOIrNpsNzc3N6O3txbx589gqOjImIO4Hmzf4c1ykUilrG0GMpJ35y3GjRWLzl/MVsYp8oeYVGRlpZyHCLRior69nCwa4FcPO7jti/n6ES8QvmN8dZ32GyY88V32Ggx3x40I8DcUMFX4UAJ7brnmL0WhEdXU19Ho92yliYmIiKF578q//DEYig4SxgpHIIP/mCZhzPEf9SGo3JycHhYWFdj2GxST8DAYDKisrYbVaUVpaOsX38HQRfnzgLFoUiJG0WI+nGOfFV8TPE46Vo6RgQK1Wo7u7GwzD2KUH4+Li2O+dWMVVOAi/UEbTgKk/8rjdZEi0n7SpTE1NddlWUCi0Wq1fnrTBhAo/Cm+p3ZMnT6K6uhopKSlYvHgxu/4mGF573GgfAEgYKyQeon5caxlnVbuh6AriipMnT6Kqqgrp6emYM2eO01+zQtnEBAshhYIvRtLBshUJFLGe52AJPy7OCgbIOjGVSoX29nZ2DSGpxIyOjhbdORbz+kOC2MSpY59hk8mEQ4cOISIiwq6tIDc1zEeRkCtoqpcieqxWK/r6+iCTyZCSkuLXTcdms6GlpQXd3d2YPXs2ZsyYYTeO0AKKYRi7aB/BXdTPWWrX1dhC4G3Ej2EYtLa2orOzE7Nnz8bMmTPdjkneE84IPX9XRtJcW5GIiAh2fSD5QSRGxCgSxBBxdrZOjPSYBYCKigpERkayQj/YUSFXiE1UOUIKyMQ8R0JhYSFkMpldn2FSJMT1B+WzzzApOqPCjyJKuN58Q0NDiImJYdNivqDT6VBVVcWmH51d8EILv5TJBrtoH8FV1M9VanfK+wX0CPRG+JlMJlRVVUGv12PlypVISEjwOCYQvsIvVGKBaySdm5trlzrq6enB5OQkxsfHYTQaoVQqQ96HlCDW8ywG4ecISQ/Gx8ejs7MTpaWlbFU4NypExD6fYsAXxC6qyP1QzOtjHbufONpCcYuEhOgzTIUfRZTYbDZYLBY2kiGTyfwSOIODg6itrUVGRgZKSkpc3gykUinMZnNAc3aFVCrF7IF3p0T7CNyon6fUriNCCz93Y6vValRWViI5Odkube5pTEC8giBc4KaOCgoKUFNTw0Z/STUpt/1UKI2kxSawAHEKPwK7HlguR0pKCus0QKJCarUa7e3t0Gq1ISkGEnuql7scSKyQwg5Xx9GxSMhoNLqsFvenzzBd40cRFVxvPnJzJm1nfBE4VqsVjY2NGBgYmFJZ6gwhI37y3iNI0bq2XCFRP0PDZ/hhNMZtatcRIVO9rsZmGAadnZ1obW1FUVERcnJyvH4QnC7CT2zzl0qliI+PR05ODgB7I+m+vj5YrVa7IoIz0UiaSzgIP8f5OUaFjEYjWyjS1NQEo9GIxMRENjXMd4sxgthTveHQS9jX4pOoqChMmzYN06ZNAxBYn2GS6vWUnQk1VPidITgWcDg6j3sbkSNr42QyGcrKyhAbG+vxPVKpVLB1UhHf/AU2SCGFa2HJSGSwfP4Qpl30KgoKCry+KQQ71Ws2m1FTU4OJiQmcddZZUCgUPo8JiE84eYvYxQJBLEbSYhZYYp2Xt71wo6Ki2GIgAHbFQI4txpRKJW9iPxyEn9hbygVqN+NNn2FHIUjOmdFohNVqpcKPEno8efN5I8wYhkFfXx8aGhqQnZ2NoqIir29QQkXOHCt5XW7HWJGiaUJC5DAYaZHX45PPJ8QD1lH4TUxMoKKiAnFxcSgrKwuo6ixchR8hnOZPjaSnImZBym096QuOvWa5LcY6Ozt97izhinBY4yfm+QH8du3wps+wxWLBc889hwULFuCss84CAEFTvbm5uejq6pry+u23344XXnjBqzGo8DuN8dabz9MaP4vFgrq6OoyOjmLx4sU+F4EIFfFzVsnrCl98/QjkBieEYSmJJjIMg97eXjQ2NiI/Px/5+fl+PzTJL/FwEk6nG74YSSuVSq+7TThDrOdZzMKPD2HlTOw76yzBFfvetn0Uu7AKtnmzPwjpM+jMNkitVmPFihU4dOgQXn75ZQDA5s2bsW7dOpx33nlYsGABr/M5duyY3fO0trYW559/Pq688kqvx6DC7zTFF28+d2vwxsfHUVVVhZiYGKxatcovywMh1vh5G+1jt/fC12/KewRMnRIxXFNTg5MnT/LWxzichZ9YxUIgOBpJc9eONTQ0wGw226UMExISfG5dJzbEfP0JUTzh2FnCarWyUd++vj40NjayUV9PPnLhUNwhZmEKBFecSiQSKJVK3HfffQCAqqoqXHDBBTj33HPx+eef48EHH0RERATOPfdc/PjHP8a1114b8D4dixL//Oc/o6CgAGvWrPF6DCr8TkNsNhtMJpPXHThkMtmUiBy3yKCgoAB5eXl+35D8rRp2h/zrP4OBBBJ4/5BhIPEp6seN+PGN1WpFa2srYmNjUVZW5nVEwBPhLPwI4T5/d3DXjhEjaVIoQoykvU0ZivU4iT3iJ/TcZDIZe/7y8/Ptor7ER86VfUg4RPzEPD+A31Svr5AioO3bt+Oee+6BxWLB8ePHcfDgQQwODvK+P5PJhDfeeAO/+tWvfLquqfA7jSCpXVK1620HDseInMlkQk1NDSYnJ7Fs2TIkJycHNC/eI34mLST9x30SfQBObd/3A2DWARGei1KEivj19/djYmICKSkpWLJkCa830tNB+J0pcI2kSdrInZG0M5NhMQqsM134OeKsfSCJ+jrah+j1elEYSbsiXIRfqOboaOUil8uxYsUKrFixQpD9vf/++xgbG8ONN97o0/uo8DtNcPTm86XtGncN3ujoKKqrq6FQKLBq1SpeFqLzLvwi42C6qxowTAAAjh49CovFgqysLNZywyXRiV6JPuC/D1W+5m6z2dDQ0IDBwUEkJCQgLS2N9xtUOAs/sYqFYOHJSLq+vp7tOKBUKgWrOA8UsQu/UAuXyMhIl/Yho6OjbPEIiQh66iMdTMJB+IVyHaJGo2F7QgeDXbt2YcOGDcjMzPTpfVT4hTmuvPl8gaR6W1pa0NnZieLiYmRlZfF28Qri4xebCkukAvX19RiXpaCwuBA5BQW87oLPYgmdTofKykoAQGlpKdtInG/8na+YHtThKlz5xtFI2mw220WK9Ho9TCYT9Ho9lEqlYN5yviJm4SfGNXRc+xDgv76RJP3PMIxd+j+YwsKRUKZRvSWUcyRdQIJBV1cXPv/8c7z33ns+v5cKvzCG23YNgF+iDzhVtavX6zE4OOhVazBfEUL4TU5OorKyElFRUYiLixPsy8bH3IeHh1FdXY3MzEyUlJSw0VgxCT+LxQK5XB7Sh6LYHshiIyIiwq7jwLFjxxAfHw+9Xo+amhrYbDa2Eb1SqQyZQBCz8BNDxM8dDMMgOjoaM2fOZNP/Go2GjQa2tbXZrSFUKpWC+UQ6IxwifqFM9Wo0Gq+8bfmgvLwc6enpuOSSS3x+LxV+YQrXm4903/CH4eFh1NXVATgViRKiBymfwo/rJ5ibm4vCwkIcPXpUsChRIALNZrOhpaUF3d3dmDdvHvuLPtBx3eHruFarFXV1dejv70dcXBwbYQpWiypn0Iifd0ilUiiVSkybNo1ND5JCEWIkTdYGCmkk7QyxCj8xRvy4OAoriUSChIQEJCQkIDs7284ncmhoCM3NzYiKirKLCAq5RjBchF+o1kkGq0+vzWZDeXk5tmzZ4tczmwq/MMNbbz5P2Gw2NDU1obe3F/n5+ejs7BSs8Txfwo/rJ8i1PxGyJZy/YxsMBlRVVcFsNqO0tHTKzUDIriDeCiedToeKigrIZDIsW7aMrTAlLaqSkpJYIeirzYi/iPmhLDa455nrLccVCCqVys5ImisEhTKSFnvET6xzAzxHJB19Iq1WK1sx7LgOlFQM83mew0H4hXKOwRJ+n3/+Obq7u/HTn/7Ur/dT4RdG+OLN5w6tVouqqioAQFlZGRiGQXt7O69z5cKHgTM3tevoJyik8PNHoI2OjqKqqgqpqalYunSpU0EtVDcTb8cl6ecZM2agqKgIFosFCQkJbPSIiECVSoWuri7WryoU6SWKa9x5cxKBAEBQI2lHxCyuxDw3wPeIpEwmQ0pKCvsj2Gw2s+e5ra0NOp2OPc9ECAZynsNB+IVyjZ9jVa9QXHDBBQE9P6jwCxN89eZzRX9/P+rq6jBz5kwUFxdDKpVCr9fDarUKdlMkYsSf8bmdLUhq11nLOSEjft5+wYiAbm9vR0lJCWbOnOny8wpZfetuXIZh0NLSgq6uLjb97HjsHG1GSGcClUqFwcFBNDc3s9EjkhbmM6pAU73e4ctxEtpI2t95BRuxC5dA5xcREYG0tDTW5Jd7nhsbG2Eymdjz7Nhn1htocYd7tFotkpKSQrJvX6DCT+T4683niMViQX19PUZGRrBw4UJ2gTggbE9aAOyX0NfxXaV2HRFDxM9kMqG6uho6nQ4rVqxAYmKix3GDHfEzmUyoqqqCwWCwSz97OifczgTcNmQqlQptbW3Q6/VISEhghWAg1aVijsaIEX+Ply9G0iTC6+2+xBxVE/PcAP6FqbPzTIRgb2+vXUFQcnIy4uPj3R6fcGjZFkpxr9PpMGPGjJDs2xeo8BMxJLVbWVmJpKQk5OTk+HXTmpiYQFVVFSIjI7Fq1aopXSLIF1moLwwZ05dqq8nJSVRUVCA6Otpjqzgh18t5E/EbGxtjz1FpaalX0S+h5uxKUJI5KhQKLF68eEr62SfXd4fokcFgYEUDt7qUCEFfG9aLMWIkZrEQKJ6MpFtaWhAZGWm3PtDd91HM4krMcwOErTrmnucZM2awBUFECHZ0dEAikbjtHGOz2QRbG8oXoYz4ER8/sUOFn0ghUT4iDkj1ri8wDIPu7m40NzcjLy8PBQUFTsfgCjOhqnoB74yQualdd3N2HF8oseAumsgwDLq6utDS0oLCwkLk5ub6ZZrNJ47Cj2EY9PT0oKmpCUVFRX7/eHBHdHQ0MjMzkZmZydpPqFQqnDx5Em1tbXbdJ5RKpcs+pRTfEErEuDKSVqlUdgUERAhyW44JOS8+ELudSzCjVdyCoKysLHZJh1qtntI5hvwTe6ocCG1UUqfTUeFH8R1Hbz6pVOpXr1uTyYTa2lqMj49j6dKlUCqVLrflu0OFv+N7m9p1ROhUrzNRabFYUFNTg7GxMb/a2gXDzoVYtYyOjnq8BvjcP7GfyMnJsRMN3d3dqK+vR3x8vJ1o4N6kxSoYzmS4RtIAphhJGwwGJCYm2nUUEet5FPPcgNDOj7ukw7FzTF9fHxobGyGVSmEwGBAbGwuFQiHKH3GhXuMXLAPnQKDCT0QQbz4iYoghM+ms4S1qtRpVVVVISEjAqlWrPH45/dmHLxCfQXfibGJiApWVlYiJifGY2nUk2HYuJA1N5urPzU/o4g6tVouKigpERESgrKwsZL5WjqKB9ClVqVRobGxkiwrINqQIiOKZUB0nRyNp7rqxmpoa1gy8u7s7pEbSzhBzNBIQV/GJ43fXYrHgxIkTkEql6OzshEajQXx8vF3FsFCWYL4Q6l69VPhRvILbds1Z1a63aUFuVamvaT0hxZO78f1J7Xo7Nh84CrTe3l40NDT4PVeCUHOWSqUYGxtjK7dnzZolmgcJYN+n1NE2prOzEzabDa2trUhPT4dSqZyyHpVijxhETExMDGJiYthUf1tbG0ZHR9l1Y46dJkJ5TsUkrJwh5vnJ5XLI5XJMnz4dGRkZ7I84Z5FfUjEcishbqFK9DMOw9jlihwq/EOONN59MJoPJZHI7jsFgQE1NDfR6PZYvX+5zSblQa8644zsKHYvFgtraWqjVap9Su45IJBLB5k7mbbVaUV9fj+HhYSxevJgtbPAXISJ+NpsNOp0O4+PjWLBgAaZPn87r+HzjzDbmm2++QUxMDGs6HBMTwwqG5ORkUUQUxIIYI6MSiQSRkZGIi4vDvHnzQmok7QyxR/zCaQ0i90ccYB/57e/vh8Vi4c0iyFtIEIUWd7iH3kVDCLftmjubFk9p2JGREdTU1CAlJcVpxaY3+LOO0BcchR83tRtoKlLI4g6JRAKDwYAjR45ALpc7rYr2d1w+52w0GlFVVQWLxYKCggLRiz5nkO9AZmYmEhISYLFY2AcJsY3hriULxDbmdEGMIoYrrlwZSatUKjsjaSIE+TSS9jQ3MRIOaxBdnR/HyK9Op2O/v8QiiGsdI8QSAG4AJRTQVC/FJb62XXMVjeP2gp0zZw4yMzNFl3p0HJ9bZZqfn4/8/PyAv/xCzt1kMqGjowPZ2dm8pk35FH5qtRqVlZXsg1OMC669hXstyOVyOzNaYhujUqnQ19cHm81ml0L01TYm3BFjxA9wPy9XRtIqlYp3I2lXcxPzjwUxp3oB7+cnkUgQFxeHuLg4O4sgtVqN0dFRtLW1QS6X21UM89ENiDwHQpXqpcKP4hR/2q45i8bpdDpUVVXBZrM57QXrK0IWdwCnPqfZbEZVVVXAqV1nY/Mt/Egv44mJCWRkZKCkpITX8fmYM9euh6zpPHHihGgFQaB4YxvDbSsXzgLYW8QodH2JqjkaDDuLEvlrJO0MMUfUyP1AzMLP38IJrkVQTk6O0yUAUVFRdkLQnywQsT0LxTHU6/VgGIYKP4o9XG8+XzpwOIqywcFB1NbWIjMzE8XFxbz8uhE64scwDOrr65GQkMB7lSnfc9fr9aisrATDMEhLSxNkzUagET9ifaNSqabYyYS78PNm/r7YxvDdi1YsiPU8+5tOdYwS2Ww2Vtw7M5L2R9yLOdVLzqeYhR9fEUnHJQBWq5XtMcz1iuRWDHuzFjTUFb0AqPCjnILrzedP2zUi/KxWKxoaGjA0NIT58+ezi2r5QCjhR1K7Wq0W06ZNw6JFi3i/8fLZBWNkZATV1dWYNm0aZs+ejfr6+qB22PAGjUaDyspKREZGThHRQq53DAb+XhvObGNINxFuCpFs46k1Vbggxs/Al7iSSqUBGUm7mptYfwCEQ8RPqFS0TCZDSkoKmwXiekW2tbWx1bKe1oKGurBDJpOFhRMBFX4CY7PZYLFYfErtOiKVSmGxWNgCg7KyMl7WQ3ARItXLrdpNTExEWlqaIA8qPsQOwzBoaWlBV1cX5s6di8zMTN7Gdoa/YpVEe7OyslBUVOT0JuzPfIX0FfQVPuYRGRk5JYVIhGBnZyekUqldN5FwuFk7Ipbz5YiQPb+dGUmrVCo7OxEiDpwV/4RDqles8wOCJ6wcvSId14KaTCZ2LSj3XIfSvJl07RCzcCdQ4ScQXG8+ciP05wvNMAxGR0eh1+uRn5+PwsJCwfrp8hnZcqzara2tDarJsi+Qilij0YiVK1fa+TAJ1VPXV0Fps9nQ3NyM3t5et9FeMQk4scBNIZLWVGR9UX9/P2sbw7UYcWxBJlbEKBKClU51ZSStUqnQ29tr1zOaVJGKOdUrduFHivNCIWwc14JyrWO45zoyMpI1gQ/2cQwXKxeACj9BcCzg8Ff0mc1mtuWWTCbDrFmz+J4qC18+fq6qdoPdXcNbVCoVqqqqoFQqsWTJkimpIiEjft6OazQaUVlZCbPZjNLSUrc3l3AXfsG4WXPXF+Xn57O2MSqVCq2trXaRI9JNRIyIeV6hEC+OdiIajYY9r6SKlNznDAaD6KK8/iwDCiZiSUVz/T9nzJjBVtOqVCoMDQ3BYDDg0KFDdqI/0KIgb9BqtVT4nal4683nibGxMVRVVSEuLg6LFy/G8ePHeZ6pPXz4+BGhqlarp/SGFZvwYxgGHR0daGtrQ3FxMbKyspyeK6Eift4KNGLVolQqsXTpUo9rmMJd+AHBFzSOtjGOkSOLxQK9Xg+pVMpLZSmfiGUejoR6Xtzin+zsbNhsNoyPj6OpqQmTk5M4cuRISI2knREOVi5A6IWfIxKJBPHx8YiPj0dERAQGBgZQUFAAtVqN4eFhtLS0ICIiwq5iWAjRT4RfqK99b6DCjyd89eZzN05nZydaW1tRWFiI3NxcGAwGWK1WQX9JBxrxGx8fR1VVFWJjY532rxWT8DOZTKipqYFGo/HY5YTY0PCNJ0HJMAy6urrQ0tLiVpg6Eu7FHWLAMXJUUVEBmUw2pbKUiIYzwTbGF8SYTiVrOmNjY5GcnIyMjIyQGkk7Q8zrDwHxCj8uZI1fUlISkpKS7IqC1Go1+vr60NjYyHYE4lP004jfGYY/3nzOMBqNqKmpgVarxVlnncWWupMbkJALa0kBia9wveTcGTIHs5+uO8bHx1FRUcHaynj6wgs1b3dzJkUxY2NjdteBt4Sz8BNbxFIikSAiIgJJSUnIzs5mbSdUKhW6urpQV1eHhIQEtlAkmIJBjAILEPf1R9Kp3hpJEyEYjHZjYo/4BZrFCgbOnpGORUHOusfEx8fbWcf40/0qXMybASr8AsZqtbJpoEC+FKOjo6iuroZCoZgiSMjNQMiKJW/6ATtiNptZgeKY2nUk1BE/7trDgoIC5OXleXWuhBIiriJzGo0GFRUViI6ORllZmc/RJBrxExZH2wliG6NSqVBfXw+LxWK3tuh0sY3xBbEKUsB1VM2VkTQR+ADsekYLke4Xu/AT+/wA756RjqLfZDKxhSLc6nAiBJOSkrz63LS44wyApHZHR0dx/PhxrF271q8bgc1mQ1tbGzo7O1FSUoKZM2dOGYcb8RMKX1O94+PjqKysRFxcnNPUbqDj+4In4ce1lfEkUB0J5hq/gYEB1NbWIicnB0VFRX4/WMJZ+IlVMLjClW0MiSaQdYHkH5/G5WI9z2IWft7MzZmRNGk3NjQ0hObm5oCNpF3NTczCKlyEn69zjIyMxLRp01inBG7FcH9/PywWi1dtBGnE7zSH681HRIc/Nzq9Xo/q6mqYzeYpNiJcSFWskC3VvC3u4KZ2fYmcCbVWjoztau6Tk5OorKxEVFSUXx1DguHjR9rD9fX1YeHChaw9hb/jilUQeEu4zt+dbQx3bRERgf6mlBz3KTbCXfg5IpVKp6wZc9ZlwhcjaWeEwxq/cBB+gWbFHNf4cqO/pI2gQqGwWzMqlUpZHz8h6evrw29+8xt8/PHH0Ol0KCwsRHl5OZYtW+bTOFT4+YAzb76IiAi/Ci+GhoZQW1vLdojwdLEK3VLNm/G5qV3HNmHejB/siF9fXx/q6+uRm5uLwsJCv9tICenjZzAYUFVVBYvF4tGqxRuEmm+wEPODz1ccbWPMZjO7tsjRcJhEEnx5sIpVIItZ+PEhXpyl+12dV1dG0kLNTUhC2RXDW2w2G6/FVo7RX4Zh2Ojv6Ogo/vKXv+CDDz7AWWedBbVajYULF/K2b0fUajVWrVqF8847Dx9//DHS0tLQ0tLi03OYQIWfl3DbrgH/9ebztfDCarWiqakJ/f39mDt3LjIyMrzavxCdNXwZ39fUriNCF3dwx+a2tlu0aBFr0+EPQkb8rFYrvv32W6SmpmLu3Lm83FQDifiJ+YF9OhARETHFNoZ0E+np6QEAdl2Rt7YxYjxfYr6OhJhbZGSkz0bSzuYgduEXyj643iL0HCUSCdtGMCcnB3/5y19wySWX4PPPP8f333+P48eP48CBA1i3bh3Wrl2LtWvX8tZa9YknnkBWVhbKy8vZ1/Ly8vwaiwo/L+B685G0K4E8rL0JMWu1WlRWVkIqlaKsrAyxsbFez0Fo4edKmPmb2nWED59AV5DzQRzdKyoq2GMcaGs7IQQrwzDo7++H1Wr1yarFG2iqN3yIiYnBjBkzWBPayclJqFQq1nssKirKzjbGsQJdrMdJ7MJPaPHiykh6dHSUNZLmFooQTzm6xi9wgt2yLSYmBhdddBEuuugi9Pf3Y+XKlVi6dCkOHDiAp556Ctdddx1mz56Nd955ByUlJQHt64MPPsCFF16IK6+8El999RVmzJiB22+/HbfeeqvPY1Hh5wZvvPm4FbfuIGnHrKwszJo1y+cvkNBr/JyNH0hq19n4Qgu/wcFB1NXVYcaMGSguLublJsW3kLJYLKipqcHY2BgkEgmys7N5GxsIf+EnVsEgNNxIAncdmTOfOWIbQ94nRsQ6r2Cvo3NlJO3MU07sSzTCQfiFMh2t1WqhVCpZIQiccuv46quvkJWVFfD47e3t2LlzJ371q1/hd7/7HY4dO4Zt27YhMjISW7Zs8WksKvxc4K03H0n3uhJlFosF9fX1GBkZCSjtKGTEzNn4JLUbHx/vV2rXEaHXKAJAbW0t5s+fj+nTp/M2Jp/znpycREVFBWJiYrBkyRIcPXqUl3G5hLvwA8QbyQomjuvIuD5zdXV17I/RgYEBTJs2TVQdA8Qe8Qvl3IiRdHJysl27QBIRNJlMOHbsWEiNpF0RDmv8gh3x4+KsqjclJQU//vGPeRnfZrNh2bJleOyxxwAAixcvRm1tLV588UUq/PjA17ZrroTfxMQEKisrER0djVWrVgXUJiZYqV5ux4hAUruuxucbg8GAyspKAAg4KukMvoRUf38/6urq2EITg8EgSDNxf+Zrs9nQ19fHio1Qt66iTMXRZ06r1eL777/H+Pg4ent7IZPJ2PQh37YxvhJqceUOsaVTue0CIyMjMTExgbS0NKjVatYXMthG0q4Ih4hfKNchCm3nkpGRgTlz5ti9Nnv2bLz77rs+j0WFHweS2iVVu94aMjuKMm+7WfhCMISfxWJBZWUlxsfHeRdRQgi/kydPoqqqCunp6RgbGxOk/2Kg87bZbGhsbMTAwICdVYtQN29fhZ/RaERVVRX0ej0kEgnq6+vtKk29rUjkC7EKBjHNi/QmlUgkmD17NqKiojA+Ps7axjQ0NCAuLo4VgnzYxviCmCO2YrZMsdlsiIiIQEZGBjIyMqZYiXR2dkIikQhuJO2KcCjuCFVUkpwrIYXfqlWr0NTUZPdac3MzcnJyfB6LCr//I5C2a1xRZjKZUFtbi4mJCZ/Ngt0hdKpUp9Ox6SN/OkZ4gs/5MwyD1tZWdHZ2Yvbs2Zg5cyb6+/sFq771d1wSjbTZbCgtLbUr5iE3UL5vVL7Md2xsDJWVlVAoFJg3bx7rtUgMiGtqamCz2ewiSb4UJPmLmIWDmCDHiZs+BE6tzSViobm5GUaj0c6ANjExUVCxIPaIn5jnxhVW3hhJR0VF2VWCC9k3OlwifmJK9fLJL3/5S5SVleGxxx7DVVddhe+//x4vv/wyXn75ZZ/HosIPYKN8rgo4PEGEn1qtRlVVFRITE3kXT0JF/Ehqt7m5GQCwZMkSQW6MfAk/k8nERqi4ptdCCWN/xx0dHUVVVRXS0tIwZ86cKTcjcoz5Fjnenrve3l40NDSgsLAQubm5rCF5VFSUXcTBsdI0OjrartKU70iSWB/KYsXZ8YqIiJhiL0LEPNc2hpxDvsV8OIkrMeEpGunOSLq7uxv19fVsz1lSAMTn9zNchN/pmuo966yz8K9//Qv33XcfHnroIeTl5eGvf/0rrr32Wp/HOqOFn6M3n7+9dqVSKQYGBnDy5EnMmjUL2dnZvN/4hKjqNZvNqKmpwcTEBBYtWoQTJ04IdtPmQ5ip1WpUVlYiOTkZixcvtrupCSX8fI34MQyDjo4OtLW1oaSkxGU1l5DCz91xsNlsqK+vx9DQEJYsWcIWD7gai1tpym1u3tbWBr1ePyUtLNYH/ukGuW68Od6ubGO4USN3tjH+zE2s14HYU72+RKucGUmTQpGmpiYYjcaADMKdzS+YSwb8IVSpXpvNJniqFwA2btyIjRs3BjyOuM+igJACDvKQJIbMvmIwGKDRaCCRSLBixQokJibyPVUA/Ef8xsbGUFVVhfj4eJSVlbGfXahfdYEIM4Zh0NnZidbWVhQVFSEnJ8eprU6oI35ESE9OTmL58uWs5YYzQhHxMxgMqKioAMMwfnkcOjY35xrVOkaSiAGxP9BUr3C4EvNqtdqlbYyv9wMxCz8xz42s8fMXZz1niUG4L0bSrrBarYKmkgOFFCeGQvjpdDowDEN79YoVbts1f1O7hJGREdTU1EAmkyErK0sw0QecEn589LrlVu2SNJ9j31gh8DdiSbwEx8fHcdZZZ0GhUDjdTqhWZd6OS6xaYmNjUVpa6vEGyV3jxyeu5qtSqVBZWeky9ewPjka1k5OTGB0dxeDgIJqbm/3qSyvWh7LY8CXi5w5HMW80Gtm0MLGN4a4h80YsiFVccddEihG+09COkV5vjaRdIfZUL3d9frDRarUAQIWfGAmkgIOLzWZDc3Mzenp6MGfOHKhUKsGjFDKZDAaDIaAxuKldx6pdchyC3U/XHRMTE6ioqEBcXJzHNZNCtVbzZlxi1ZKXl4eCggKfrimhI35coV9SUoKZM2cK8lDmRpLy8vJYfzJu/1JiS0HSTmIUB2c6jms8tVotGzVqb2+HXC5nhYI72xgxnltudkeMCCmsfDGSJj/UHKOPYhd+5PyGIuKn1WoRERERUhslXzhjhJ+v3nyu0Ol0qKqqYis14+PjMT4+LqjVChB4KpNUcCYkJDgVUaQVnVARP25PY083D4Zh0Nvbi8bGRq/tcIRc4+dqXK5Vi6/m3GRpgZBr/CwWC+rq6qBSqdxGS8n7+ITrTwbYFxh0dXWxlahECHKjDTTV65lgHCNiGxMfH28nFkgPWmIbw43qymQy0Uf8xDg3ILjrD90ZSbe1tUGn0yExMdGuElzswi/QZ3sgaLVaxMbGivbacuS0F37etF3zloGBAdTV1SEzMxPFxcWsmBHaYy+QfbhK7fK5D2/gpjbd3TxIp5OTJ096LD5wHF+oNX7A1PSVXq9HZWUlGIaZYtXiLUKkp8kcdTodKioqIJfLUVZW5vGXqNBCgpt2IrYUo6Oj6O/vR2NjIysgyPeU4h3BfNBwxUJBQYGdbQwpJkhKSoLJZIJerxedABR7qjeUwsrxhxpJ+avVajblL5VKIZfLkZiYyPpIiolQVvRqNBrExcWFZN/+cFoLP75Su1arFQ0NDRgaGsL8+fPZxbMEmUwGk8nEy5xd4Y8o43oKeor4AMHpp+tufI1Gg8rKSkRERKCsrMwnQ2ahhR+3WowYR0+bNg2zZ8/2O7UgVMTPaDTi22+/5bVnMZ9wbSny8/PtBIRer0djYyMGBwfZSJIYHzKhRgxRUUfbGGI23NLSgra2NrS3t/NS7MMXYo/4iclqxjHlr9PpUFlZCb1ejxMnToTUSNoVoe7TGy7r+4DTWPhZrVbWwHTp0qV+X5STk5OoqqpiIyfObl7BiPj5WhzhKbXLxz58wZPwI+vksrOzUVRU5PMNUMhULwC2vVp7ezva29tZ4+hA4HtdIsMwGBoagk6nw4IFC5CZmcnb2ELCFRAajQZpaWmQyWRstwIxtSMTG6F+2HKJjY1FbGwsurq6UFJSwp5DYhtDPCBJ1DDYrQHDYY2fGOdGjKTlcjny8vKgVCqdWgJxhWAoqn9Dbd4spn7ZnjjthB/Xm4+sSfHnZHDXmeXm5qKgoMClGAlWqtcbYcO1PvGU2vV3H/5A1rQ5jm+z2dDQ0IDBwUG7lmb+jC9UcQdwKvXR2NgIjUbDm20Pn3M2m82orq7G+Pg44uLiwkb0OSKVStm+tKRbgeO6svj4eDu7EbE3jhcCMUT8XEEiVySqS4p9iAdkR0cH6urqWNuY5ORkv2xj/JmXv7ZdwUDsa+jI/BzPLddIuqurC3V1dXZG0mTtp9CE2ryZpnpDhM1mYzsQAKfWLRBzZl8wm82oq6uDWq32ap2ZWNb4+ZradUTotnCO45P0AQC/18m5GpsvyEPi2LFjbPSUr0gFX2v8uFYyJSUlaG9v52F2oYMrahzXlRGTWpVKhYaGBpjNZtabzFu7kUDmIzbEKGKcre1zZxvT398Pq9Vqdx6FWCgv1ogaIRyEnzMB542RNLdlYKBG0q4QQ8QvXDgthB/Xm4/7qy4iIoL9m7cXGjE2JhYi3qSVxJDqJandQNrFCZnqJeMToTM8PIyamhpkZGSgpKQk4BuBUMKvv78fADB9+nQUFxfz+uDgI+I3ODiImpoa5ObmorCwECdPnuRpdqHB0/HlmtSStUdEQHDtRsg/MRvOnq54U9ThyjaG6zHH93kUW7GJI2Ja4+cMbyNq3hhJc70h+RL5oRTOGo2GrvELJo4FHNxQPlH/3lywpNUW6Q7ha4o0VKleb7paBLoPvpBKpbBYLGhqakJ3dzfmzZuHjIwM3sbmc+7c1mYABGvD56/ws9lsaGlpQU9Pj12KXCgj62Di7THhNrHPysqCzWZj04mkd2mgXSjEipgLFXwVWI62MVarlfWY6+npmdKD1t/UodiF1ekakXRmJO0o8n0xknZFKCN+wWjXxidhLfw8efNxhZ+79JzRaERNTQ20Wi2WL1/uc4o0VKlek8nEtgjzJ7XriNCpXolEgoaGBtYChc8vCp9z1+v1qKiogEQiQVlZGQ4dOiSKPsAEk8mEyspKmEwmrFy50u44+vvgEPMDx1ukUikr8oBTx4nbhSIY6UTKKQI5rjKZjD1Hjul9kjpUKBR2qUNv9if2iJ+YU72+Zs5cwTWSzsnJsVvD662RtCtCneoNZKlSsAlL4eetN59EIoFMJnO7zm90dBTV1dVITk72e/1WsFK9pBehRCKBWq1GVVUVEhMTsWrVKl7WnQn5OUZHR2E0GhEbG4slS5bw3uybr0jXyMgIqqurMX36dMyePZu9toRY5+XPnMfHx1FRUYGkpCSnxzHcI358PpgjIyMxffp0TJ8+3Wk6MSIiwi6dGOwq00AQ87pDvgWWY3rfnRk4sRZxxukaUQsG5HrjW1hx1/ACp9bXk0KRtrY26PV6JCQksOfXXdQ+lMdPq9X6ZOAfasJO+PnqzedKzNhsNrS2trLWA4G0sgpWxA849aump6eHl9SuI0JE/LgWKFFRUcjOzuZd9AGBW6MwDIO2tjZ0dHRgzpw5mDFjht3YQnkE+jJnUtXqrlpbzA82bxFKZDumE0lauLOzE3V1dUhMTGRFYGJiomgfwlzEeL6FjKxJJBLWNoZUfRNrkYGBATQ1NbG2MY4RI7FH/MSciib3P6HnFxER4dFImhvt5Xp8hjLip9FokJ+fH5J9+0NYCT+bzQaTyeRTBw5nokyv16OqqgoWiwUrV65EQkJCQPMi+xDyxkIu6IqKCuh0Ol5Su47wXdxhMplQXV0NnU6HFStWoL6+XrBIRSDijKTMtVqt0+tBqCiat5FEruXN4sWL2crIQMZ09j4xEKx5OFYicqtMa2pq2AXoSqWS/W6LCbHNh0sw5+bONoYbMVIqlZDJZKK5zp0h5ogfN9ASTJwZSRMh2NnZaRcxNJlMfq8PDBS9Xk9TvUJCfhX5UnjBTfUODQ2htrY24K4LjvsAhHUOHx8fZ/8/n5YiXPgs7uBWGZeWliIiIkLwziBms9nn942Pj7NG12SezsYWKgrlaVyDwYCKigowDOPSQNzXMSlTcXzAkAXoIyMjUKvVmJychE6nY9OJYkkLi1HIhDKy5mgbYzAYWKFw8uRJWK1WVFVViW6dJzGIF6vwE4P5tbNiLq6R9NjYGORyOUwmU9CNpGlVr4AQ80hfkMvlsFqtsFqtaGpqQn9/P+bOnctbNSlgn4blW/hxq3YlEglKSkoEe+jwEfFz1xtYaOHn69gkdVpQUIC8vDyXNzUhI37uxlWpVKisrERaWhrmzJnj1bV1Ogi/UM/fcQF6VVUVoqKiIJVK0d7eDr1eb5cWFsqXzB1iTVuKrdo4OjoamZmZyMzMxPDwMNra2qBQKHDy5El2nSe3K0yo7H/EIKzcEWifeyFwjPZWV1cjIiICcrk86EbSWq024MxhMAkr4ecPMpkMOp0OR48ehVQqRVlZGe8hWXLT53udH0lBajQaLF++HD/88IOgD0WpVBpQz2GLxYKamhqMjY1h2bJl7IJd7vhCdgbxdmzSe3l4eNgrg26hIn6uxuWK5+LiYmRlZXl9w/VX+JGIQ6gR04OFQCINWVlZAP4bRVKpVOjp6QEAUfWkDSViE36OREREICcnBzk5OaxtDNf+h3SFSU5ODlrHCSB4a+j8JZR9cL2FYRgkJiay67OdVYMLZSSt0+mogbOQ+PJgI4UgbW1tyMnJ8asHrLdz4rvAg1TtJiUlsaldoYtIAkn1ku4RMTExWLVqldNfzkJH/Ly5Lki3EGLV4s2akGCmeq1WK2pra6FSqZyKZ3/GDDfEPn9uFIlhmCl9S7nFBcnJyYIUM4n1GIlZ+DlW9XJtYwB7odDY2Aiz2YykpCR2G24hAd+Q4yZm4SfWuREc/XrdGUn39PSAYRhejKSJYwBN9YoAi8WC+vp6aDQatuuCkPAlyoiRdFtb25Sq3WC3VPMWkjLNy8tDQUGByy9PqFO9xKrF124hwSru0Ol0qKiogFwu97prjLMxw9nOJdyQSCRITExEYmIicnNz2eKC0dFRtLa2wmAwIDExESkpKT55znm7b7EhZuHnKT3urCsMEYLcQgIiBPksJBB7qjeUfXC9xdNSK2+MpMmPNaVS6dP9lwo/ETA+Po6qqipER0dj+vTpQan04UP4kSpYYiSdlJTE+z7c4ev4VqsV9fX1GB4e9lhtCoRO+DEMg9bWVnR2dmLu3LnIzMzkbexA4I5LRGlmZiaKi4v9vsmK9cHhLeE+f8fiAq7nXHd3NwDYeQf6e2+iET/f8SVqxS0kcGUbwzUaDjSyS6KRYjxuQHhE/HxJRzuu47VarZiYmGCNpBsaGhAbG8ueW0/nlwo/gXGXyuKujcrPz0d+fj6amprcGjjzRaCiTK1Wo7KyEgqFwmXVbjB76XpCq9Wy0alVq1Z5nTINtvDjWsr4a90jtIFzW1sb2tvb/RKlzsYk6/XE+hDxhFhFjT9wowyuxAM3LezLOioxn18xzi2Q74Qz2xi1Wm1nNJyYmMgKQV99IMUurMQ+PyCw4kqZTObUSNrRFsiZkbTVaoVer6dr/EIBt30Zd22UXC6HXq8XfP/+Cj9uanfWrFlue8KKJeI3ODiI2tpazJw5E7NmzfL6hiCkcHWW4uR2uXBl1eLv2HzAMAz6+vpgs9mwYsUKJCYmBjymGB+4viDW+fMxL0fxwH24NDc3s63IvFlTJlZxLOaIH58/huRyuZ3RMLfgh3ynudFAT+vHxGzlAoTWHNlb+ExHOxpJGwwGNu1PjKRffPFFzJ49G2VlZQAgWFXvH//4R/zpT3+ye624uBiNjY1+j3laCD+VSmVXCMEtLAhGVw1/9+MptetsH6Fc42ez2dDU1IS+vj7Mnz+fXTTrLZ7a5wUCtwCDYRj09vaisbHRbZcLf8bmC41Gg5MnTyIqKgqlpaW82UiQzxnOEb8zBe7DxbEVGVlTxk0LO645EuP5FasgBYQVV44FP1wfyNbWVrv2gM785cQeURP7/ABhK4+jo6On+HwuXLgQX3/9NV544QUAwM9+9jNccMEFWL9+PfLy8njd/9y5c/H555+z/x1owVjYCT/uzY7bZstVtEysws+b1G6g+/AVdxE5vV6PyspK1kjYH0ucYKR6ybrDkZERr6xafBmbLwYHB1FTU4PY2FikpaXx6h3GFX7+vE8MiFk8CIWzVmSOa47i4uJE31dYzBG/YPXqdbZ+jNjGcP3lyLlMSkqifYQDhGGYoEUlyfm97777cN9996Gurg6rV6/GvHnz8MYbb+COO+5AVlYW1q1bhx//+Me46KKLAt6nXC7H9OnTeZj9/43H20hBxmAwoKqqCkaj0W2aTC6Xi2qNny+pXUeEXuPnKqJICg8C7XYitPCzWCw4evQoZDKZ11Yt3sDXGj+bzYaWlhb09PRgwYIFOHnyJA+zs8df4Wc2m6HT6QS1rPAGMT/8golUKoVCoYBCoUB+fj7MZjPUajVGR0fR2NjI+m12d3dDqVQiLi5OFMdOzMIvVFFwZ7YxxFakoaEBZrMZsbGxsFqtmJycDPl30BliF36h9EE0m82Ij4/HAw88gAcffBAajQbffPMNPv/8c5w4cYIX4dfS0oLMzExER0ejtLQUjz/+OLKzs/0eLyyF3/DwMGpqapCWloalS5e6DXuKKeLna2rX2T6CmeplGAYtLS3o6urCnDlzWGNMvsbnk/Hxcej1euTk5ARUFesMPuZtMplQVVUFg8GAlStXIj4+HqOjo7xHt/wRfmq1GhUVFTCbzYiKioJSqURKSopgHnSeOBMjfp6IiIhAeno60tPTwTAMRkZGUF9fD7Vajfb2dtaKItQdKMS8xEAs4iUyMhLTp0/H9OnTWduY7u5u6PV6nDhxgk3xkzWCoeo/y0Usx84V5P4cinWIGo3GrrAjPj4eGzZswIYNG3gZf8WKFdi9ezeKi4sxMDCAP/3pTzjnnHNQW1vr97rCsBN+7e3taG5u9roCUizCj6xD9CW16+s+AoUbUTQajWxE1d9qWGfj8y38iDjt7OyEXC7H7NmzeR0fCDzi51hkQsSUEEUjvgq/np4eNDY2oqioCKmpqWzVKbdSUQgPOor/SCQSREdHQyaTYeHChbDZbGwqsaenx64DBWlVFayHtpiFnxjnRmxjUlJSoNVqsWTJEjbF39/fP6XyW6FQhOTHmNiLO8hzKxTilFi5CHVtcQXkggULsGLFCuTk5OCtt97CzTff7NeYYSf80tPTkZqa6nXptJAFBY77cSbKGIZBe3s72tvbfU7tOhJoSzVPkIgiEalKpRJLlizh7UbDt/DjRtHmz5+PhoYG3sbmEsi8+/r6UF9f77QfcCiFn81mQ0NDA4aGhrB06VIoFAoYjUakpKQgJSUFRUVFMBgMGB0dZT3oJBKJ22IDPudP8QzX2J1YURQUFLCpRJVKhfr6elgsFjvjYX87FHiDGMUVQcxzI2v8HFP8xDZGpVKhpaWFNQQPdp9osUf8SEVvKM5vsNu1KRQKzJo1C62trX6PEXbCLyEhwSchJ5fLgxbxcxRlXA85f1K7zvYhZKqXRLZ++OEHlJSU+NQj1hv4FH5jY2OorKxko2h6vV7QPsC+RvxsNhsaGxsxMDDg0txaiDWb3gg/o9GIiooK2Gw2lJaWIiYmxuni8ujoaDsPOsdiAxJVSklJsfO1ChSa6vWMu2PkmErUarV2HQq4FaZ8F4qIWVyJ2TLFlbBytI3R6/WsEOzt7QXDMHYWQDExMYIcf5vNJtqCIiC0EUnHVG8w9tfW1obrr7/e7zHCTvj5ConECX1Dcoz4kahZcnJyQB5y7vbBJ2azGXV1dQCAZcuWsQuR+YQP4ccwDHp6etDU1GRn1RLqdnBcDAYDKisrWWHlqgJaCGNoT8JvbGwMFRUVSElJwdy5c72+WTpGIkhf09HRUdTV1cFqtU6JKlGExZv7mUQiQXx8POLj45Gdne20wjQhIcGuwjRQcSRW4Sek3UegeBtRi4mJQUxMzJQ+0SMjI2hpaUFUVJTd95AvsSb2iF8oz61WqxVU+N1zzz249NJLkZOTg/7+fjz44IOQyWTYvHmz32OGnfDz9aYil8uD0smAKzBJare4uJjXqJlQVb3j4+OorKxkL16hWs8EKs6sVivq6uowOjqKpUuX2olTMrYQ59mXlCwR/N4Iq2D1ACaQnsqOPaD9wbGvqVarxejoKPsAio6OZqOBvqxLEqtoEBv+/mBwrDA1Go1sWri2ttbOeNifCJLYI35inpuvwsqxT7TVamUNwR1FfXJyckBrPcUsmoHQ9hIWul1bb28vNm/ejNHRUaSlpeHss8/G0aNH2SiwP4Sd8PMVcrFaLBZBK91kMhnMZjN++OEH6PV6XlK7zvbBp1DgRs8KCgqQm5uLTz/9VDSRMy6kRVxERARKS0unVLqRL70QN3epVAqz2ex2G4Zh0N3djebmZq8Fv9Ct4AjctDNf3oaO+yNRpZycHFgsFvYBRNYlJSUlsUUinhZC01Svd/BxnUdFRU0xpnWMIHGNhz1FkE43cRUs+PDxk8lk7BpdAE7XepK0cHJysk8FCaEUVt4QylSv0BG/vXv38j7maS/8uP30hESv12N8fBzTpk3D4sWLBam84jPVa7FYUFtbC7VabRc9E9Ir0N+xh4aGUFNT47ZFHLmBCZGS8BSZ40Yiue0CPSFERxDAXhAYjUZUVlbCYrG4TTvziVwuR2pqKruuUa/Xs0UinZ2ddlEnR+sRsYoGsSHUdeNoPEwEfEdHh10EKSUlxWlhgZhFu5hNkoW4bzmzjSFCsKOjw2NnGKHnxyenc6pXCMJO+Pn6xZVIJIJW9nJTu5GRkVi4cKFgNxe+RNnk5CQqKysRFRWFsrIyuy+8mNbKEcPj7u5uzJ8/361zOTfixzfuBJpOp0NFRQVkMpnTSKQ7hIz4MQzD2sgkJydj3rx5IbsxxsTEYObMmWxHCrLGrLu7G/X19XZigizLEBNimw9BaBHjGEEyGo2sgCf9aLnCISYmRvQRP7HOTWhhRWxj4uLikJWVNaVYq7Gx0a1tjNiFX6hTvRkZGSHZt7+EnfDzB6Eqe41GI6qrq6HX6zF79my0t7cLvo4wUFFG7EVyc3NRWFgY1BZ3vsyf6yNYWlrqcQ0F+dILtWbOXUeTjIwMlJSU+LVGR6j5Dg0NoaOjg5dexXziynpkdHQUNTU1sFgsiI6OZtcIxsTEhHrKoiQUYjQqKsquHy0pLBgaGkJzczOio6MRFxcHm80Gi8USEr85d4g51RvsuTnrDOO4PINrGxMOPn6hmh/peBROiOubKRBCiJnR0VFUV1cjOTkZixcvhlarFTydHMjnsFqtrG/bokWLXC4MFUPEj/QxTk5O9tpHkJvq5RvHiB83yhtIRxMhIn6kX3FHR4dLGxkx4ZiOqq2thdlsZsUEiUKQIhExP3yCTahb63ELC8i6zv7+fpjNZnzzzTd2wiExMTHkPz7OtFSvL0REREyxjSFt5Xp6emCxWNDd3Q2j0SiobYy/0FSvb4Sd8PPnYuNT+Lmq2g1GhxB/96HT6VBZWQmJRIKysjK3URSh1/i5q7DmFkj4WnkqpKULNzJnsVhQU1ODiYkJtz2ivYHvNX4mkwmVlZVgGAYLFiwQvehzRCKRIDIyEjExMSgsLLQzr21qaoLJZLIrEhFLf9pQILb0M1nXCZwSDQsWLGDtfnp6egDALi0cijZkYk/1iulHTUxMDOvhyTAMDh8+jNjYWAwPD/tV9CM0ofbxoxE/ESKXy3lZ48dN7To+9IPhF+iPKCOFETNmzPCqh62QJtHcdKzjl9RisaCurg4qlcqnAgkuQqVOiUDTaDSoqKhgG2UHWiXOZ8RvYmICJ06cgEKhQGRkpCBdNYIB97vDNa9lGMauSKS9vV1QI+JwQIwihtz/HP3myHqygYGBkLUhE3OqN9QRP3eQ6ywzMxNJSUlTin5Iz1g+vSB9JdRr/PhoaRpMwlL4+frA5CMa55jadbxRESEj5C83mUzmtSehzWZDc3Mzent7MW/ePLeFEVyETvWSuXGPEbFqiYyMnFJs4uv4QhV3GAwGHDlyBDk5OSgqKuLlocuXUO3v70ddXR3bFu7rr78WXUQoUCQSCWJjYxEbG8suTicPn87OzilFImJILZ6pOB53iUSCpKQkJCUlIS8vz2kbsqSkJLs2ZEJ1nxDrNSFm4QfYz89Z0Q85n3V1dXa2McGKzNtsNkHt2tyh0+nCzrA+LIWfrwQi/BiGQVtbGzo6OlBSUoKZM2c6vYiJkBEy5Mzdh7tfyKRzhNVqRWlpqU/rD4RO9QL26/AGBwdRW1uLrKwsFBUVBXTzE0K0MgyDwcFBaLVaLFq0yGsB7Q2BClWuuOeu2xSqWjhYeDN3rhVFYWEha0Q8OjqK3t5eAP9NLaakpIRtBNQVYk1bejMvxzZkOp2OFQ5dXV0+2YzwPbdQIeZoJOA+oBEVFTWlRSA5nx0dHZDJZHam4EJ8F0MV8SOfl0b8RIi/di7uUruOBMMv0JvK1ZMnT6Kqqgrp6emYM2eOzyJUyFQvtwCDK1rmz5+PadOmBTw+38LPZDKhqqqK7cXIp+gDAhNoZG6k6pkr7sNZ+Pn7YHY0Ip6cnMTo6CibWoyNjbXrKyym9VSnE/6IKxLJddUTOi4uzi4t7O+5E7O4EnM0kmEYryOSXDN3Epkn9k2O55NU9/PxXTydDZyFICyFn68PNn/sXEhqV6lUemXIHIwCD3fikhuZnD17NmbOnOn3PoQUflKpFHq9HtXV1TCbzT5HJN3B59yJB15SUhJKSkrQ3t7Oy7hc/BVok5OTOHHiBBITE51em+Es/IDACxe4Fad5eXkwm81soUFDQwPMZvOUvsJifei6QqznN9B5ObMZIdGjxsZGmM1mu7SwL90nxCyuxJzqJfdUf+bHtW8CYHc+m5ubYTQaeUnzh7qql0b8RIgvgszb1G6g+/EHV+KSRH/0ej1WrlwZ0EUYjM9QUVGB1NRULF26lNdF3XwJP+J1mJ+fj/z8fIyOjgbVH9AdAwMDqK2tZefm7NoMd+HHNxEREUhPT0d6ejrbwWB0dBSjo6Noa2tDZGSkXWpRbP5zrhCjiOE7nep47ojNCLcLTHJyMlJSUpCcnOw2jSjmVO/pKvwc4Z5PAHbns7u7GwCm9Ir2hlClei0WC4xGI434iRG5XA6j0ehxO2IabDAY/LLqCIali+MaPOJ5p1AoUFZWFvBDS6iIH8Mw6OrqgtVqRVZWFoqLi3m/CQcqeLg9bbkeeEIJKV/W+DEMg+bmZvT09GDhwoXsjdMZ4Sz8hJ47t4NBdna2XYVie3s76urqWP850pZMjIj1/AoprrgFPo5dYHp6elBfX4/4+Hi76lJuFEjMqV4xz41P4eeIo22Moym4t7YxoUr1ajQaABDtfcIVYSn8fL2xeCPIRkdHUVVVhZSUFK9Ng/3ZT6CQNXgMw6CzsxOtra0+e965Q4jiDm5f4MjISKSnpwvycAhEtDoWxHCrtIT0B/TmAW42m+0iup48o8JZ+AHBFTXcCsWioiIYDAa2SKSnpwcSiQQSiQQREREwGo2iKhIRY/QqmFE1Z11gSBqRpPS51aVWq1WUxwwQd8SPHDeh5+fKFFytVrO2MYmJiWxEkGsbE6pUr1arBQDq4ydG3AmyQFK7vuyHL2QyGYxGIyorKzE+Po6zzjoLCoWC1/H5/AzE+470Bf7+++9D3hnEERI1TUlJwdy5c6fcQITuqeuOyclJVFRUIC4uDitXrvTKqy6chV+oH8zR0dFsWzKbzYbJyUnU19djbGwMhw8fZiNKpEgkVA9rsZ7fUKZTIyMjMW3aNEybNo1N6ZM0Ynt7O2w2Gzo7OzF9+nQkJyeHzP7DGXT94VSIKTjJvJDKfWIbY7VaWWFvNptDMkedToeYmJiwKxY7Y4Sfs6pebmo30LVxZD9CCz8AqK+vR2JiIsrKyni/eUmlUpjNZl7GGhwcRE1NjZ33nRhawhG4nUJmzZqF7OxspzffYHQEcQY5fq76KrsbV6zCIJyQSqVISkpCbGwsUlJSkJ6ezhaJkAePY5FIMBGjUBDLOjpuSj8rKwtWqxXffPMNIiMj0dXVhbq6upCbDnMRc8RPLHNzrNzXarVsdN5sNqOmpobt6uNpvSdfaDSasCwOC0vh5+tBdlbVy0dq1xEhhR/DMOjt7YVWq8X06dOxcOFCwdKlgX4Gm82GpqYm9PX1YcGCBXZWLWIRflarFXV1dRgdHfXYKUTojiCOMAyDlpYWdHV1TTl+3hDuwk+Mcyft5LgRJa1Wi9HRUYyMjKClpQXR0dF2fYWFLBIR4zEiiPEhSCIy2dnZiIuLg8lkchk9CkWlt1jElTPEODeubUx2djYOHjyIwsJC6HQ6dr0nXzZA7iBWX+FGWAo/X+EKMoZh0Nrais7OTsyePRszZszg7QsulPCzWCyor6/HyZMnkZiYiNTUVMFuSoH6+BkMBlRVVcFisTi1ahHaLsabsUnvYqlUitLSUo99Q4XqCOJMoJnNZlRXV0Or1aK0tNSvtSPhLPzEKBqcwX3w5OTkwGq1uuxGkZKS4pPtiC9zEBtiifg5gzu3yMjIKabDKpUKJ0+eRFtbG9sOkFQLC90OUOzFHWJOZZJuVkqlEhkZGSgoKLCzjWlqauLNNsYRrVYryHdbaM4o4WcwGFBdXQ2j0chLatfVfvhEo9GgsrISERERKCsrY3+dCkUgwkylUrFRVGdr5QId3xPeCDRicJ2RkYGSkhKvTUmDUdyh0Whw4sQJxMXFobS01O+Hjb/CTyw3r3AUrTKZzG49ErevcFdXF2QymZ1lTKBLNMR6jMQq/Ig4cPZ9d4weOetFSyq9lUolEhMTeRdpYl7jF8o+uN5AnofcObqyAVKr/z97fx7eSF5ei+NHm2V5lS3vW7fttt1tt9u72+4GApd9IJeE/AhJhswAubmBAIFLLiEEbvK9N2EJky9LAhkgK+FCIJCQIWwzA8yEYQbmO9OWvC/yvtuSvGpfqn5/mPczJVlbSVVSydPnefp5Zrrt0ke1njrv+55zyGxjqCQsxjYmErkY1wbkKPFLpdQbCATw1FNPoaKiQrLSbiSkJn6UwdrU1MTizORM1gBS+w7CCeOOjg40NjbGPEbZKvXyPI+VlRUsLS2hs7MT9fX1orZL25Dy5iwklPv7+5iYmGDHOp3PSZX40e8o9QGUSzAYDGhoaIhpOxKZK6zkB6sYKJmQAsmd29GyaKksPDk5CY7jJO/tVGI5laDktQHP2c3EUiWj2QBF2sZQmwZNiSf70u10OnNuohfIUeInBjzPY2NjAxzHoa2tLa2p3USQivgJ/eQiPdsykQ4ihpgFg0FMTk4mPWGcDeInXOPw8DBKS0tFbxeQvuRBCqXVasXq6iq6u7sliYW7W+pVFqLZjlBTOhEJoRqYjPqgZGVNqesCUju/IocKnE4nHA4H9vf3YbVaodfrw4YKxIoK8dRIJUDpxI/sZpI9tjS0VVpaiubmZmYbQwqvcPCnrKws7uBPLsa1ARec+FFp1+v1AgDq6upkvSlpNBr4/f60tkH9ZwDO+cnRZ8hJ/MRsn6xa8vPzk54wlsMnULjtSOKXyhojQeeM1GSK9sP29rakrQe5TPwA5apGUiGyv4yIBKkPBoMhzLRWyf1VkVA68UuXwKhUKhQXF6O4uBiXL18O6+1cWlqCx+MJKwsXFxcn/Eyp1iYXlN7jR6XoVM+7eLYx29vbcQd/3G73XcVPSbDb7ZiYmEBFRQV6e3vxox/9CMFgUNYTOF1Str+/j8nJybj9Z3ISJ9p+MoocRYeJtRrJ5HDH3t4eJicn0djYiPb29pRvDELFTyq4XC6MjY0BAEZGRiS1Hshl4qdE0iAnIolEMBgMyzL1+/0oLS1lilJhYSHbR0rcV0olfnTtSr22yN5OMgCnsj6QOIJMrrVJBaUrflIT03i2MUtLS5iamsJPfvIT/Jf/8l+ws7OTMcXvYx/7GD7wgQ/g3e9+Nz71qU+lta2cJH7xLpBoU7v0O5kwV07lMziOg9Vqxfr6Orq6ulBXVxf3M6J5EkqFRMRSaNWSKDosGuTsUaS1C+1QpCifSq34UT9fXV0d1tfXJX8ZSYX4UR9acXFxzmTVXkRotVpUVlaisrKSNaXTkMjy8jKbNgWUqYwqlfhlqn9VaAAujCDb3d09p+aS5Y+ckWhSIBeGO+RaX7TBn4KCAlitVnzhC1/AwsICm/x++ctfjhe+8IWyDHs888wz+PznP48bN25Isr0LdYcnKxG/33+udJapVA2xn0FrDgQCSdl3ZKLUG4uYCWPNbt26ldIJLteELHB24wwGg7hz5w7cbnfKdiiRoIdFuuvmeR7Ly8tYXl7G9evXUVlZifX1dckf4GKJn9/vh9lsxvHxMQAwhclkMmXFnFSJhCYbEDalNzY2guM41ou0t7cHn8+HZ599NmxIJNuk6/lO/IRQqVTQF+pxueTyOTVXaPlDmfBK3G+A8hW/TOb0ajQaDA8PY3h4GADwlre8BaFQCMfHx/id3/kd7Ozs4AUveAFe/vKX47d+67dQWVmZ9mc6nU7ce++9+Ju/+Rv82Z/9WdrbAy4Q8ROWdgcGBs6pFlqtVlalDBBPyshEOtaao0HOUmm87dNaKysr0dnZmfKFptFoJEsGiYTf78f+/j5MJhNu3bolmXJFjcPpEBIaMDk5OcHNmzdRUlIS5i0pJcSs9fT0FGNjYygpKcHt27fDBg+Wl5eRl5cX5mcmtxqo1IefEqBWq5lalJ+fD5vNhpqaGjgcDmxubgJA2JBIIn9KOaBU4kd2KZlcm9luxnuffC8+efuT6K3oDVNzATCLEZvNBgB48sknw8rC2Th+0aB04pfNHkSe5zE4OIgPfvCDrNr46KOP4tFHH8Vv/uZvSvIZ73jHO/Ca17wGL3vZy57fxE948XIch8XFRaytreHatWtoaGiI+jtKUvyEyo/YfOBMTPUKty+0QUk3y5i2Lwdx3d7exsbGBgoLC9HX1yf5DT6ddbtcLpZXPDo6ygZMpFISI5Es8aNIuObmZrS0tCAQCECr1YbFXB0dHbHeFo/HE6YGCvvNpMRdxS85aDSasF6k09NTOBwO7OzsYH5+HgUFBWG5wpl6OCqR+GWDkH5++vPwhXz4/PTn8eAvPHju3w0GA+rr62E0GvHMM8/gxo0bODg4OHf85EyeSAa5MtyRDbhcLlZZVKlUaGtrQ1tbG373d39Xku1/9atfxdjYGJ555hlJtkfISeJHiFfajYRSiJ/f78fExATcbjdTfqT+jHSg0WiYvYBQpUrFBiUapCZ+QuubhoYGeL1eWW7wqSp+NpsN4+PjaGhoQHt7e9gNSq5p4URrFfbBUiRctJ+P9DMT9putrKzIkm6gRNKgREQeL5VKhZKSEpSUlKC5uZklFzgcDszOziIQCMBoNLIhEblK+EpV/DJtlzJmG8OEYwIAMO4Yx5htDP2V/VF/lhQ1ocVItOQJ4WRpJtMiQqGQovt+M1nqjYScdi4bGxt497vfjUcffVRy9Ve5RzMBEpV2IyH3UAR9RjxSdnR0BIvFgpKSkpSTGTIx1QsAx8fHmJiYQEFBQco2KLG2LxXx8/l8sFgsLB7O4XDA4/FIsu1IiF23UCmNNbAjRQk5GuJtU0jmxVrIRJoSkxpI3lclJSWMKOZijFEsKFWBjLd/I5ML3G43HA4HU291Oh0jgeXl5ZI92JW6rzKdjPGFmS9ArVKD4zmoVWr8zczfRFX9aG2RpDRW8sTBwQFWV1fDyv7l5eWSugIksz4lIZuKpFDxkxp37tzB/v4++vufe2EIhUL48Y9/jM985jPw+Xwpf++cJH6k8rS3t8cs7UZCq9VmTfHjeR5ra2uwWq24cuUKLl++nPJNKBPJHcDZFJFYq5ZkIBXxOzw8hMViQXl5Oa5fvw6NRoPDw8Os5wADZ+RqamoKR0dHCZXSTBI/t9uNsbEx5OXlhZWcU4HwwQOcqe+xIspMJpOolxylkgclQcw+UqlUKCwsRGFh4blIsuXlZUba6Vilk2OqZMUvU+sSqn0AwPFcXNUvEbGKljxxcnKCg4MDbG1tYXZ2FkVFRex6k7qsr3Til23FT67Itpe+9KWYnJwM+7u3vOUtuHr1Kt7//ven9Z1zkvip1Wrcvn1b1IWcyVKv8CZDJODw8BCDg4MoKyuT5DPkABFqAKJjzZJFusSPkljm5+fR3t6OpqYmtq+znQMMnJErs9nMspUTkSs5ppyjET+HwwGLxSIqo1gM8vPzUV9fj/r6+rCIsvX1dczMzDA1kLJOY127SiQNSkU6L4+kzLa1tTHvOYfDgY2NDahUqpTVpLvEL1ztI8RT/cSWodVqNYxGI4xGI+vNJTVQWNan45duL24uEL9srI88/uRS/IqLi3H9+vWwvyssLITJZDr392KRk8QPEK98ZarUCzwnPZ+ensJsNsNgMOD27duSlEvlKvV6PB5YLBZGGNIlqLGQDjkLhUKYmZmBzWbDwMAAU5uk2HYiJKPM2e12jI+Po66uDh0dHUndjJIllGIgJJNConz16lU0NjZK+lnREBlR5vP5mBoYSSxMJpNkbQTPJ0h5zgi95yjH1OFwnFOTaEgk3nmtVOKXKfISqfaxz4+j+qVbhtbpdKiurma9um63mxHB5eVlaLXaMCIv9npT+nBHtku9dyPbFIxMlXqBM4Kys7OD2dlZNDc3o7W1VbKboRylXlKDqqurce3aNTz22GOyxqqlsm2PxwOz2QyVSoVbt25FbXbNRg4wcPawW11dxeLiomilVM5SL8dxmJmZwf7+viRqc6rQ6/VRicXm5iZmZ2dZLqbJZGKDRXeRGHIQLOGQgVBNcjgcmJ6eZvFVwiERIZRK/DK1rmhqHyGW6iclKRWW9cn7kdT3jY0NzMzMoKioiB2/REQeyA0DZykGy1KB2+2WTfGLhscff1yS7TxviJ+c/nEEujhmZmbgcDjQ19fHonykgpSlXqGtjNAKJ1sEKhZISaupqcG1a9di3oTkjCqLte1QKMRK+alMPstF/ILBIJ555hmEQiGMjo5GjYrKBiKJhdA3cHJykk0Qbm9vw2Qyydq0nsvIFDmOVJNcLhccDgdsNhusViv0ej0jEWVlZYomfnKTl1hqHyGW6ienGhmpvtP1dnBwgOnpaQSDwTDvwGjT3ndLvdHh9/vh9/vvZvVmEmJvLhqNBl6vV6bVnMHtdgM4k39v374tiwEnlQbTvRgDgQAmJydxenp6zlZGzslhMYqlcDI2nkcjIdOE1ePxYGxsDFqtFqOjoymRFDl6/MjIurKyEt3d3You0+Tl5aGmpgY1NTXMZsZut2N7extzc3Oiyox3IS+E8VWXLl1CKBRiliOLi4vwer0sgqysrExRk92ZIKTx1D5CNNUvk1YzkddbZA4tWTTRH51Op3jil61Sr8vlAoC7xE/JkLvHb3d3F1NTU1Cr1ejs7JTNdV3YR5jqxXhycgKLxYLCwkLcunXrnEwud55uMtsm25Hj4+OklTS5e/yE25ZqWELqHr+dnR1sbm6iqKgIPT09innwJgPh9GJPT0/UMmNZWRkbTFBKskE2oARlTaPRoKKiglU1PB4PJiYm4PV6MTY2FjbZnUpvmZSQ284lkdrH1hFF9csWsYqWQ0tl4bW1NUxPT6O4uBg+nw9utxtlZWWKJIDZmup1Op0AcLfHT8mQq8eP4zjMz89ja2sL3d3dmJubk7UMI+wjTMV7a2trCzMzM2hpaUFLS0vUm2G2S71OpxNmsxn5+fmiPAQzMdUrtOZJRoVMBKlKvTzPw2q1Yn19nSU5iH3QyVkqTwWRZUan0wmHw8EC74XJFEajUZEPpecTDAYD8vPzUVFRgdra2nO9ZcJezpKSkoweL7mJcjJqHyFS9cu0x2AsCIk6cOaTSgbSKysrWF5eDisLGwwGRaw7W6Vet9uNgoKCnLzv5CzxS6XUK7XiJ5yEvXXrFgoKCmC1WmUdIiHTX7GfwXEcZmdnsbu7m7D3UM5SbyJytre3h8nJSTQ2NqKtrU20zYGcih+pkA6HA0NDQzAajZJsN12yFQwGMT4+DpfLhZGREdhsNhwfH6e9tmwh2v5QqVQoLi5GcXExLl++HDWZQqgGKqWnUU4o4aEbCSJYsXrLqJeTysHUHyj38ZJTVUtW7WNriVD9lFpK1ev1qK2txcLCAvr6+gCAZQtTfyeRQKmSe1JBNhU/uWIr5UbOEj+xkFrxs9lsmJiYYJOwdOLJ7RdIN1UxBIcIKgDcunUr4U02G6VeYYxYd3c3ampqRG9bjn45AvUb5ufnY3R0VLIyY7prjswB1ul0sNvtilLuxCDZm2hksgENHezv78NqtcJgMISpgUruc0wFSj2+sdYV2VtG6u3e3h4WFhbY8SISIfXxklPx+8LMF6CCCjxEmGpDxVQ/pRI/AvXQFRQUoLi4mPV3kgk4JfcIFd3i4uKMfads9vjlYpkXeB4RP6kIGZXU1tbWolp3KCUTmJDsRKwQmVD8hDdiYX6x2BixyG1TOVbKm/zBwQEODw9RWlqK4eFhSW9o6fT4xfINVFrJVizErj1y6CAYDIblnPr9fmZBQmpgLr6lR0KJ3yGZay9SvRUer4WFBZZLS2qgFKqKXAMUnqAH0wfTokgfAPDgMXUwBW/Qq4h+zVig+2nkvovM8SYTcEoT4Xn+XFlYLmSr1EvET6nHLh5ylvilUupNl8z4fD6Mj4/D5/PFJCiZIH7JEDOhVYtYbzm5FT9an0qlwsnJCcxmM4qLi1POL4617XTB8zzW19exsLCA4uJiVFdXS36DSYWkCfsMox3bXCd+6UKr1aKyshKVlZVRc2rz8vLYQ8toNCo6gD4WlHp8U7n2Io8X5dI6HA5mQCzMFU7lHiEXuTJoDfjWPd+CK+AS/buFukLka/MVrfjRcyCRoiY0Aed5Hqenpzg4OGCKbn5+fpiiK+U1l61S713FLweQbo/fwcEBxsfHUVZWhv7+/pgnrhIUv0AggImJCbhcrnNWLclA7iEJ4OyGsru7i+np6biDJqluO90bqTAlZHBwEBsbG7LsE7EkjeM4TE9Pw263x+wzzGXiJ/XDOVpOLalLVqsVXq9XcnUpU1DiOtMlWNFyaamkuLa2dm5IJNmSopwDFGX6MpTpUzdHzwXiJ2Z9KpUKJSUlKCkpYYouHcOlpSV4PB7JsqFpjdns8ctFPG+IH/lLib0xCb3kOjo60NjYGPf35SyTEuIpcqSgFRUVpaygyUle6QYyNzeHvb099Pb2orKyUtJtp0vQvF4vzGYzALCUkM3NTVnIlJgeP5/PB7PZDJ7n4/YZ5jLxA+RVsyItSCjeitQlnU7H1EChMqE0kqXU4yu1sqZWq6NOmlLyC4Awy5hY14TSy6lK7UGl50A6xFSr1Z6z/aGy8MbGBoDkjmE00DM9W6XeXPTwA3KY+KVS6gXE2aCQcuZ0OpP2kstUNFy0z6AIrHQVNDkVP0pPOTw8xOjo6LnIp3RA3zedtR8eHsJisaCiogKdnZ3svJFrnyTb43d8fIyxsTGYTCZ0dXXFfVDkOvHLJITqkrBhnZSJ0tJS+Hw+eL3K68VS0loIcu8jmjQlyyKK/9vZ2cH8/Dyz+CkvLw8b6lG6qqbktZGThFQwGAyor69HfX09eJ7HyckJDg4O2DEUM+hDz8FsEGe3232X+CkddGIEg8GkiN/x8TEsFguKioqimhzH+5xM9/iFQiHMzs5ib28P/f39rOFWqu1LBSJVANDT0yMp6QPCe/xSwfr6Oubn59He3o6mpqawm51cZCqZ7W5vb2N6ehpXrlzB5cuXk2qez1Xil00yI2xYb2trY8rE8vIy1tfXWYxcOr1mUkHJxzdTx1BYUmxubmYWPwcHB5ibm0MgEGBlfL/fn5E1pQKl+PhFg9ykVKVSsQjH5ubmqIM+paWlrCwcmQaTbA+iHLjb45cDUKvVSQ9FbGxsYH5+Hq2trWhubhZ1UarVatlvMsJSr9vthsVigUqlSsqqJdntS+l5KNynbW1tsFqtst3oUlHmOI7DzMwM9vf3MTAwwMpK6W43GcQr9fI8j4WFBWxsbIgqiecy8QOUQ2pImbDZbKisrERBQQEcDgdWV1cxMzMjaZ9SKlAiWcimKhpp8SMs4x8eHkKtVkOlUjHirpShHqUrfpkkVcJBH+C5Vgzq8RSW/svLy9lEbzbOOafTeVfxywUkUuOCwSCmp6dxcHAQkwAkQiZLveQlmG5sWCSkJDnCIQnap8vLy1mPhCN4vV5YLBZwHIfR0dGYxFkuj8BYJC0QCGB8fBwejwcjIyOibjDpEL9slzOVSGaAs3WRIfGVK1eYfYXD4cD6+jp7IJEiKHc8WbaPUywoZV3CoZ7GxkbMz8/D5/NBo9Ew37lsE3eCkolftqxSCJGDPlQW3trawuzsLAwGA3ieh8PhyLhfp8vlQlVVVcY+T0rkLPFL5SKNR/xOT09hsVig1+tx69Yt6PX6lNaViVKvSqWCzWbD0tISurq6UFdXJ+n2pSr1ejwemM1mpkZS0262I+EIR0dHMJvNSfXNqdVq1p8oJaL1+LlcLoyNjcFgMGBkZER0SfGu4ic/hPYV9EAiEkiTp1Q2LikpkYVUKIFgRULJx66goABXrlwBgDDivrGxEaYElpeXp3z/TwXZGk5IBkoipWq1GkajEUajES0tLQgEAtja2sLq6ior7ZeWlmZsQt/tdt8t9WYDYh9wWq02agmT8msvXbqEtra2tE4Wuad6KfooGAymZXYcD1L4+DkcDlgslqjG0UogfjQI09bWhkuXLiXVN5cJxc9ms2F8fByNjY1ob29P6VzMZeKXi2RG+EBqbW2NOXlKD6RMkopMQymKXyQi1xVJ3GlIhJSkoqKisCEROcnP87nHLx3odDqUlJQgPz8fN2/eDCsLr6yshGUPy6HCu1wuWZ6/mUBOEz+xiFTjhEMRUtmKyFnqPT4+htlshlqtRk1NjWwnXTrEjOd5rK6uYnFxEdeuXUNDQ4Ok20+ERKSH4zjMzc1hZ2dH1CBMOgkb8UCEUrjf0lVxc5n4XQRETp6SGigkFUI1MJUHq1KPr1KJXzwCo1ar2YABKUlE3GdmZhAKhcK8HqUeSlMyuVLy2gCE9fgJS/scx+H4+JhZxszMzEhO5u8Od+QIhEMLcgxF0GdITfx4nsfm5ibm5ubQ2tqKYDAIn88n6WcIkep3CAaDmJqawtHRUVz7m2wpfj6fDxaLBcFgULSVjJyKXygUwuTkJBwOR9K2QYm2qVRikAxyee2REE4ttrS0MMXe4XBgcnKSRVsRqRDjYaZEgqVU4idmXTqdDtXV1aiurg7LgbbZbLBardDr9ex4SZFCoWRyla1UjGQRa/hErVazntzW1lb4/X42LTw7O4tAIBAWKVdQUCD6vL3r45clpFLqDYVC2Nvbw+TkJOrr68MyTqWA1KVe4XAEKVTLy8twu92SfUYkUiFmLpcLZrMZeXl5uHXrVlxZPRvEj9TSsrIyXL9+XfTNTC7Fj+M4bG9vw2AwxDVlFoNcJn5KJA1SIi8vDzU1NaipqYnpQ0ekIp4qodTjq2Til8p9PjIHWpj8IvR6jGU3IufaMgElk1Ig+eGTvLy8MDIfGeOo0+nCvAMTlYVpG3cVvxyAWq3G7u4uTk9Pcf36ddTU1Ej+GVKWekmVVKvVYcMRcmbpAuLJ6/7+PiYmJtDQ0ID29vaEF2KmiR/1cCbrgxcNcih+R0dH2Nvbg8FgwM2bNyW7weYy8Xs+IZoPHfUoUYlRqAZGViWUSrAu8roik1+EucJkNyL0ekymr+xuj1/qSEWRjBbjSGXhtbU1TE9Ps1jA8vJylJaWRt0HTqfzbo+f0kFTXAAwOjoqG1OXqtRLZCqaKin3AEmyxJLneSwuLmJ1dRXXr19HbW1tUtuXc/1C4sdxHObn57G9vY2+vj52s051u1KSKSKjpaWlKCwslPTmmgrx4zgOy8vL7MGWSulDKjxfSWtkidHpdMLhcLCge4PBwEiFnC9+6UKJJEYuciVMoYjWV5YMgVAyuVLy2gBpStHCIRDgrCWIVN3p6Wn2AlZeXg6VSoXa2lqoVCpZe/wefPBBPPjgg1hdXQUAdHV14Y//+I/x6le/WpLtPy+In91ux/j4OPLy8tiYt1wgUpPqG2YyZCoTil+i7VOcncvlEj1dLOf6ifT4/X5YLBb4/X5JouGkUikjyajD4ZDULBsQT/wom5jneWi1WqysrCAvLy8sszZTfT5KJA3ZgEqlQnFxMYqLi1nQ/eHhIRwOB+bm5uDz+WAwGFi2sNQDB6nioit+8RCtr4zUwKmpKXAcF1XBVTK5UvLaAHnWp9frw9oxXC4XDg4OYLPZ8OY3vxkulwujo6NwOp2yCRgNDQ342Mc+hra2NvA8jy9+8Yt43eteB7PZjK6urrS3n9PEL9GFzPM8lpaWsLKygmvXrsHj8cg6FAGANfqm4nju9/sxPj4Or9cbl0zJ7RWYaPunp6cYGxtDUVERRkdHU/KZk7PU63K5YLVaYTQa0d/fL4lDvxTl00AgAIvFAp/Ph5GRERQWFuLw8FByhUvMWoUZwB0dHeB5HjzP4+joCA6HAwsLC/D7/WyqUUkk4/kEYaIBz/OYmJgAz/Ow2+1YXFxEfn5+2MBBthrylUr8skFgIvs5oym4lD6hVJVb6cMdcq9P2OPZ1NSEJ598Eo888gi+//3vg+M4jIyMYGhoCK94xSvwyle+EsPDw5JEOf7iL/5i2P9/+MMfxoMPPoif/exnd4lfPBCJ8ng8uHnzJkpKSrC8vJyRVA1A/Al5dHQEi8WC0tJSjI6OxiUrcpd646lblBvb3NyM1tbWlG7ycvb4+f1+rKysoK2tTXTcXjyku2an04mxsTEUFhZiZGSEHV85+vGS3ebu7i4mJydZ72MwGGTnbWRmLTVCC0mGyWSSxS1fqQ9BpUClUkGn06GgoIAdt0iiTka2RNQzRcaUeuyyTUhjKbgHBwfgOA5jY2NhljFymw8ni0xHtokFx3EZjd4rKirC61//erzoRS/CV7/6VczMzOCnP/0pHnnkETz44IPw+/1429vehj//8z+X7DNDoRC+/vWvM6VRClxI4nd4eAiLxQKj0Yhbt26xE0PqDNpooLfKZImZMMc22eEDuRU/IjnCmyWVKLe2ttDT05NWVI0cpV6O47CwsIDT01PU19ejpaVF0u2nQ9CoX7OpqemcQbgc6meitVI7wdraWsJjqVKpWGxSY2Mjm2p0OByYn5+H3+9n5SuTyZS2LZISHna5AOHx1Wq1bOCA5/kwor68vMzK9lLZjyRalxKPodLWRQpuRUUFu6fSpOny8jK0Wm3YkIgUKlIq4Dgua5+dDEKhkOzxiNHgcrmgUqlw5coVdHR04M1vfjM4joPFYsHJyYkknzE5OYnR0VF4vV4UFRXhm9/8Jjo7OyXZdk4Tv8gLWWiCGy2RIRM5uiqVKmliFgqFMD09DYfDISobWO4eP3rDo7c98r8LBAKSDMZIrfiRuuvz+VBZWSmZJ6MQqayZ53ksLy9jeXk5Zr+mHDYx8YgfeQYeHx/j5s2bYe0EyTwYhVONQlsE8jijAQRSAy+SObHSEO14RSPqpAYK7UfoGEmpLNFxUxLBIijVMoX2WWFhIcrLy1km7dHRUdiUaWSucKa+i9J7/LJViqbBDuG5rlar0d/fL9lndHR0wGKx4Pj4GN/4xjdw//334z//8z8lIX85TfyECAQCmJqawvHxMYaGhmA0Gs/9TCZydJP9HJfLBYvFAq1WK9q/LROKHwAWZUT+dwMDA5KoBVKWqk9OTmA2m1FSUoK+vj7Mzs5mJFotEYhgHR0dsVYDKbabDGJt0+v1YmxsDBqNBqOjo+felMWuI9IWQTiAQCapwqiyZAi5EkmDEpHssRKW7QGEqYErKyvMv4yGeNJRd5RM/JRqmUL3qkjXhsgpUxoS2draSsv0O5X1Kb3Um431OZ1O2cvxeXl5LFt6YGAAzzzzDD796U/j85//fNrbvhDEjx7+hYWFcc2DM0X8EhGbeFYtYrYvV/mC1rOxsYGlpaWk82zFbD8QCKS9nZ2dHUxNTaGlpQUtLS1QqVSyGS2LUfw8Hg/MZjMjWPGyWTNF/I6OjmA2m1FZWYnOzk5Z3uIjBxAo8YCa2cmc2GQyxbS2uIvkkcr1aDAY0NDQEKYsEQkkZYmOkVgzYiUTP6WVegm0z+JdC5ERgNFMv4VRZFISoWQNkrOFbK0vG3FtHMdJNpya88RvY2MDc3NzYQ//WNBqtbL3+NHnRCN+HMex3qru7u6UDaTpwpbrZkY3o5WVFVF5tski3VIvz/NYWFjAxsbGuR41uQZHkiVoh4eHMJvNqKqqSopgZaLHjwZypCbwidYgTDwIBAJMDSRvLFKaTCZTGDm+W+pNDCn2UaSy5PV64XA4WImR/M1IWUqkBiqd+CmRwNC1n+w+i2b6TUMic3NzCAQC53KF0zked0u90RGt1CslPvCBD+DVr341mpqacHp6iq985St4/PHH8fDDD0uy/Zwmfru7u7BarUmTk2wqfj6fj/WhjY6OppXxJ5wclvqi9Hg8sFgsAIDe3l7JSR+QHjnz+/2YmJiAx+PByMjIuf0o18RzMmuml5COjg40NjYmdVOQq8cPeO5FY319Hb29vaisrJT0c8RAp9OhqqoKVVVVYdYWpFpQj5Ner79L/JKE1A+d/Pz8c2bElEhBZsRE1IuLi6P2WMuxLimQS6VeMYi8rtxuNysLUxSZcLBHbClf6cQvW6VeuRW//f193HfffdjZ2UFpaSlu3LiBhx9+GC9/+csl2X5OE7+amhoUFxfHLaUJkYmpXvocIfmgMltZWZkkvnLCyWEpJ64cDgfGx8dRVVUFt9st2/RfqsSP+g3JPzDa+qQqI0cinjLHcRzm5uaws7MjWiGVq9QLAGazmRlsKylMPNLagqLKHA4Htre3EQwGMTk5GVUNvIvMQGhGDJy9uJIauLGxAZVKFaYGCttrlEiwlFrqlZJYCXtuhYM9BwcHYaV84ZBIon2i9B6/bJV6qcdPLvzd3/2dbNsGcpz4qdVqUQ8FrVYLnudlf4uhUi/P81hfX8fCwoKkZTa1Wi1piVA4DX316lU0NjbCbrfLarIsVpUjz7lE/oFymUPHUubSTQiRg/h5vV4AZzfFkZGRrNgdiIEwqoxyaouKirC9vY25uTkUFRXBZDKhoqICJSUlinyAZxqZVkX1ej3q6upQV1cHjuNwcnJyLpqMBuqUqNgqtdQr57oiB3sottThcDDyLhwSifYsVbril81Sr5JepsUip4mfWMhZIhWCVKeJiQkcHBxgcHCQvTlLBanK1sFgEFNTUzg6Ogqbhs5Unm4i8DwPq9WK9fV13LhxA9XV1Qm3LceDJxpBowSTkpKSlJVcqYnq4eEhxsbGAJyV6pVO+iKhVquhVqvR3NyM5ubmsNgrSqsQ9gbm2veTEtkiwGq1GkajEUajES0tLfD7/czSBwCeeuop1juoFMVWyaXeTBGr/Pz8MPJOQyJbW1uYnZ1FUVFR2JAIPQOUTPyypUi63e6MD3dIiect8ZPTlJLneaytrbEpYzlufFIQP5fLBbPZjLy8vHPTp3J6BSa77cg84GTesOQa7iBCSSWjvb09TExMpJVgItyuFNjc3MTs7Cza2towNzcnek1KeTAK90dk7NXJyQkcDgf7rsK+s+eTGqgkVS0vLw+1tbUoKyuD3W5HT08PDg4OwhRbIoHZmuZWcqk3G+tSq9UoLS1FaWkpWlpaWLsFKe6hUAhGoxGBQAB+v1+R+4/n+ayWeu8qfjkCMleWs89vb28PNpsNJSUlGBoaku2kTJfgkKVMQ0MD2tvbz61Tzli1ZLYtjDgTkwcsJ/EDzm7UKysrWFlZSWsymyBFqZfneZaq0t/fD6PRiLm5OUWRg2QR7+GiUqnCHlakNBERFPadmUwmRScOSAElPogBsGNEU6ek2E5NTYHjuDA1UE4Pusi1KVG5UkopVdhuQVZMdNymp6eh1+szlv6SLOg+n61Sb2lpacY/Vypk/+ilgVRufHJN9nIcB6vVio2NDVRUVMBgMMh6Qaf6PXiex9LSElZWVmKmSQDZLfXu7e1hcnISly5dwpUrV0QdZzntXABgfHwcp6enGBkZCUu9SGe76RC0YDCI8fFxuN1ujIyMoLCwkH3/XCR+YkBKU21tLes7czgcWF9fP6cGJtPIHg9KJVlKQjRVKJJQ0DT37u4u83YkEphq0ksy61KiYgUoh/gJIbRiWlpawtDQEOsPFKa/0HET6/coFbJJ/NxuN+rr6zP+uVIhp4kfIP7BKQfxI6sWv9+PkZER7OzssAZ7uZAKMYssncYjLnKWemORM8qQXV1dTVlNk4v40fGkIQ6pesvS6fFzu90YGxtDfn4+RkZGmMJFN+FUkjiUgFRIjbDvrLW1lU2hEhFUq9WMBGYz+1RKKOV4ERKRq2jT3OTtODMzg2AwKGnus3Bd9PlKg1KVSAAsr12n06GoqAgVFRUAziy/SA1cW1tjfpDRJrzlBD3/smXgLHaQT0nIeeInFlKXeg8PD2GxWFBeXs4a/DORCSyWmJEVSrKl00wrfsFgEBMTE3A6nWmpaXJMyR4cHMBsNgMAenp6JL2xpdrj53A4YLFYUFdXdy79JVXipwRI9XCOnEIlT7rV1VXMzMyklVChBCjx2IpV1SI96CjpZX9/n+U+C9XAVJWdZNIxsgWlDp0AsT0GDQbDOb/HyAlvKufL2dNJ/X3Z2H93p3pzDFKRMhrgsFqtaG9vR1NTEzsB5SRNBDHKJUWbXb58OenSaSYVP6fTCbPZDIPBIKqfL5ltp4v19XXMz8+jo6MDMzMzkm2XkApRJaPoa9euoaGhQbLtKgVSr1voSXflyhWWUEGKhdD2ory8XBH9S8lAaYQhnXJqZNKLMPc5MpGC1MBkP0tsOkYmocRSLyEZc2nhtdXa2sqm8A8ODlhPp9AyRioVl9aXLY/Bu8Qvy8hGqZcsUA4PD6NatWQiISSZz+A4DgsLC9jc3DwXbZYImRruoCGTxsZGtLe3p31zlmrdHMdhdnYWe3t77BjPzs5mJFc33prIKHpgYIBFbaW7XUI2p+QImXg4RyZURObVlpaWMoKhVMsGpZJ6qY5fZO6z2+2Gw+GA3W7H4uIiGzYwmUwoKyuLSwCUXOrNdeIXicgpfOrppLxuUnFpSCQd4pYtDz/grp1LziHdvF6n0wmLxYK8vLyYVi2ZKPUmUhWFfYejo6OiT1I5ySutfWlpCcvLy3GHTFLZdrrEz+fzwWKxIBQKYXR0lL2lykGGk+3xCwQCsFgsLPIvUX+JWOJHpI/nefj9fuanp9SHklSIzKv1eDwsoWJlZQU6nQ48z+P09BSVlZU5owZmA3INUAgTKZqamhAKhVg+rdVqhdfrDcunjcxQVXKpV8k9fumWUiN7OknFPTg4wMLCAnw+H4xGIyvni82+zdZLKrUl3FX8cgjpEBpKj2hqakJbW1vMky5Tpd5YhOHo6AgWiwVGozFlY2E5FT/a7sbGBm7evImSkhLJtp3uuk9OTjA2Ngaj0Yju7u6wN0o5yqfJ9Pi5XC7cuXMHhYWFGBkZSep4ilkrz/PsZUij0bApSPo7lUrFHgCZuNFmU80yGAxoaGhAQ0MDi7yam5vD/v4+tra2wsqNBQUFWVORlDilmqk1aTQaVFRUsGEDUgMPDg6wvLzM8mlJDVR6qVeJ6wKkVyOFKi6AsFzhlZUVaLXasCGRRC0/2Sz1Op1OSVwdsoWcJ35iL5pUiJ+wZJpMekQ2S71kbHvlyhVcvnw5LWNhv9+f7jLPgUyjAWB4eFjyyah0yBkR+5aWFrS0tJzbd3IpfvHWa7fbYbFYRJfCk9kPRPBoek+j0TBSyXEcUwDpvwlyqoFKeghS75/BYEBtbS1KS0vZg2p5eRl5eXlJlxufD8gWYS8oKEBBQcG5fFqyHiFl5vT0VHGDPEov9cq5NjpuDQ0NrOXi4OAAa2trUXOFI9eS7VLvXcUvhyB2qtfr9WJ8fByBQCDpkmk2Sr0cx2FmZgb7+/vo7+9n+YypQo7hDpvNhvHxcdTV1cHlcslSNkuFnJGNzNraWtxeSDkUv1ilXmHOc2dnp2jPqERrJUIn7OMRPhCFxI6IYSgUYr8T+XuZUgOzCeGDigiGw+HAwsIC/H7/OTVQbiiJwADKUCGFgzptbW3weDzY2dlh8YrCfy8rK8u6rc/zmfgJEdly4fP52EvW1tYWeJ4PGxLJz8/Peqn3bo9fDkGr1cLj8ST1swcHBxgfH4fJZMLg4GDSbxeZKvWSIuf1epmKJuxJSwdSqls8z2NlZQVLS0vo6upCTU0N1tfXZUvYELNdoY3MzZs348r3mVL8og2WSLFdgrCfD0jc+0T/Tuc/KYBECIWlNClKwkodXBAiGsGgSeHFxUXk5+ezf0/HiiQWlECyIqHENRkMBlRWVmJzcxMveMELmKpEgzyRqlKm16/kHr9sllL1ej0zZ6ceW4fDgZ2dHczPz6OgoID132Za+fN4POA47m6pN5eQTBmW53msrq5icXERHR0daGxsFHVDoM+Q80ZIn+FwODA+Po6qqipcu3ZNsgtAKvJKE9BHR0cYHh5mMTfpGBfHgxhyRgbIer0eIyMjCf355OrxA557aPr9flgsFqYwp0riY61VqPSl2rgdTw1MtySsNOKQDFQq1blyI1mRzM/Pw+/3y2JMrDQokfgBz61LqCqRrQ+pSkKTb/qZTBgRK1nxy/aEP0GlUqGkpAQlJSUsBvDw8BBra2twuVx44oknwoZE5O69dblcAHC31JtNSN3jJyQqQ0NDMBqNotckVEbkehNRqVSsfHH16lU0NjZKun0pSr1ErGgCWngjlTNTN5mIpngGyPG2LYfiBzxXPhgbG0NxcXHKQznC7UYSPyFBk8r4NJEamK0BkWxCOHwgtCKx2WzMmFioBqayP5SoiiqZ+EXbx/n5+WEm38LIPzL5JjJRUlIiy3fLpqqWCEolpWT8TT2bTU1NYb23Op2OHTc5yvkulwsajSZjOdNyIOeJn1jEs3MhI+H8/PxzREUM6EKWS4IOBoPY2dmBx+PB8PBwSuQ0EdIlOXa7nfXzRSNWcmfqxnoICY234xkgx9q2HD1+wJmf4dTUVEr5xLG2K1yrsDdPTrf7SDVQ+CdZNVCJpCZVRFqRCI2JZ2dnw2LKxBrcKo1kKZX4JTM5Gy3yj8jE5uYmADAyYTKZJFMDOY7Lep9hLCiV+BFCoRC0Wi27viKHe+Qq51Ncm5L3TSI874hfLMWP0i0uXbqEtra2tE4OIfGTGqSi8TyPoqIiWUgfkPpksrBMHm8oQU7FD4h+0+I4DtPT07Db7Sn1zsmp+E1OTkrqZ0jEj/4Icy0z9XCOVhImEhhLDVQicZASkcbEFFNGBrcFBQWMXMSLu1IqOVbi8UuFkEb2mJEaSK4JFEtGamCqJEDJ5MrjDypWjQTO9l0kARf23gIIK+dvbGxApVKFvWhF8+FNBKfTmdNlXuACEL90S70cx2F+fh5bW1ui0y3irUmOAQ+aiq2vr0dZWRmWlpYk3b4QqZCcUCjEEk2E/XxSbT8ZCImGED6fD2azGRzHYXR0NCWZXuq+RBriAIC+vj7mSyYFaK1ihjjkRKyScKRdTCAQYH+n1AeiVIiMKaPeJYfDgenpaYRCoTCVKfIhpTSSpVTFL90BCpVKhdLSUpSWlqKlpYXFkjkcDkxOToZNnEY7TnKuTS48u36E3/nqGj4wWoQb2V5MDCTTgxhZzqchka2tLczOzqKoqIj1dCbbdpHrE73ABSB+YiG0c/F6vSyh4datW5JaMEjp5cfzPJaWlrCysoKuri7U1dXBbrfLZrAMiB/ucLvdMJvN0Gq1GB0dTXjzyyTxOz4+htlsRllZGa5fv57yW2wyZsvJwu/3w2w2s30sx4RYJkq7qSKaGhgIBLC5uQm9Xv+87A2k3qWqqqqwuCuaZCwsLGRKhZzXfqpQKvGT2iQ5MpYs2sRpMqqtHGuTCn/1+Cr8IR5fm/Xg//cL2V5NdIhtpVKr1WEEPhAIsFzhmZmZqG0X0Y6N2+3Oqnm7FHjeET/y2KNp2MrKSnR2dkouaUtF/AKBALMbGRkZYQRBbpNoMcMdNChRW1uLq1evZm1QAgArF9K2t7e3MT09nbahNW1bijWfnp7izp07MBqNuH79On7wgx9Iui9IRVheXobb7UZlZWVGfOVShVqtRiAQwPT0NAKBAAYGBqDVas+pgUK/wItOAiPjrugh5XA4MDU1hUAggLW1Nfj9ftEqk1xQavlZTkIabeKUjhOptvF6OJWobD+zdoSxjRMAwJwjiGfWjjB0yZjdRUVBuoMxOp0O1dXVqK6uZm0XBwcHbAiL8qApV5iG7eQs9X70ox/Fv/3bv2Fubg4GgwG3bt3Cn//5n6Ojo0PSz8l54if2glar1QgGg2watqGhQZabghTE7PT0FGazGQUFBbh161ZYE7DcXoHJELN0BiXkjISjfTM/P4+NjQ309vaymKB0t5vuw21/fx/j4+Nobm5Ga2srIzNSPTRJ5evq6oLdbofdbofVakVBQQGbNE11klQuuN1uWCwWGAwGDA4Ohk0z3zWPPkPkQ+qpp55Cfn4+tre3MT8/z0pWFRUVsk2gJoJSFb9MllMjjxOpttTDSRPdVFpUIvH7zH+uQqMCQjygVp39/xfv6832ss5BSrsZYdtFZB700tIS5ufn8bd/+7d48YtfjFAoJNuL9H/+53/iHe94B4aGhhAMBvFHf/RHeMUrXoGZmRlJy8s5T/zEIBgMYm5uDgBSNsZNFukSPxo2uXz5ctQpTzmSNYRIRCxDoRCmp6fhcDhSsr2Rm7jOzMzA5/NhZGREsrezdMiq0MS6u7sbNTU17N+kIH6RQxyFhYUoKipi4egOhwN2ux2Tk5PgOA7l5eWorKzMulpEudI1NTXo6OiIGpMHZM48OhegUqmg0WhQW1uL8vLysJ6ziYkJ8DwvywRqIiiV+GWrnBqp2gaDQVZanJubQyAQgFqtxuHhIUpLSxWhygvVPgDgeGBs40SRqp+cxs2RedCNjY2w2+340Y9+hJ/97GdQqVS477778MpXvhIvf/nLJZkNAIDvf//7Yf//j//4j6iqqsKdO3fwohe9SJLPAJ5HxI/UM5La5W7OTJX4CXOB4w2byG0STcQy2vY9Hg/MZjPUajVu3bqVEnGQS/FzuVxsv4yOjkpqlZAqQSOSfHBwgJs3b6KkpESS7RIikzgip2O1Wm2YCnFycgK73Y6NjQ1md0A3uUyqRbu7u5ienkZbWxuampqS+h05zaNzFZE9Z9EmUIkEynl8lUr8lLIurVYb1sPpcrkwPj6O09NTPP300yzthUqL2ZioFap9BI1CVb9MeiDW19fj93//9/H7v//7+NM//VOWn/6JT3wC9913H/r6+vDKV74Sb3/720VVvhLh+PgYAFiUnVTIeeKXzAVNfV6XL19Ga2srHnnkkYxEqon9DEpt8Pv9CXOB5TaJjkyUIBwcHMBisaC6uhrXrl1L+cEqZxawRqNBe3u75P5YqZBVn8+HsbExAIg59JIO8RNryiycUCS/MlIDKb2ASKDJZJIlT5nUz9XVVdy4cSPlMvzz2Tw61vkSbQKVouQ2NzehUqnC1EAprxGlEKxIKHFylkqLWq0Wra2tMBqNUbOfM5VGAZxX+wghhap+mY5qI3i9XrS2tuLDH/4wPvzhD2N/fx+PPvoovv/978Pn80n2ORzH4T3veQ9u376N69evS7Zd4AIQv3jgOA5zc3PY2dkJ6/MSTvbKBbHEjyZPjUZjUqkNdCOT6+QXehFSb9v6+joWFhYkSQqROguYvAO7urqwuLgoS6O5WIJ2cnKCsbExlJeXo6urK+ZxSnVfSJHEodfrw+wOjo6OYLfbsbS0hMnJSZSVlTEiKMXDh+M4zMzM4ODgAENDQ5JOM0thHp0rSJZk5eXlMT+6yHSKSDUwXXNbpRI/pU7OAs8Nd2i12nNpL8I0iry8vKiDBlIimtpHUKLql61IOafTyXwCAaCqqgr33nsv7r33Xkk/5x3veAempqbwk5/8RNLtAheE+EV7IHu9XpjNZlbyE/ZP0GSvnBBD/KgkI2byVKhyyAHhAzQUCmFmZiZl4+NY25di7cJeQ/IOXF5eznoO8O7uLiYnJ9Ha2orm5ua4xzQVxU+OJA5hlml7ezvcbjcbEFlcXIRer0dFRQUqKytRVlYm+qYbCAQwPj6OYDCI4eFhWSOPUjGPzmUimAyipVOQGijMqiWCkYoaqESCpVRCCkSf6hWmvQjTKBwOBxYXF+H1elFaWsqOVWFhYdrfL5baR1Ci6petuDu32510a0qqeOc734lvf/vb+PGPfyxp6ZhwIYhfJMiqpaqqCteuXTt3cshthZLsZ5CB7+7uLvr7+8PeIhKB+rjk+h50I3G73WwgJlXj42iQgvgRuQfC1yZHtFqy2xV6LiZrCC5mvZlM4igoKEBTUxObciOrg+npaQSDQTZFWlFRkfC8IJ/HwsJC9PX1ZfSGnax5NP1srqiB6R73SLX3+PgYDocDq6urLKuWyEVRUVHCz1MqwVJiqZeQzNoi0yiEauDKykpYNm15eXlKamA8tY+tQ0GqH1272SB+cho48zyPd73rXfjmN7+Jxx9/HM3NzbJ8zoUifsLJyXj2IkogfkJF8tatW6IyOoWfIZfiRwrI2NgYqqqq0NXVJenNM13id3R0BLPZjIqKinM+jHKaQ8fbbigUwuTkJI6OjsI8FxMhWX9AoWpFv5epB61GowmLGnM6nbDb7djZ2cHc3ByKiooYCSwtLQ1b1+HhIcbHx1FbW4v29vask4N4AyLR7GKU6E8nNclSq9UoKytDWVkZrly5Aq/Xy9TAtbW1MPIRi1wolfgpvdQrdm0FBQUoKChAQ0MDQqEQI+zLy8tsWEsMYU+k9hGUpPoJX3wzDZfLJZuP3zve8Q585StfwUMPPYTi4mLs7u4CAEpLS1PiCLFwIYifSqWC3+/H5OQkTk9PE8aFabXajPT4BQKBqP9GAxLpmkfLSWDX19fBcRwuXboky8M6HXK2tbWFmZkZtLW14dKlS1EtQOQyh461Xa/Xi7GxMWg0Gty6dUuUhUaySiKRk2yXJYU2Fc3NzWyAwG63w2KxAAAjgcFgEPPz82hvb0+7L1QOJBoQCYVCCAaDCIVCCIVCWd/3mUJ+fj7q6+tRX1/Pej9JYZqeno5aalQiQQaUS0iB9A2cNRoNa89oa2uDx+NhaiARdqEaGK18n4zaxz5PIaof3YezpfjJRfwefPBBAMCLX/zisL//h3/4B7z5zW+W7HMuBPGjJvrCwkKMjo4mfOhmS/ETGh53dHSgsbExrRuSHN+Dmu/39/eRl5eHqqoqWW6alNYgdm1kdRMv21ZOxS/amo+PjzE2NoaKioqUlNFExtBSDHHIiWgDBDabDfPz8/D7/SgsLEQwGITT6ZSkH0lOCNXAQCCA2dlZcByHsrKyqCVh+u9MI5MkS9j7CZzZOTkcDhwcHLBSo8lkkv1lOlXkeqlXDAwGQxhhJzVwbW0NMzMz54Z5nl0/TkrtIyhF9aOXsGzcS9xut6yl3kzgQhC/+fl51NXVsSSERMgG8QuFQpiammLTjGINj6NBahNkyi7mOA6jo6N45plnZE/XSBaBQAAWiwVerzeh1U0mFT+yCoqlPia73VgXvNJJXyTUajVKSkqwsbEBtVqN/v5+eDwe2Gw2Np1IamB5eXlW3tiTAVkrqVQq3Lx5EzqdTnF2Mdk6FwwGAxoaGlip8ejoCAcHB9jf30cwGITZbGbkQgmZpkpV/KhfV65zRli+BxA2zLOxsQGVSoVPT2mgAiCGbqiQfdWPJnozfVzJf1GObPVM4kIQv8HBQVFMOdN2LtTYrtVqUzY8jvUZUhEc6pkzmUzMekTOdA0x5MzpdIYpuomal6XK1I2EUJnjeR6Li4tYW1tLOxIu2nrpoUAkIxdIH3BGmMbHx8FxHIaHh9m5TiTh8PAQdrsd8/Pz8Pl8YQMiUvawpAOXywWz2YySkpIwGx4l2cUopawq7P1Tq9XweDwwGo3nbEhMJlPWTImV2uMn7NXNBCKHefYcR1h8YkoU6QPOSOLE1ik8gRAMuuy8uGVrsAOQt9SbKVwI4ieWoGTSzsVms2FiYgJ1dXXo6OiQ9GEglXK5sbGBubm5c6qVnMMjyebe7u/vY2JiAk1NTWhra0vqJilFpm40EEELBoOsn1SKSLhIxS+bQxzpgAhTcXExrl+/HnWaXuhV5nK5YLfbsbe3h/n5eRQUFKCyspINiGSjPEcRcvX19VGjEgmRJBBAxtVApZ0TPM9Dp9OdUwMjTYmFamCm1qXEUq9wiCjTUKvVqK0sx4/ePQKnL4RAIIDDo0McHx3j8OgIABAKBtHY1Iiqyqpz7VNFek3WSB+QPQ8/4EzIuUv8chCZKPXS26/FYkFXVxfq6upk+Yx0vkciOxm5Sqa07XhrF05oX79+HbW1taK2LZfiFwwG8fTTT0On02FkZESSHNRIJVEYv6bEB1Y0HBwcYHx8HA0NDXEJE0EYin758mUEAgFmFzMxMQGO42AymRhRzETe7N7eHivbixlEiez1y4QaqBTFT4jIkqpQDaTBAyo1Li4usogyk8kEo9Eom4LDcZzkKT5SIJvEj1BemIfyQgAwANVnUZI8z7O+Za3nEOszGygqKmIDItl6KRMiW6kdHMfJaueSKVwI4if2zVer1UoarRKJQCCAlZUVBAIBjI6OnstmlQrpKHI+nw8WiwWhUCimnYycpd54a6d+yMPDw4QT2tEgF/GjibmGhoa04uoiQUpirvXzEba3tzE7O4uOjo6UzUZ1Ol3UPOH19XXmKUckMN2EiUjQ0NXy8jK6u7vTKtsDse1iqHwvlRqotPMjXi+dSqViNiRkSnx4eAiHw8GGgMrKyhgRlLLsr+QeP0B5x1GlUrFnVm9vL1QqFRvmmZqaAsdxbNjHZDLJasQeC9k0b+Z5/m6PXy5CTsWP+tF0Oh10Op1spA9I/XvQ21x5eXnUkpxw+3IqftG27fF4YDaboVarY2bbprrtdLC1tYW1tTUUFBSgs7NT0ps1lXpzjfSRWfXGxgZ6e3tFGZDHQ7Q8YUoQWV1dDYu3StWwVvgd5ufnsbe3h4GBAdEvGYkgl3m0EhU/IHkSE1n2d7vdcDgcsNlssFqtMBgMYWpgOi9ZSiV+Sr7WhWqkVqtFTU0NampqmIenw+HA7u4uFhYWUFBQwEhguscqWWSr1OtyuQDgbqk3FyEX8aOYrsuXL6O6uhpPP/205J8hRCqKnJh4OLlLvZHbPjw8hNlsRlVVFTo7O1O+sKUc7uB5nlnIXL58GUdHR5KrTSqVCm63G8FgEFqtVpEPgkhQVN7x8TGGhoZkvRHq9fowiwoaELFarfB4PCgrK2O9gWL6xshw2+12Y3h4OCPDJWLNo+OpgUo7T1IlWMKIsqamJgSDQaYGzs7OIhgMMjWwvLxc9HFSco+f0o4hIZZBstDDk1o06FjNzMwgFAqhrKyMEUG5rqlslXrdbje0Wq1kA5rZwvOW+Ek51ctxHKxWKzY2NnDjxg1UV1fD7XazN3u5Lm4xBJbjOMzPz2N7ezuuB16q2xeLSOJHhLS9vR1NTU1p7TOpStTBYBDj4+NwuVwYGRnByckJDg8P094ugVSf8vJyrKysYHNzEyaTCZWVlTCZTIrsSwKeszoBgJs3b2ak/44gzJPt6OhgecI2mw0LCwswGAxMSYqXJ0ytDmq1GkNDQ1nZ14nMo4XDPdmwixELqe51Wq02LCXG5XLB4XBgb2+PKUx0DiTTb6ZUgpWuebOcSHbiWKfToaqqClVVVWHHan9/nym3QjVQKrKWrVJvLniRJoMLQfxS6fGTitCQfYXX6w2b8KSTUm7il4wJst/vh9lsRjAYxOjoaNKqSCYUP47jMDc3h52dHdF5xfG2LdYcOhJutxtjY2PQ6/UYHR2FTqfD6emppEoivRg0NjaiqakJx8fHsNvtWFlZwdTUFIxGIyMxSrnZOJ1OWCyWc1Yn2YIwTzgYDOLg4AB2u53lCQsHROgtnaaPS0tLJY8iTAfx1MDIkjD1CyoJck3S0xDQpUuXwhSm6elphEIhRixMJlNUJUappV6lKpFAamXoyGMlVG7n5uYQCATCproNBkPKxyVbpV4ifrmOC0H8xEIqJev4+Jg9QCL95eiBGAwGZVNEklG2aI1GoxEDAwOi+qHk9vELhUJ49tln4ff7RRHSZLadDkE7ODiA2Ww+Z8EjlU1MrH4+o9EIo9GIK1euwOPxsL62paUl6PV6VFRUoLKyMq6SJSdocrexsTFps/RMQqvVhqkPp6ensNvt2NrawuzsLHso7e/vo6GhIWl7oGwgnhp4fHzMiGEgEMiaGhgKAU89pcHurgpVVTxWV4twfFyEtTU9eB5obeXw278dgJS3v0iFifrNdnZ2MD8/j8LCwnPTp0pV1pSqRALSKGqRyi31cdrtdiwuLkKv16fs8ZjNUm+u9/cBd4lfyqDSZGtrK5qbm89dwHRSymkbk2j4glIlYq0xme2nq5zFgtfrhc/nQ2lpKfr7+9Nq0I9EOsSPjuvVq1fPWXpI0TsoVPrivVEbDAY0NjayCUiyOomnZMmJra0tzM3N4erVq6ivr5f989IFTSaWlJSgpaUFfr8fS0tL2NzchFqtxs7ODvx+PyorK2NmmCoJpAbabDZMTU2hra0NBQUFWTGPBoBvfUuL971Pj50d4ed0nvu5D3xAj5YWDr/1WwH8zu9ISwKj9ZtRTu3U1BR4nkd5eTm8Xq8i4+SUSkgB6dcW2ccpnOpeWFiAz+c75/EY73mVrVKvy+VSRBpNurgQxC+VUm+qNwKh9128Xjl6A5eb+EXbPmXabm1tpZUqIdf69/b2MDU1BZVKhb6+PskvolQC44U9kLFKzukqfsIGfjFlFI1GE/bm7HQ6YbPZmJJVXFzMhhvksDpZXFxk+ciU15pL4Hke29vb2NnZYdPHVFZfWlrC5OSkIsvqkdjc3MT8/DyuX7+O6upqAM+VhOm8ktM8mhS+73xHi7/+62SJsgrLyxp88IMafOhDevze7/nxp3/qT3st0RBpCXR6ehrmG7i3t8eSYkpKSrJ+jJVM/OQupUZOdQvzn5eXl1n+M6mBkcJAKBSSVCxIFk6n867il6sgwiS290OYZRvL+y7a58iFaMSMeg59Ph9GRkbS6keQ2s6F7D9WVlbQ3t6Oubk5WW6+YhW/QCDA+jTjlZxTVRIjkzjSsXAQqhwtLS0sf9Nms52zOjGZTGm9FZOf4unpKYaHh3Oyt4UI/f7+PgYHB5m9EmWYkrFwtLI6DYhku4+R53ksLy9jfX39HPmWyy6GICR7X/uaFg5HOrYqwKc/fSb5yUX+CELF1+FwoK6uDmq1Gg6HAxMTE0wNJHKRyQElQi70+GUC0TweKfFlaWkJHo8HpaWlrIRfVFSUtVLvRTBvBp7HxA8QJxcfHBzAYrGgsrISnZ2dSf2enD54tH3hjf3k5IRljPb19aX9RiTlcAfFnB0fH7NJ0NnZWVkar8Ws2+VyYWxsDAUFBRgZGYm7z1JREuVO4ojM3ySrEyqfCK1OxFgr0NSrSqXC8PBwVh6M6SIUCmFiYgIejyeuXUu0srrdbsfs7Cz8fj9TiSorKzNuVkvDT3a7PSnbHCnNo6OXc9OBCgCPT386D//rf/klLfvGAyV3VFZWMi+6k5MTOBwO1tpRXFzM2iekVs3jresu8TsPYeILgDA1cHV1FRqNBiqVirUiZbJN4y7xUxBSKfUCZ2QkEYHjeR7r6+tYWFhAR0cHGhsbRZXo5OwtERLLnZ0dTE1NoaWlBS0tLZLcuKQq9Xo8nrP4H60Wt27dQl5eHvz+szd+OXo1kiV+DoeD5bJ2dHQk3GdiibBQ6cuEUavQ6qS9vR1utxs2m41l4RYWFjICU1paGnM9TqeTDQQl+5KjNPh8PpjNZmi1WlF2LZFldZfLBZvNht3d3bB9mIk84UjiKpZ0JqsGCv0C6Xe+9S0t3vQmOUju2Tn3+tfn49vf9sqw/fOIfLkUGoRT/yeVhOllR6gGykUslDzckS1FLRoMBgPLf+Y4DkdHR5idnWUm0iUlJex4yU3aXS7X3VJvroIewolIDZnUOhwODA4OoqysTNTnyF3qJWI5Pz+PjY0N9PT0oKqqStLtp6v40YRsbW0trl69GjXXNBvEb319HfPz87h27VrSMWNiFL9sJ3EIm6mp8Z0m6siDT1gSpocblcKampoke4HINITENR27FqE9RXNzc9g+HB8fBwCmEkldLiSvRJVKJZnPYLLm0TyvxrveRaqGPMf/xz/Wwu9HRlS/RCXVvLw81NbWora2FhzHMTVwfX09TA2UmljcVfzEQ61Wo7y8HHq9Ho2NjSgtLWVq4Pr6Onv5pUg5qSsVdxU/hUFsGS4RKXO73UwxuHXrVkqTk3KXejmOg9frxf7+PkZHRyU/IdMt9RK56ujoQFNT07ltA5Bl/8QbwqDS2e7urmgyn+z+SHWIQ07odLqw2KXj42PYbLYwz0CdTgebzYZr167lxORuNMhpORNtH9rtdqytrWF6eholJSWsrF5UVJTyZ5NCXlRUFDdSMR1EqoGBAIcnngB2d4GdHRUOD+V+6KvwhS/o8M53yuMaIIQYZU2tVjNbJYoLJDVwfX0dGo2GqUvpToMrlVwByl4b8JxgkJ+fH5bqc3x8zEggZXzT8ZJioMflcqWd5a0EXBjiJxbxJnttNhsmJibOqVRiIWep9/T0FFNTUwBwzkNQKqSqWAonnwcGBqJOgtIFKAfxi2W7QoMv5BsoNk4o0csF9VEJ446UQPoioVKp2MOtra0Nbrcbs7OzsNlsAICVlRU4nc6E6RdKw87ODmZmZtDR0ZG0ipsqhPvwypUr8Hq9bEBkZWUl5SGb09NTjI2Nobq6Oqn2Aynw0EMavO99+djayuxxfuopTUaIXzpDFJE9tMfHx3A4HFhdXWXEgtRAsWRfyeRKyWsDopei1Wo1G9oi0k72Ppubm6yET0QwFTXQ5XKhublZqq+RNTxviV80UkPTc8vLy+js7Exb9ZA7E7i+vh4bGxuyjbWnovgJU0LiTT5TT5Fcil/kdp1OJ1NRbt68mdI+EyYmRN7gI4c4qG9K6QiFQrBarWyiOT8/n5UzhZ6BpGQpcciD53msrq5iZWUFPT09ScURSo38/PywPqRoQzZEBGNNjVOZ/fLlywlztNNFKAQ8+aQa3/mOBp/5THYeA4WFmUkekWqATEgsiOyTGri2thY2lFBeXp7wHqPURBEgN4hfovXp9fqwEj7Z+wgHeoRqYDLf1+123y31KgnplnqDwSAmJiZwenqKmzdvMtuHdCCHHYrVasX6+jp6enpQXFyM9fV12W4gYoc7Tk5OMDY2lnRKSKaIn81mw/j4OJqamtJKa6Dfi9zfmR7ikAqRebVE6qKlX2xsbDCFgwZE0ilnSgUq3dtsNgwNDaG4uDir6wHO5wm7XK6wPOGCggJGAo1GIzOUnpmZwbVr11BXVyfr+r75TQ3e8x4d7PZ0H+w8hD2ApaV+HB/rkGxf4K/9WmZMleUaoogsM5IFycrKCqanp5kFiclkiuoNqWRypaThjmgQ2xuuVqvPDfSQGjg5OQme51FWVhY3+g+46+OX8xCWYakZ3GAwYHR0VDJVQ8pSL3nNud1ulgks52QsII64kgopZqpYbuLH8zzW1tZgtVrR1dWV9gNV2JdI/53tIY5UcXp6CovFgrKyMnR2dkZ9AEWmX/h8PlbOFHoGUvpFph8UZBGUyK4l26AhG8ovJUV1cnISoVAIBoMBLpcLXV1dqK2tlXUtH/ygDp/6lBZSDG3U1fF485v9aGkJobDwBP/0Tx5873vJlcE0Gh4vfrF8g29CZEJZo6EDamsRWpCsrKxENSRWMvFT8tqA9IlpXl5eWL8uqYHb29tsep/UQOH0vtvtlu3l8sc//jEeeOAB3LlzBzs7O/jmN7+JX/qlX5Lls563xE+r1SIUCjHCcunSJcmzO6Uq9VKZsrCwEKOjo6yhWBgLJ1cDeCJiRskOq6uruHHjBksUkGr7qYC2Oz09zZQgo9GY9nYj+xKVOMSRDIh0XLp0SVSUn16vD1M4Dg8PYbPZMD8/D5/Pl1G/O7Jr0el0kk29ZgJarZalSwjP0YKCAkxPT2N9fZ2pgVKnS3zzm5qfk750cFZV+dCHAviDPwhCozk7nyYmJnB8/OKkt/LGNwaQqfeEbBglCy1IyJD44OCAGRIbjUZwHIeCggJFlnzJ+1CJoJd6qY6p8AWXpvdJDZyensbf/u3fwmaz4aUvfSkODw8ly5SPhMvlQk9PD9761rfi9a9/vSyfQbgwxE/shaNWq7G7u4uTkxPRhCVZSKH47e3tsYf0lStXwr4nnfhyWcZQqTfWjUlYHh8ZGRH9JiQX8QsGgwgGgzg5OWF9a1JAqPgJfdByifRtbGxgYWEBnZ2daalLwnIm+d3Z7fYwz0DqC4znGZgKSKGPp1YqHRzHYWpqCicnJxgZGUFBQQH8fj9TVMmaQjggkk4vbygEvOc9eUhX6auv5/HAAwG87nVn5z6VqLu6unD9uh5PPZXMVnh88pNucJw0UXKJkG2/PGHvHw1THRwcYG1tDScnJzg8PAxTA5VQYlWy4kfPDLn2U2T0X35+Ph566CH827/9GxYXF/Hud78bTzzxBF71qlfhhS98oWTPl1e/+tV49atfLcm2EuHCED8x8Pv9ODo6AsdxrGwqB9IhfkIlrbu7GzU1Ned+Ru48YLqwohE/t9uNsbEx6PX6lMvjcqz99PSUeawNDw9LOvhC+0Bo/J0rQxw8z2NhYQE7OzsYGBiQRAElCP3uhJ6BNpsNZrMZKpUqrCScjpJAdi257DNIbRuhUCgsFSUvLy9sgvTo6CgsTzhyQETMd3/ySTXsdnH7SqXiUVfH4/Of98NmU6Gmhsft2xxT6tbX17G4uMjyjz/ykQC+8AW63qJ91pla+La3eaHRhBAMSp8nfO4TZUrMSQcUT3ZycgK9Xg+j0QiHw4GFhQX4/X4YjUZGBOVSlxJBrvYhKSB84ZYbKpUKg4ODGBwcBM/zaG5uxtvf/nYsLS3hLW95Cw4PD/GSl7wEr3/96/HWt75V9vVIhecd8Ts+PobZbIZGo0F1dbWsjZqplnoDgQAmJibgcrkSKmlyegVG62kDnku8qKurQ0dHR8oXoNSK3/7+PiYmJtDQ0MCifaSGSqWC3W5HTU2NYkshkQgGg5iamoLL5cLw8LDsDxOh3x1ZYMQiMGIm5Ehdunr1as76DHq9XpjNZuTn56Ovry/mOSrsGWtvb4fH44HNZoPdbsfi4iLLE66srEzKcmdnRzzpA4AHHgjgJS8Jv0Ypc3tzcxMDAwMoLS0FABgMwGtfG8K3v61B5OAHoaWFwwMPhMDzeaw3NlqeMP13uhBO2SsNHMdBq9WGqYHUG+hwOLC4uIj8/Hz270ajMWNkLJmp2WwhFArJ9qKQCF6vF6997Wtx/fp18DyP6elpfP/738f6+nrG15IOLgzxS+bC3trawszMDFpbWxEIBGSNUwNSI2WRgyaJyEUmFL9QKAStVhsWXycm8SLe9qUgfmTnsbi4iO7ubpSXl2N1dVXSt1Ya4rh8+TIzpi4vL08pBzeT8Hq9sFgs0Gq1GB4ezjhZFVpg0IONCIzVaoXBYGAEhiZcI0HHd3V1lalLuQi6tsvLy3Ht2jVRDy6DwYCmpiY0NTWxPGGbzcYsd8rLy1FWVgGrtQYHB/owdW5xUYX/9/8Vd6uvr+fx8Y8/V9Il8DzP4rIGBwfPvTh/7Wt+vPGNeT8nf2G/iXvuCeHrX/cDiB4lR71bYvKEE4HuL0olfsLvpVKpmBpIudGHh4dwOByYn5+H3+8PmzyV856j5FJvtiaOQ6EQ3G43O+dVKhWuX7+O69evZ3wt6eLCEL94IMuHnZ0d9PX1oaKiAktLS/D5fLJ+rthSLylWjY2NaG9vT+pmJafiJxxm4DgOMzMz2N/fTym+LhqkUPyoV8rhcGB4eBilpaVsn4ux90n0GfSntbUVV65cyWhPW6o4PT2F2WyGyWQSTTTkgpDABINBHBwcsGETjuNYBBp5BtK1a7fbMTg4qAi7llRweHgIi8UiSaJIZJ7w8bETH/kI8E//VIbT0+daLmprQ3jpSzl84xtaeL0qqFQ8zi6J2GXYt789iP/6X0NhJV1CKBRiyvHQ0FDM3qavfc0Pjwf4oz/SYWlJhdZWHh/5SACxeEpklJzwTzQ1UMx5rGTFL9GAgkajYdcCz/Nwu92shYJemoRqoJTXt5KJX7bK0C6XCwBy9h4kxIUnfqR4cByH0dFRVuaKl9whFZIt9VLpZGVlBdevXxfVdC9nHjC9aXs8HoyPj7N9KNWbZrrEjyY7eZ4PG+KQKg4uXhKH0KIjEAiwpnyz2cya8qmnTS6D7Xiw2WyYnJxEc3Oz7GbAqUKr1Z7zDLTZbMwzsLi4GIHAWbLD0NCQYlXVRNjf38fU1BTa29slTxT51re0eOc7q3BwcP747uyo8X//79kD8vZtN37lV4Df/33Dz8nQ+Z9/z3uC+PCHoydpBINBdh8dHBxM2NNrMACf/KT4VI5IEgggLTVQiT1+BDFDJ8LsbXppIjVwdnYWwWAwTA1Md+BA6T1+2TiebrcbAO76+CkJ0S4gess2mUzo6uoKO5HlJEzCz0hEPsiLjKb7UpmMlfN7qNVqtg+lzg1Nh/iRWXRZWdm5dUkRByc0ZaZtxrpJ63S6MId4asq3Wq3weDwZLwlT031nZ2fUoSAlQmip0NraipOTE0Y0QqEQnn32WaZ+ZMMzMFVsbGzAarXi+vXrqKqqknTbDz2kwb335iG2sK0CwKOkJIT/9b9+Cp/Phf/9v1vx2c+2Y2/vuZJ/ZSWPT37Sj1/+5ej3EXrBysvLi9uXKDUie/1SUQNzqdQrBlqtNkz1dblccDgc2NvbYybhRAKFPnSZWJvcyFap1+VyIS8vT7Z2GafTicXFRfb/KysrsFgsKC8vP5d1ny4uDPETQtiL1t7ejqampnMXvpw5usLPiEfKXC4XzGZzWpOxchLYnZ0dBINBNDY2orOzU/KbZ6rEb29vDxMTEzHNoomkpUr8hKbMYvuLIpvyXS4XbDbbuZJwZWWl5D5tHMdhYWEBu7u76O/vl3RyN5NwOp0YHx9nJWoAzDNwbm4Ofr8/jEzL7RmYCoQDEHIci1AIeN/7dHFKtwQVTk604PnbeMEL3Lh61Y5f+IX/Dz/5iQonJ4Vobs7Hy1+ej8rKcgDnH6Y0vV9aWoqurq6skoFINVAYkxhLDSRHgotG/IQQTtVTBYLUwOnpaYRCIWZGHC+VQgglD3dkS410Op1RE1ikwrPPPouXvOQl7P/f+973AgDuv/9+/OM//qOkn3XhiF8oFML09DRrPo7Vi0YGznIiHrmkGLGGhga0t7enfJHJ0eNH1h8bGxvQ6/WoqamRLRJOzNqFWcqJvBdTJZVSJ3FQeYZsTqgkPDY2JmlJWJhicfPmzZwti8aya4kWgbazs4O5uTkUFRWx/Sg1mU4FHMdhdnYWBwcHGBoakiXb88kn1djaSv6esburCssT7usLsTzhxcU1TE8/Z8BNyvTp6SnGxsZQU1OTdM9xpkD3y8gBEVLq6d7u9/vZS6DSiIxcxtI6nS6shcLpdMLhcGBnZ4e9fNL1FCujVon7i5AtUkrETy68+MUvlqwvPREuFPFzu90sezSRcW8mS71CHzwheZEiRkzq7xFpJUPlNjkghpxRY/nh4WFSWcpqtVr0RSR3/Fq0kjA1anu9XpSVlaVUEiaLkLy8vJxKsYjE9vY2Zmdn4+bVRvMMjEampTA9TgVkau7z+eIOQCRCKHRG7nZ3z/zzRkY4/Oxnz/3/9ra4c7OmJvxaiBwciBxW0uv18Pl8qKurO2ccr0REUwODwSC2t7eh1+vZCzhd19myAxEiE8bSKpUKxcXFKC4uZtdLZEYtqYHl5eVMDVQ68cuG4ud2u2VV/DKJC0P8nE4nfvrTn6K2thZXr15NeNJmivhRGUKlUjFV5vj4OCnykgyk7PFzuVwYGxsLs5KRs4cw2W0TsVGpVBgdHU2qVCGGVNIxymT8mrAkTCpWKiXhk5MTmM1mVFZWJnXeKxE8z2NlZQVra2ui7VoiyXQsz8DKykrZ/Qv9fj/MZjO0Wi0GBweTJuCRJM/hUOH979eFKXpqNQ+Oe+4cKC5O9qWGR0PDmbVLLESSafJLLCkpYedk5LS1kkHX/sLCAk5OTtDX18eycek6B+Q3j06EbJCryFQKyqjd2tpi6nl5efndUm8UuFwuWbiWPf4AAMO1SURBVBW/TOLCEL/CwkJ0d3cn3UCdqR4/4OwNxev1YmxsDHl5ebh165ZkN0+pSr12ux0WiwUNDQ3o6OhgRENug+hExO/4+BhjY2NsuCTZm1GyPX6RQxzZil9LtiRsMpnYeUXToi0tLbh06VJOvolSWZRaM9KxSoj0DHS73Ww/kv0FKapS21+k2gv30EMavO99uoiy7XlSF3kqn56qBD8b67ifbefjH08+F5cIAN1LeZ7HyckJi5EjQkgksLi4WHHnXSgUwsTEBLxeLwYHB8NeFIW9gXKbRydCtlW1yIxav9/P1ECe53Hnzp2w3kClEP5slnovwkQvcIGIn1qtFjU1J3wDlOvGRQ9om82G2dnZtJMuoiFdRU5oftzZ2XkuEUGuPF3att/vj/nvOzs7mJqawpUrV0RbkiSzbmFzOP2OEhCvJEwqlkajgd1ux/Xr12XJmc4EhGXR4eFhyYc0CgoKznkGks0NeQYSmU7noUZpQHV1dWhra0v6PI0/lRu5jdjee7HIn8nE46/+6rwJczTwPI+1tTWsrKygr68P5eXlZ5+qUqG0tBSlpaVobW2Fz+djZHp1dRVarTZs2job1kVCRNrORKqusXoD5TCPTgS5evxSRV5eHmpqalBZWYm9vT10dnbi5OQEm5ubmJ2dRXFxMVN+s0n4sznVe1fxUxjEnoSRqRRyQaVSYWpqCl1dXbLETGk0mrjkKR6EgzBDQ0NRJw/lLvVGI2eUU7y2toaenp6UbDASET+5+/mkQmRJ+PT0lA0OUL/o6empYgYbkgWV7/V6PYaGhmQnDJGegaRira2tYXp6GqWlpYzAFBUVJb0f7XY7JiYm0NraikuXLiW9nvhTuckew7Ofq6jgwnJ4y8t5/O7vBvAHfxBMSunjeR5Wq5XlOMdrQdHr9aivr0d9fT04jmMDImRdJOxTzXTOLJXadTpd0rYzcppHJ0K2Fb9YoPum0WhERUUFWlpa4Pf7WZScxWKBSqUKUwMz2VdMUXeZBvX4XQRcGOIHgI3vJwO6KQSDQVlOIhpG4Hke3d3daQ9xxEKqpVh68AKIOwgjZ6k32raFvoY3b95MufQXj/gJ3+yVTPoiEQwGYbVaEQqFcPv2bWi1WtjtdthstrglYaUh24kikSqW1+tlKtby8jLy8vLCcnBj7UcaRunq6hLtlyh2Kjce/vzPA6ir41mPYLTUjVigRJ6joyMMDQ2JImtqtTps2ppK6zabDQsLCyyOr6KiIqk84XRArTTU8pPKZ0UbECESKIcamInhjlQgbHsh5OXlhVUhTk5O4HA4sL6+HqYGmkwm2dXAUCiUlbLz3VLvBQBd5HKoWW63mzV56/V6Wa01UhlSOTo6Yg/eSGPrSMhd6hVum27eGo0mZV9DQrSXAOEQB5VZlHjjjQaPxwOLxQK9Xh9WwopWEl5YWIDP52PqS2VlpWK87hwOByYmJnDp0iU0NzcrYv8LbU4oH9Vut2N2dhZ+vz9ssCE/Pz8sO1hYFhWD3V3pvnddHY8XvUj8NSrshRsaGkpqaCoeopXW7XY7yxMW7sd0P0sIt9vN+tGkepGIVhKWOkpOaaVeQigUiktq1Wo1jEYjjEYjK/+TGri+vg6NRhM2KSy1Gni31Js+nrfED5BnspekcJoufvLJJ2UdIhFLXre2tjAzM5N035yc089C4kdktLKyEp2dnWnfECNJpVKGOFLB8fExLBYLqqqqYvaIRhpHu91u2Gw27O7uYn5+XhFed8nYtWQbQpsT4bS10DMQOCPiicqi8RBpr5IKVCoe9fXxJ3ZjIRAIsEl5MRPIySJaHJ/dbsfW1hZmZ2clOx+dTifu3Lkju9dgKubR8e5h0VQ1pUBsCVqv16Ourg51dXVsst7hcGB1dZUNA5EaKKaNIt76smXnkitJSIlwl/hJRGqoOdpqteLatWssk1POUqmY7fM8j/n5eWxubqK3txeVlZVJbT8Tit/29jamp6fR1tYm2XSqcN1KHeJIBnt7e5ienkZra2vUBJpoEOZ6CqeEs1USpl7E9fV10XYt2YTQ5qS5uRlerxfj4+MsrN1sNovyDBTatpSV8dDrefh88SZyVTH/X6USP7FLoDYPg8GA7u5u2Y+/cHqU+sWEU+sqlSpsPyZLQmniP9PqcbLm0fSz0dRAJd+L0uk9FE7WX7lyBV6vl6mBa2tr0Gg0jASmOgyUraneu4qfQiGmxw84eyuVQo2LNyQht19gMtsPBAIYHx+Hx+PB6OioqJNXrVbLpliqVCq43W7MzMygr68PFRUVkm2biF+m/fmkAr1ILC8vp53zGmtKmErClNggR0k4MsUiV3tkAoEAJicnoVKp8IIXvABarZZlMgs9A2MNNkS3bQGem8yNJHnh0GjOiCOhvp7Hxz+e3MSuEOTVKWVZVCzy8vLOKUR2ux0rKyuYmppiQwUVFRUxDXMdDgfGx8dx5coVyXNMxSKWGigsDdPPRcZJKvF+JOXQSX5+ftgw0NHRERwOB5aXl9lQFRHBZM2Rs1nqzdX7VyQuFPETCylImcfjgdlshlqtxq1bt871rsjtF5io1Ot0OlnT88jIiOiSTjpTw/EQDAaxuroKv9+P27dvS35BEfHLhcndSHAch7m5OdhsNgwODkpi9E3IZEmYUmACgUBaKRbZBl3jBQUFYQpZ5H4UDjYUFBSw/fj44+X4zd+MZtvC/3w7PA4OntvPDQ08PvaxAEwmPmZyh5gBDgLZztTX1ysmjSPSe9Hj8TA1cGlpCXl5eYxM06DN/v4+JicnFdkykMguhgifHPdUqSBXKVV476FjTWrgysoKdDodI4FlZWUx1cBsZvXeJX4XAOmSsoODA1gsFlRXV8d8e85mqZfygBsbG1Puf5FjAIbMblUqFQwGgywXE6mJNLWthIdcMiCy5Pf7cfPmTVnJUmRJmCwbhCVheuiKLQkL7VoGBwez7u+WKmgCmZJRYp1HkYMNDocDdrsdZvME3vOeF8e0bVGpeBgMwLe/7YXNFp/UpTLAQSCFTKztTKZhMBjQ2NiIxsZGhEIhNiBCgzYFBQVwuVy4evWq4khfNMSKktvd3UVeXh5CoRArXUptF5MqMlVKNRgMYUNVpAYuLS3B4/HAaDQyIlhQUMCuvWyVet1u913ip0SIfbhrtdqUSA3P81hfX8fCwgKuXr2KxsbGmD+bjVIvRWAtLS2lnQcsdY/f4eEhzGYzampqUFVVhampKcm2DTw3LVdWVoalpSVsb2+H9bMpOceWlCWDwZARb7tIRFo2pFoSJrJUUVGRszFywNmL3fj4uOgeMq1Wy2Kx7HYV7PbYU/08r8LWlgoaDfCrvyrPfWJvbw9TU1OKVMjiQaPRsKl0obdnYWEh5ubmsLGxwUrCpaWlij/P1Go1e3bs7u6ei5LLpHl0PGTDX1DY+weckSxKESGLJfr3YDB4d6o3TVwo4icWqZCyUCiEmZkZ2O12DA4OoqysLOFnyFnqjfwO5B94eHiI4eFhlJaWpr19qYgfOcB3dHSgqakJR0dHonoyE0E4xFFXV4f6+nqcnJzAZrOx/iGhxYmcNjticXR0BIvFwqYTs/0QiywJu1wu2O32sJIwqYHCkjDZtVy+fFl02oqSsLu7i+npaVy9ejUt4/Vnn03uAWW1OnH7tl7yB9rGxgasVitu3LiR9ECX0kAvspubmxgaGkJpaSkCgQBTVcfHx8HzfNiAiFLixYSgAbv9/X0MDg6GkYhMm0fHgxKMpQsKClBQUHBODVxYWGB+plVVVUwNlBs8z8PlcqUVKakk3CV+IohfsqbHkZ8hZ6lXWIolHzy1Wo3R0VFJvLKkKPXSDW9rawv9/f3srU7qqepoQxxk1HvlyhV4PB7YbDamYhUWFjISmM3UC5rcVUKjejQIp1sjS8Lr6+usJKxWq7G5uYmuri7U1tZme9kpY21tDUtLS2mRpZMT4M/+TIcHH0zuFuvxLOM//3M/TFVN5/oVTlL39/dHTeXJBfA8j4WFBezu7oZlOet0OtTU1KCmpgY8z7MBEUpiKSkpYS8mUliISPE9ZmZmcHh4iKGhoXMvnZk2j46HbPXQxYJQDbxy5Qoef/xxlJWVweFwYHFxEfn5+ezfjUajbGu/m9yhUKQS25asGkclyqqqKlE+cxqNBj6fT9S6xECj0YDnedZvKHZ9yWw/HeJKPWtutxsjIyNhF45wui0dJBu/ZjAYWB8WKQaR/WyVlZUoLy/PyI2PjIBXVlbQ3d2dM4pMZEn48PAQi4uLODk5gUqlwu7uLkKhEDM8zhVQdNn29jYGBgZSUst5HviXf9HgAx/Iw97e2XmYn8/D5zsr60aCvPje9rYueDyXYLfbsb29zTwDo6mqyXwPGg7K5UnqSLIUS9lRqVTMUJgsRGhAZGVlJSxPOBuJNhzHYWpqCk6nE4ODgwmvCSnsYtJdb7YVv1igClFDQwPrkTw8PITD4cD8/Dz8fj/KysoYEZSyqnN3qveCQKvVJiRlPM9jY2MD8/Pz6OjoQGNjoyiCmYmpXgB49tlnWQlVyrfbdHr8yFHfYDBEnSgmUsnzfMprFpZHxEzuChUDYT/b/Pw8fD4fTCYTe+hKmTIgXPfs7CwcDofkk7uZxs7ODvx+P0ZGRqBSqWC328MMj1MhL5kGx3GYnp7G8fExhoeH45aPhH58wmGM2VkV3vvePPz4x2cP7CtXOPzFX/jhdqtw7715UKn4MPIn9OLTalUoLi5GcXExmpubw7zuSFUlJTCe/xmRjNPT06jKUq6A4zhMTk7C5XIlRZaEECaxCPOEhYk2RATlLhNyHIeJiQl4PB4MDg6mVIKOZx4dyy4mHeKWreGJZEDflUix0HCd53m43W72Qm+1WmEwGMLUwFS/VzAYhNfrvUv8LgISlRopx3J/fx8DAwMpRTPJWerlOA5WqxUAcOPGDVlcxVMtx1KCSV1dXcxpSLoIUyF+NMRBa0vHriVaP5vNZmMpA1Q2qqysTNprKh7IVzEYDGJ4eDinVDEhhHYtw8PDjCALS8KR5CXTqmoyCAaDGB8fZ7Yz8Yh+ND++2loOAwMcvv99DYJBFfLzefzBHwTwnvcEQZv68pf9P/+9586deF58kV539GJitVrh8XjCSsJE7uh7BINBDA0NKbLPLRmEQiF2PFIlS4TIPGHqVY203amoqEiLGCTzPaQYLEukBgr9AVMtCStZ8RPe7yMhdCmg6XpSA2dnZxEMBsPUQDH3XafTCQB3e/yUCClLvdTPx/M8bt26lfLDWa6pXr/fj/HxcaZYpjvEEQupKH4bGxuYm5sLSzCJtW1A/I0mMomD3nKlQGRag8/nYw+K5eVl6PV6Rl5SeVBQjnNBQQF6e3tz1uZEOIEcy64lkryQ8kKqanl5OVMDs0V+fT4fzGYz8vLyYn4PUvi+8x0NPvOZ8/++s6PCt7999vevfW0QH/94AJcuhQ8tve51Ibz2taGoSmEiCF9MYpGX8vJyOBwO6PV6DAwM5Ox5RVFyarValu9BxODSpUthtjuTk5PgOI6dkyaTKS2lPxgMwmKxgOd5WY9HPPPoyJJwsmqg0olfsi/5Wq02bCrc5XLB4XBgb2+PXTdEAhNNhbvdbgC4q/hdBMSyczk8PITFYoHJZEJXV1dayoQcpd7T01OMjY2huLgYIyMjeOyxx2TN001222Q8vLOzk5RCKrxhJYtk+/mkgl6vZ87z5Ctms9nYg0KMVQxN7tbW1sqaKyo3Tk5OwrztknlICJUX4ZRwZEm4srISxcXFGdk3lGJRVlYWsy82duKGECoAPEwm4Ctf8cckcxpNel58BCF5CQQC2N3dhdVqBcdx8Pv9mJ2dZSqWku2LIuHz+TA2Nob8/HzcuHFDdkVYaLtDecI2mw0bGxuYmZlBcXEx249i2hSIvGo0GvT19WVM2U7WPDqRGqi04Q4hUl2b8IWerhtSA6enpxEKhVBeXs7uUZGk3+VyIT8/X7H7RSye18QvmhpHalV7e7sk/XJSl3r39vaYXQa578thskxIdv2BQAAWiwU+nw+jo6NJ9c6IJX6ZJn2RiPQVi2UVE613aGdnBzMzM2hvb4/r+6h02O12TExMoLm5OWW7lmhTwlQSXltbY834cpaEiYTHS7F46CEN7r03WuJG1G8Fh+NMGZSC3CULn8+HlZUV1NbWoqOjAycnJ7Db7VhdXWWRWHROStGmIBc8Hg/GxsZQUlKCrq6ujCtOwjzh1tbWmD2WiXKZ/X4/xsbGoNfrM0Je40GMGij82VAopFjFWKr+Q51Oh6qqKlRVVYHneTidTjgcDuzs7GB+fh6FhYUwmUzY2trCyMgInE6n7NfPZz/7WTzwwAPY3d1FT08P/uqv/grDw8OyfJYyj26KSKXUSxcANdvv7u6GWY6kC6lKvWTPsLy8jO7u7rB+Pjn7CJMp9bpcLty5c4fFwiV704jMrYyHVIc45IJKpUrKKqaiooIFlPf09EiaR5xpbG5uYn5+Hp2dnZLatUQrCQsHbaQuCe/v72NqaiqufU4oBLzvfboYiRuxsbubufPy6OgIZrMZTU1NaGlpiTrdarPZWPyZXq9nhLqsrEwx5Ty6fyRKR8kkovVYRuYyCwdEVCoVfD4f7ty5g6KiIly/fl0x+xcIVwPpfitUA4V2MaFQSBHHIBrkyOlVqZ4brLp8+TICgQAODg6wubmJN73pTQgEAmhvbwfP89jd3ZXFquprX/sa3vve9+Jzn/scbt68iU996lN45Stfifn5+bRy2mPhQhE/sdBqtQgGg6zPh+M43Lp1S9JJOCmIXzAYxNTUFI6OjnDz5s1zE6BypoOQ23ysvg+73Q6LxZJyLFwiYinlEIeciGUV8+yzz4LneVRWVrI37VwrF/A8j6WlJWxsbKC/vz+haXk6EJaEqS/HZrNJVhLe3NzEwsICurq6UF1dHfPnnnxSnaC8Gx01NdIZkscDKa9tbW0xFeT8/Pyo8WfT09MIBoMwmUyMvMgxuZ4MTk5OMDY2pqj84EhEDn/RS57dbsfi4iL0ej2MRiMcDgfKy8tx/fp1RX4PAt3HhWog/fH7/XA6nSguLobf71dUlByQmTK0TqdjLQArKyt46qmn8NnPfhazs7NobGxET08P7rnnHtxzzz0YHh6WZD2f+MQn8Nu//dt4y1veAgD43Oc+h+985zv4+7//e/zhH/5h2tuPxPOa+Gk0GgQCATz11FOS9PPF+ox0SBmVQLRaLW7duhV1wk3uUi9wvuFXGFvX2dmZcrpBvLVHm1RT8g2VoNPpUF5ejo2NDRQWFqKlpQVHR0dh0WdEXrL1wE0WZHNydHSUcU+4yEEbKr/ZbDbRJWGhoXFfX19C8ipWuSM/vtu35S/zUttAV1dX0pP8wjaFq1evwul0hk2uUz9bJnssqZea2gZyBcKXvFAohJ2dHSwsLAB4Lh+dCHUuTOwTsQsEApienobBYEBdXR1UKpWiouSAzFvNaDQavPCFL8T+/j729/fxve99Dw8//DC++93v4hd/8RfB8zy+9KUv4Z577kn5M/x+P+7cuYMPfOAD7O/UajVe9rKX4ac//akUX+McntfEz2azIRQKoa2tDZcuXZLlZkfELxXLEjJlrq6uxrVr12Ke8HKXeoHwPjwqi+/t7SUVW5do+9HWLuxHyeaNJhW4XC5YLBYUFRWhv78fGo0G1dXVUYcaiouL2QNZCQkDQkTazmSbpKZaEqahI7vdnjR5zc9PXrkT+vHJLeZSqkhvb2/K7SjC0lZLS0tMQi2n4TEplu3t7XEn/5UOj8eDpaUlNDQ04MqVK1GHloR5wkq6voWg3kQarBHe9zNpHp0I2aqYOJ1Odizvvfde3HvvvQiFQnjmmWfSfmmx2+0IhULnKhDV1dWYm5tLa9uxcKGIX7IXlXD6FIDkpsdCULKGWOK3vr7OTKMTxXjJXeoFnvNP8vv9sFgsCAQCGB0dTbssHo20ZnuIIx0cHh5ifHwcdXV1aGtrC1t7rKEGGhDJy8tjJDDbPVhCu5ZMTiYmi2RLwiaTCcvLy/D5fEl7Jk5Pq/D+95OyziNRj188Pz6pwPM8FhcXsbW1lXKqSCzE8gwUGh4ToZaiDYZykMUolkrE6ekp7ty5g8bGRtZjGWnCTXYxFosFAMIItVImrklxKigoQHd3d9h9J96AiBzm0YmQrYnjaHFtGo0GIyMjGV+LFLhQxA8Ak6djwefzwWKxMBXjySeflFU+ppM02c8QDpkkaxotZ6mXLmSO4+B0OnHnzh2UlJSgv79fksmvSMUvl0kfleA6OjqSUjGED1yKHrLZbMxeQJgeksmHBNm1VFVVoaOjQ/Fqa6yS8N7eHpaXl6FSqVBTU4PT01PodLq4D46HH1bj/vv1OD1Vobqaw/7+mVVLZOIGzwPveEcQr31tKGk/vlRB94SDgwMMDQ3JmhcayzNwb2+PTTtSSTgVBYt6LHN90On4+BhjY2O4fPkympubo/6MMNqQ8oSFLgClpaVsX2Zr4ppIX2FhYcKBFKnsYtJBtlJFXC6XbNddRUUFNBoN9vb2wv5+b29PthejC0f84uH4+BhmsxlGoxEDAwNhpEyuB6uYz/D7/TCbzQgGg0lbotBnyFXqBc4ueLvdDqvVikuXLknahE3EL1eGOKJB2D+WaglOGD109epV5ilGofNGo5GpgXLGTJFHYUtLi2ztD3IjLy8PZWVlWFlZQVVVFerq6uBwODA3Nwe/3x+1x5LngQcf1OL979eB41R44QtD+PKXffjJTzSiEjekRigUwuTkJNxuN4aGhjLeMxbpGZiOgkW51Mn0WCoZ1IITbyo8EsKJ67a2NpYnTMbweXl5bF9mKtWGppCLi4tTstARaxdD/50OslXqlTOnNy8vDwMDA/jhD3+IX/qlXwJwtj9/+MMf4p3vfKcsn/m8IX5bW1uYmZnBlStXwvzH5M7STdZnj8oGpaWlop3e5Sz1EiGbn59Hd3e35KPstG9ycYgDOLsRzczMSDr8EOkp5vF42EPCarWioKCAERcp+4bIriXXS3CkWFZXV6OjowMqlQqVlZVMwbLZbNje3mY9lqWlFfj0p1vxT/90Vt69774gPv1pP/Ly0kvcSBfkjcnzPIaGhrJeGhTmW5OCZbfbmYJlNBqZgkUWJ8BzU+Gbm5sYGBjI6Vxq6k3s6OhIeaANCM8TJrU/MtWGiKAcecter5c9b7q6utK+hyRSA6UaEMlWqZd6/OTCe9/7Xtx///0YHBzE8PAwPvWpT8HlcrEpX6lx4YhfZKmX4zjMz89je3sbvb29qKysDPt5OUlTsp+xu7uLyclJNDc3o7W1NS0/QilBE52hUEhy7zaCSqVCMBgM6xXJFVBsHsdxsg4/GAwGZstBMVM2m42pLkQCU23EF/aPyW3XIjccDgczmI5ULKOVhJeXD/C2t5XjmWcKoFLxeNe7NvE//gcHjaYcAAXBS5O4IQaZTrEQi0jPQHo5EXoG0jm5v7/PBmvkLFPLjf39fUxOTkp+LxSq/dSvKiyv04ueyWSSJE/Y6/Xi2WefZYk1crxkR6qBwj/pDIiEQqGsZFC73W5Z74tvfOMbYbPZ8Md//MfY3d1Fb28vvv/978e1nEoHF474CUGDCH6/P2bpNJvEjx64q6uruHHjRsoHWY4eP+qFDIVCKCgokOWtk+d5aDQabGxsIBQKoaqqKifsD4Az6d9sNqO4uBjXr1/P2INZGDPFcRzrG7JarZicnBRtdkzk/vj4OOcfzNRjmeyDeXNTj9/4jcuYn1ejoIDHX/6lHX19NszP2+D3+5nPXaZtd9xuN8bGxmA0GmNGySkNwpcT8gzc399nL0YmkwnHx8fQarVZnw5PBTSQ0t3dLYuhLiFyAIzMhIUxkUL/RbEkyOPx4M6dOygvL8e1a9cyUlmJVhImEihWDcxmj5/cVlbvfOc7ZSvtRuLCEj8yBi0tLY07iEAmznIiGvELBoOYnJzEyckJRkZGUFxcnNb2pfwOVHY2Go3o7u7G008/LXkPIfWDdHR0wGazYX9/HwsLC2was6qqSnH2JoSDgwOMj48zC4dsrVGtVqOsrAxlZWXMKkY42ZrIKobsWkKhEIaGhnLygQycnUtra2tYXl5OusfyJz9R4zd+Qw+HQ4X6eg7/8i8+9PYWArgasyScCZ87yuGuqanJ2TxnjUaD8vJybG5uwmAwoKOjA8fHx9jc3MTMzAxKSkoYccmUZ2A62Nrawvz8fFYGUoRmwhQTSTFyFMmX7L70eDx49tlnWR9xNvZ7tJKwGDUwW6Vel8uV1jNaabiQxG9nZwdTU1NoaWlhY/axkA3Fj97o8/LyMDo6mrZ0LaXiR1nAwrKzlNunnkG60A0GAy5duoRLly6d8xPT6XSKsTchbG9vY3Z2FlevXk2rx0cOUCN+pFXM6urquX1JaTUFBQWKtGtJFtR/Sp6SyfSPfelLGrzrXXkIBFQYGAjha1/zQSgQJmMcTaqqlI349EJx+fLllHOQlYBgMAiLxQKO41hvoslkQktLC3w+H2tVWF1dzUguczrY2NiA1WpFb29vUg4LckIYE9na2gqfz8fK66urq6xkTPtSKHa43W4Wi0d9r0pArAERek5EqoHBYDBrxC+XqyGRuHDEb3Fxkb35R/bzRUOmiZ/D4YDFYkFtbS2uXr0qCZmRYqqX53msrKxgaWlJtizgyCSOyMndaPYmlKvKcRy7qVVUVGQ8RFwYW5aOeW6mEOnNRuWi6elpBAIBAIDRaMS1a9cU97BNFqFQCFNTU3A6nRgeHk7YjsBxwJ/8iQ6f+MTZkMQv/3IQX/iCH4mGpGMZR9OUsBQlYTrP0x0ayDbImUCn00V9odDr9ef2ZSaHGsSAppD7+/thNBqzupZo0Ov1qK+vR319fdi+tFqt8Hg8LE+4sLAQMzMzqKmpOectqiTEGhCh5wbFq9J/Z9I82u12ZzS1SG5cOOJXVlaG0dHRpNl5pkq9wWAQa2trWFhYwNWrV2Pma6a6/XTIKz1ADw8Po2YBJ8rTTQbCNznaZjxENjyfnJww64OpqakwSw65+wJDoRCmp6dxcnKS8dgyKaBWq8NsNyhk3u/344knnkBpaSnbl7nyVktlalKVEqnmLhfwW7+Vh//4j7Nb3vvfH8CHPhSA2OeG0Di6o6MDTqcTdrs9rCRMLyfJljGplHj9+nVZ+8fkhtfrxdjYGAoLC88ZAUeDcF+2t7fD7XbDZrOFeQbSvsxk6gXZM21sbOTMFHLkeel2u2G327G7u8t6K+kFUCnVk0QQErtQKITZ2VnwPI+ysrKMm0c7nc6cuTcmgwtH/CoqKkSRoEwofmq1GltbW/B4PGlHnEVDOt+BpgcBYHR0NKpikW6pN11TZmGJ48qVK+ceEEVFRaiqqpIl9owGhABgeHg4KxNlUoHKVtevX2eDRF6vFzabDTabDYuLi2yCsKKiAkajUZHqgNfrhdlsRn5+flJl6q0tFd7wBj3Gx9XIy+Px13/tx6//evrXfLSkBmF5PVFJmOd5rK6uYnV1Nee97ah9paysLG68ZCyoVKqwVoV0PQNTBc/zsFqt2NnZweDgYM695BEKCgpQXl6OlZUVXLp0CaWlpXA4HJienkYwGAwbEFF6by/P85ibm8Px8TEGBweRn5+fUfNomrS+2+OnYCjFCoXg8/lwdHQElUolScRZNKRKzMjQury8HF1dXTEfoOmUeoVKn1SmzAUFBVH7AoW9bFVVVWlbHzidTlgsFpSUlMTdP0pHpF2LsGyVn58f1SpmfHwcAFgJ02QyZby8Hg1OpxNjY2OsQT3R8R0bU+MNb8jD7q4aFRU8vvpVH0ZH5bFmSaYkTEQwLy8PCwsL2N3dxeDgYE4/VCjRR8qBlGiegcLUCzI0p1KmFKB+UZvNhsHBwZxWeIRxcq2trQDABkROT09ht9uxtbWF2dlZlkFbWVmJkpISRb3s8TyP2dlZHB4eMtIHiDePTpcEut1uWY3zMw0VHy/fLAcRCoVElW7n5ubAcRw6OzslXwsRK7VajaqqKly9elXyzwDAgupf8IIXJP075B3Y2tqK5ubmuBf71NQU9Ho92traRK1LOK2ViSQOspEgBYv6AquqqkQTF/KDoxunkm6GYiAsU/f19SX9MBM+bG02G9xud0bL69FweHgIi8WCpqamhENbAPDv/67Bf/tvefB4VLh2jcO//qsPly5l/nbH8zwrCdtsNpycnECr1YLneXR1daGysjJnzy+KLrt06VLC+4hUEBqaHx4eIj8/nxGXVF/2eJ7HzMwMDg8PMTAwkPX+wnRAjhZ0TOKBXpztdjscDgdUKpVi8oSJ9B0cHISRvkSIVAOJ4qSqBvI8j8rKSoyPj8v2DM80nvfEb3FxER6PB93d3ZKugyaLafoKAK5duybpZxAcDgempqbwC7/wCwl/loYUVlZW0NPTk1RP0ezsLFQqVdInfeQQRzaSOIR9gfv7+6KICyVYXLt2DXV1dRlctbQQJj/09vamVaYmexO73Y6joyNmuyO3vQlhb28P09PTaG9vT5iDzPPAX/yFFv/P/3P2fV/xihC++EUflNCqFQqFYDab4fF4UFRUhMPDQ+h0OkZcysrKckZZdjgcGB8fFxVdJjVCoRArCdPLntDLMplznuM4NiTU39+fM16i0UBEvLm5GZcvXxb1u+QLSkTQ5XKxNBZSVjPZZzk3NweHwyGK9EUi0i5GSHeSVQN9Ph8qKyuxubmZ04NXQmS/diMxsl3qpR6R9fV1RqysVisjf3Ig2e9AuZ/Hx8eivAPFlJLFDnHIhVh9gbu7u5ifn4/qcUcl0c3NTfT19WXdviEduN1umM1mFBUVSWIwHWkVQyVhob0J2UhIfczX19exuLiI7u7uhJP6Ph/wjnfk4Z//+ezW9va3B/CxjwWggCo1AoEAqwCMjIxAp9Oxhnu73Y7Z2dlzJWGl9l9RikW2X440Gg2qqqpQVVXFypg2mw0bGxthnoGx+n85jsPExATrv87lHl4ifZSzLRZCX9C2trZzaSx5eXnsvJTzBUVI+gYGBtIi4lKYR7tcLgDI2X7PaLhwih/HccyuIhmsr6/DZrNhYGAg7c8OBoMYHx+Hy+VCf38/O1GWl5dxenqKnp6etD8jGk5PT/H000/jZS97WcyfoYk7jUaDvr4+UTc4q9UKr9ebUBWli4rc1ZVavhL2BTocDqa4OJ1OeL1e9Pf353R/z/HxMSwWS0ZMgIW9bDabDYFA4FwvW6oQ9ib29vYmtNSw2YBf/3U9fvpTDTQaHn/xFwH89/8u78R+sqDrr6CgAN3d3VEfmlQSJmX15OQkoQl3NkATzEqfQhb63DkcjnPDNgAwPj6OQCCA/v7+rGchp4OjoyOYzWa0trbKor5SGw3tT7/fz6x3pGz9iOyzlLPkHmkXE0sN3NjYQFdXFwKBgCL6nKXAxfgWaUAqOxeXy8WyNUdHR8NuInIPkCTaPt0UKioq0NXVJVqRSWa4I93J3Uwi0i9wb28PCwsLzBx0eXk5pb5AJYD84FpbW1N66xeLaPYmQsUlVasYjuNYz1UyUXIzM2eTu6urapSW8vjSl3x46Uszm68bC3RvMJlMcQdShFPCZHYsNOhVQkmY1Neenh7Fe1lG87mjfmifzwe1Wg2dTofe3t6cJn2Hh4cwm81oa2uT1CZMCI1Gw65jYZ4wVVAKCwtZSbi0tDTlPstMkT4gvnm0sFXp5OQEBoMhJyxwkkVuPdWSQDZKvXa7HePj46ivr0d7e/u5E0Ru4qdWq9nJGvnZ29vbmJ6eRltb27nQejHbj0f8Mj3EISU8Hg+WlpZgMpnQ2dkJp9OJ/f19LC0thWXfZmugQQzIrqWrq0u2cO94iCQuXq+XKatLS0vIz89n+zLewyEYDGJiYgJ+vx/Dw8MJy52PPqrGfffpcXKiQnMzh298w4erV5VRyKABr4aGBtFDQkLiQobmVBIOBAJhvWxyl4TJ4H1tbU2xhsbxIHxB8fv9ePbZZ8HzPPLy8vCzn/0sa56B6eLg4AAWiyWp3lepEC1PmPosx8fHwfN82IBIMqp/pklfJOKZR3/xi1+Ez+dDIBBQbOuFWFw44icW6ZAyygi1Wq3o7OyM2fiZCcUPQBjxE/YaJptiEguxevxoYor+LddIn91ux+TkZNiUKPUFtrW1JdUXqATQsd7e3lbUQzk/Px8NDQ1oaGhgTfiJrGIoSk6n02FwcDBMcQ2FgCefVGN3V4WaGh63b3P4m7/R4n3v04HjVLh9O4SvfMWHDMepxgQNP0ihvgoNzYXKKllyJOplSwc8z18Y6xm/389K7jdu3IBarUYgEGDKqtlsZpOtSrIxigY6v65evZrVPsto1jt2ux1ra2uYnp5GSUkJI9XRzk06v7JF+qKBnmUPPvggvvKVr+CHP/zhhSF9wF3il3Kpl+M4TE9Pw263Y2hoKO7DNlPELxQKse8zOTmJ09NTjIyMpN2UGq3UGznEkY3J3XSwsbGBhYUFdHZ2olYY1CpALL/AlZUV6PV6RgLT9QtMB5GpIkrtTYxswierGKGyWlJSgu3tbZSVlZ1rSXjoIQ3e9z4dtrae+7vCQh4u19k596Y3BfGXf+mHUu7Nu7u7mJ6ejnt+pYpYJWGhl6VUJWGyOTk4OMDQ0FBOe5lRnyUNPNH5pdPpUFtbi9ra2rDJVjo3KfpMSs/AdGG32zExMYFr165Jfn6lA5VKBaPRCKPRiCtXrjDV3263Y2VlhWUzkxqoVquxsLDAsraVQPqAs/P+7/7u7/Cnf/qn+M53viPKKi0XcOGIXyZKvZQcAJylXSQqAcpN/Og7h0IheDwejI2NQafTYWRkRJIptUjFT9gDkWsqX6Q6lmxaQmRfIPkFTk5OguM4RgIzqRD4/X5WWsmlVBHhw4GU1Y2NDayurrIBh5WVFWYV861vaXHvvXmIHEMj0vdrvxbA5z4XgFJOQyq59/T0oCID8mO0krDNZku7JMxxHCYnJ+FyuTA0NKT4Vod48Hg8uHPnDsrKytDZ2RnznhVtspWGbaxWKwwGQ9qegemC7judnZ1hmepKhFD1F+YJLywswOfzIS8vD8FgED09PYp5qeB5Hl/60pfwwQ9+EP/xH/9x4UgfcAGJn1gQKeN5PikCQyPzJpMp6TSHTBA/jUaDo6MjzM3Nobq6OqXYpFgQKn65NMQRCbKzcblcGB4eTvlGE9noHE29krsvUGq7lmzC5XJha2sLbW1tqKurY+rV+vo6AA3e857/8nPSF+1c4/GTn2jAcQFkexcIM16zVXKPzLhOtSQcCoXYxGuu25zQcA2lvYi5ZxkMBjQ1NaGpqQnBYPDcC58w+iwT+4hsdISxi7mCyGzmmZkZ7O3toaioiJXfaV9mi1TzPI9//ud/xv/8n/8T//7v/44Xv/jFGV9DJnAhiR95siUDctBPhvjRoMSVK1dw+fLlpG8gmcgDBs4SNq5evSr5OD8Nd+TyEIfX64XFYoFWq8Xw8LBkU3yR6hUZHcvZF0gDA7W1tbLbtciNra0tzM3Noauri6kXwrLbd7/rxv5+vAeqCpubKjz5pBovelH2pnjJe4z6lJTg+RWvJLyysoK8vDxGAoX+i0K/wYGBAcX2uCUDipOrra1FW1tbWteKVqsNa1c4OTmB3W7H+vo68wyM18uWLvb29jA1NYXu7m5F2+gkAtk0ORwO3Lx5E4WFhSwukvquhUbcJpMpY/11//qv/4p3v/vd+PrXvx7XHi3XkbtXtEQgpSQYDMZ8Y6Pm042NjZQGJeQkfrS2UCiEjo4OWTycqNSbq0Mcp6enLJO4s7NT1jfJSKNjqfsCya4lm2kJUkA4JRrLLFutVsPtLk1qezs7Uq8weVBJ1Ol0YmhoSDF9SpFIVBI2mUwwGo3Y3Nxkww+5rCRTdFljY2NSEX9iIBwEo3QmutaXl5cZqSbPwHT3I/WM3rhxI61BvWyDSN/29nZYHrJWq0V1dXVYnrDQFqq4uJjtT7nyhB966CG8/e1vx1e+8hXcc889km9fSXjeEz96+MYiZoFAAOPj4/B4PBgdHU2puVej0cS0W0kHZBjtdrthMBhkURl4nodGo4HP54PFYskZaxMClWUuX76csSxRQry+QLI8ENMXSB5qSjfOTYRIdSzelGiyc1d2+yTm57UZ772iazAYDGJoaChnSqLRSsLb29tYXFwEx3HQarVYX1+XTb2SG+Rdmkp0WSqIZb0zNzfHzI5JDRR779zZ2cHs7GzGekblAsWFRpK+SKhUKpSUlKCkpAStra1hecLr6+tQq9VhAyJSKNLf+c538N/+23/DF7/4Rbzuda9Le3tKx4VL7gDOyFoiw2EhHn300agRZk6nE2NjYygsLMSNGzdSLg8Gg0H84Ac/wEtf+lLJSoxutxtjY2PQ6/Xo7e3FM888g9bWVkn7PoT9fDSdtb+/j+PjY1bWqKqqUsykWySSmdzNBoR9gTabjeUIV1VVRX0wkKq7s7OTVIKFkkF9lm63G319fTHVMZ4HvvxlDf7H/8iD260CwCNaj59KxaOujsd//uc6Dg7OmvA5jgsj1XKZ85I1iE6nQ09PT06XRF0uF+7cuYPKyko0Nzcz6x2HwxEW1SVHJJ/UIG87OQ2NkwWZHdOAyPHxMYqKitj5mUi9opSUXDDMjgcifVtbW3FJXyJwHIejoyNGBN1ud9jUdUFBgeiXlEcffRT33nsv/uZv/ga//uu/ntK6cg13iR+Axx57DH19fWEPVPIba2xsTLuPiud5PPzww3jxi18siVJ2cHAAs9mMuro6dHR0QK1W4+mnn0ZjY6Nkfk7xhjj8fj9sNhv29/dxcHCA/Px8VFVVMWPebKsDuUaU6MFgs9lwfHzM+gKrqqqQn5+P6elpOJ1O9PX1KWbyLRVQ75hKpYqblnB6CrznPXn46lfPiFRnZwizs+RP+dy5pVKd3bq+/GU/Xve60M///az3ivany+VCWVkZU6qlKsPS9HxxcXGYNUgugkqi9fX1uHLlStj1KywJ22w2BINBNtBQWVmpOIWTbE46Ojpi+qpmE8Kca4fDEVe92trawvz8PHp7e3M6NxwAlpaWsLm5iYGBAUkrU8Kp68PDQ+j1+jAro0TX5eOPP45f/dVfxV//9V/jN3/zN7P+7MoU7hI/AD/+8Y/R1dUFk8kEnuexurqKxcVFdHV1SUakHnnkEdy+fTttdWxjYwNzc3O4evVq2NvsM888g5qaGknecMUMcZAx7/7+Pmw2G9RqNSMt2VAHyMPQ4/Ggt7c354gSlTX29/fhcDgAnPW/XLt2DRUVFTlLMDweD8xmMwoLC+NOIZvNKtx/vx5LS2qo1Tw+9KEA/uf/DOLb3z7v49fQwOHjHw8w0hcNbreb9V4dHh6yhIZk1JZYOD09xdjYGKqrq9HR0ZHTD4vDw0NYLJakSqLCKWGbzYbT01PZBxrEgPpfc8HmBADzDCTiQupVZWUlgsEgVldX75I+ERC209jtdgSDQZYnHK2S8pOf/AS/8iu/gk9+8pP4rd/6rZy+jsXiQhK/YDAoapjiySefRFtbG0wmE6ampnBwcID+/n6UlibXWJ4MfvjDH2JoaAglJSUp/T7HcZifn8f29nbUZniymEknISAyiUOsKTPJ8EQCA4EAe/uqqKiQPQ+TJnd1Ol1apXklwO12486dO9Dr9SgoKIDD4UipL1AJIKJUVVUV006D54HPflaLD31Ih0BAhYYGDv/wD37cuvXcC1y05A4xPfMULUUPBnpJoanWZBrwqXfs0qVLGe8ZlRqkjqUa9yUcaMh2SXhnZwczMzM5PfFKLykbGxtwu93Iz89HdXV1Vu1N0sXS0hI2NjYyPulOLylUEj4+Psbf/d3foaqqCq997WthMBjwhje8AR/5yEfwu7/7uzl9HaeC3HhyyAytVguPx4Onn34aarUat27dknx8PJ3JXhow8Xq9GB0djapixYpVSxaRwdSpJHGo1WqUl5ejvLycxUrt7+9jdXUV09PTKCsrYyVhqYdDTk5OYLFYYDKZJPUwzAaOjo5gsVhQV1fHLCgi/QKnpqbC/AKVGid0cHCA8fFxXL58OaYFkt0OvO1tenzve2fE67/+1yA++1k/IoUOjQZpWbYIo6XoJcVms2F+fh4+nw8mkymu0TEN5iihdyxd0JSo0EZHLCIHGg4ODmC32zEzM8NKwrQ/5SwJU0k014cf6L7u9/vR39+PYDAYZm9C+zPZ/Ntsgzwts2FvJLQyam5uht/vx/r6Or797W/jN37jN+B2uzEwMICysjIcHh7mvKoqFncVPwA//elP4XK5UF1dfS4qSio88cQTrFwnBmQ+WlBQELeBfHJyEvn5+WhraxO9NmE/n0qlkuX7ezwepgQeHR2F9bEVFham9cZFD2QqV+Xy29ve3h7zioxn1xKtL5BIdbr7UyoQubh27VrMlokf/1iNt741Dzs7auj1PD72sQB++7eDGU3hEDbg22w2nJycsBIm7U+arMxF49xIbG5uYmFhAd3d3bJYg5AdB6mBcpaEadL9IpREV1dXsbKycq7aJPQMtNlscDqdKC0tZeq/Uq53IZaXl7G+vq4YT0vC+Pg47rnnHvzar/0aysrK8N3vfhdTU1MYHR3Fa17zGvzyL/8yOjo6sr1M2fG8J36bm5uYmppCVVUV+vr6ZLuAnnrqKdFTtw6HAxaLBfX19Ql7iWZmZqDRaESftNlI4ojsY9Pr9cwYVcxwCM/z2NjYYP2Yuf5AXltbw9LSkmi7Fhq2oZKbEnKE6bvcuHEj6stOMAh89KM6/Pmfa8HzKrS3c/jiF324cSP7t6PIEqZGo0EwGGRkPJfVZCIXvb29SccVpgufz8fK68KScLIN+LFA3yVyMC8XQZ6W/f39CduBhPm3kSX2dLOZpQB9l4GBgbhWTZnG1NQU7rnnHrz73e/Ghz70Ifac2djYwHe/+1185zvfwc2bN/HBD34wyyuVHxeS+IVCIQQTGIAJe+ZKSkpQVlaGK1euyLYmsVO36+vrmJ+fx7Vr15Lqv5mfn0coFEJnZ2fSa1JC/BoNhxBxUalUqKioYMMhsW5iHMexcO+enp6cvvHTFPLu7i56e3vT6i2lktv+/j7sdnvG+wKFE9V9fX1Rv8vmpgpveUsennrq7Njed18Qf/EXfijNFYi+y9bWFkwmE46OjjJmFSM1yE5jc3MzKXIhF4QlYeGUsJiSsDAaT2nkIhWQOpbKdxFOXdvtdvj9/rAYuUz7rSqV9M3OzuKee+7Bf//v/x3/5//8H8UppJnG85L4Ubi9z+dDf38/VldXU1LLxODZZ59FdXV1wt4gjuMwOzuLvb099PX1Jf1WbrVa4fV60d3dnfBnaYhDafFrNOVGJWG6iZG/HT1kg8EgJiYm4PV643rB5QJCoRCmpqZksWuJ9Av0eDyy9gVyHIfp6WkcHx+jv78/6nf59rc1eNvb8nB4qEJxMY+//Es/fvVX5Y8zFAu6DmnQq7CwMK5VDHmIKRFCw+yBgQHF+G4KExrsdntYSThWCZPneVitVuzs7Mg+JSo3pCaw0QYaioqK2PkpV+IFYXV1Faurq4ojfVarFa961avwm7/5m/jYxz6W04q9VHjeET+K7yoqKsKNGzeg1WpTUsvEwmw2o6ysLK5lgt/vh8ViQSAQQH9/vyhCs7y8jJOTE/T29sb9OSmGODIBuokRCXQ6nSgrK4PRaMTu7i7y8/NzfnKXjnciXzupENkXmOghKwaBQAATExMIBoPo6+s7p9x4vcAHP6jD5z539h37+0P44hf9aGlR3u2HTKY9Hg/6+vpiqibkIRZpFVNRUaEIP0sgnIwPDAwo+iUpVgmTSsIqlQpzc3Ow2+0YGBhQLNFOBkJDY7kIbCzPQJpil1L9VyrpW15exqtf/Wr8yq/8Cj7xiU/cJX0/x4UkfhzHIRAInPv7/f19NmEoNCpdWlqCy+XCjRs3ZFvTxMQECgsL0draGvXfKSVESEjFYG1tDQ6HA/39/TF/hkq7dMhz6SLweDxYX1/HxsYGeJ4PG2bItn9YKnC5XDCbzSgpKUFXV1fG+3Ji9QVSn6WYc8Pr9cJsNkOv16Or6waefjovzHJlaUmF++7TY3LybJu/93sB/O//HYASBxMDgQAsFgsAiCLj0axihCXhbPRdhUIhpoz39/crdvI7GqJ5sul0OoRCoayWqqWAULVMJ8VCDISJF0L1X5h4kSqo13JgYEBRx2VtbQ2vetWr8JrXvAaf+cxncup5JzeeF8SPJPXl5WVcv379XHzX6uoqDg8P0dfXJ9uapqenodPp0N7efu7fKCWkqamJ2XeIxcbGBnZ3dzE0NBT135XQz5cOyJy1paUFdXV17AZmt9vDSIvRaFT8dyO7lmhJCdlAZJ8lgKT7AmnqvLy8HAsL1/H+9+vDTJaNRh5uN+D3q1BRweMLX/Dhla9M3ZJFTvh8PoyNjTE1OVWyJrSKsdls8Pl8GbfeCQaDsFgs4DgOfX19Oa2Mh0IhWCwWnJ6eQq/Xw+VySapWZxLUN7q3t5fVsrvL5WLq6uHhIQoKCtg1L+bFb21tDcvLy4ojfdvb23jFK16Bl770pfj85z9/l/RF4MITPyrbHB0dxXxT3NjYwN7eHgYHB2Vb09zcHHiex7Vr19jf8TyPtbU1WK3WtFNCtre3sbGxgZs3b577N57nWelbqaXdWKB9tLy8HHVyVzjMQKSFHgjZUlrigexalOoFJ+wL3N/fh9frjUlaiMA2NDRgaqodb3qTHmd3k/PnV2dnCN/6lh+1tcq83RCBLSsrQ2dnp2QPimhWMWRlJJda7ff7YTabWYaw0q4BMSDVkvqx8/LyWEnYZrPh4OBAdExXtsDzPObn51mvpVJK1cFgEA6Hg+1TGgijP7FeGui+LHXYQbrY3d3Fq171KoyOjuLv//7vc/r8lwsXkvjxPA+/389iojQaDXp7e2O+aW9vb2N9fR0jIyOyrclqtcLn8+H69esAzsjpzMwMbDabJHYEe3t7WFpawq1bt9jfKXWII1lwHMea0pOZdiXSsr+/j/39fWbKS8Mh2TQ95Xke6+vrWFpaks0/TQ7E6gvUaDSwWq1ob29HXV0jrl3Lx9aWCtFIH8Cjvp7H7KxXVNJGpnBycgKz2Yza2tqUFfdkQVZGpFZLZW1C8Hq9GBsbQ2FhIbq7uxVLgpIBKX2hUCimahmtJJwp42gxoAEbu92OwcFBxfZaCgeY7HY78wyk/UnqKt3LlEb69vf3cc8996Cnpwdf+tKXcibdKNO4sMRvb28PZrMZVVVVCd/g9/f3YbVacfv2bdnWtLy8jNPTU/T09LA3cupXkWLk3mazYW5uDi984QsB5M4QRywEAgFMTk7C5/Oht7dX9I2SlBZSAk9PT2E0GllfYCZvvPSmv7e3l7ZdSzZBfYErK+v4//4/PU5Pi9DWVoTi4lL82q8lJrLf+543reQNOUDJIslk1UqNSGuTUCgURlrElmfdbjdTLXM9vSYYDMJsNrPBp2Qe4MIpYRoIU0JJmOd5NiGu9AGbSERTV/V6PU5OTtDf358xL8hk4HA48JrXvAZtbW346le/mtPtDXLjQtJhl8uFZ599Fh0dHXHTDwjpxKklC/oMyi0tLS1Fd3e3ZDK08Dvk8hAHAKbU5ufnY2hoKKW3NpVKhaKiIhQVFaGlpQVer5eVLxcWFlBYWMhMo+UcDqFWA7fbjeHh4Zy66UdCp9PhP/5Dh49+9Bbs9ue+R1GRP6nf391V1ovH3t4epqamcPXqVdTX12f88zUaDSMlV69eZaRlbW0N09PTMBqN7N8TlQWdTifu3LmDmpoatLe359RLXiQCgQDGxsZEl6pVKhVKSkpQUlKC1tbWMNKyvLyclZIwz/NsqnpwcDDjvnrpIj8/Hw0NDWhoaEAoFGK+ljqdDmazmbWBxIo5zBQODw/xute9DpcvX8Y///M/3yV9CXAhFT8ArGE1GRwfH2NsbAwveclLZFvP5uYm1tbW4Ha70dzcjNbWVklvzsfHx7hz5w5e8pKXgOM4hEKhnCvtAmffw2KxoKqqCh0dHbLcnAOBQFi5TafTMSVQyqQLUnbVanVG7FrkBMdx+Ou/3sX7309T6cLzikf0Em84lKT4UWyZ2JSUTMHj8YQpLQUFBYwERlrFHB8fw2w2o6mpCc3NzTl3zQvh9/tx584dGAwG3LhxQ7JrMbIkTOoq9bHJURImK53T01MMDAzk1FR1NFBKEhmzk2egsHeViHVxcXHGzsPj42O87nWvg8lkwje/+c2cI9fZwIUlfj6fL+mfdTqd+OlPf4qXv/zlsqyF53lMTExgZ2cHvb29KYeix8Pp6Sl+9rOfMeKXi6SPBh9aW1vR1NSUkfWT8z2VhKmxuaqqKq3hELJrKS0tlS3/OVMIhUIwmyfwK78yALtdj1h9fGeI/m81NQGMjR2hpCS7E5g8z7N0gUzGlqUDar4n0gI8N8CkUqkwOTmZMNs5F0D9iUVFRbh+/bps10y0krDU2bccxzFj9otG+qL1o1PvKnkwqtVqpgRK7RkoxOnpKX75l38ZBQUF+I//+I+crqhkEhey1Aucyf7Jcloqk/I8L/lDKRQKYXp6Gna7HQUFBbKQPuC577CwsIDq6uqc6iPjeZ55QWVagdFoNOytXzjRarVaMTk5yXquKisrk1YFDg8PMT4+rhi7lnRAquXERDns9nhv0vQdw9U/lersGnzXu5bw7LOLLJeZ1NVM7hthr+Xg4KCijGbjQavVorq6GtXV1SzdxmazYXZ2Fn6/H0VFRVCr1fB6vTmrdng8Hty5c4dNVct5XshdEuY4jrV3DA4OKmbAJFVsbm7GJX0AkJeXh7q6OtTV1YXZGVmt1jDPQCn7q10uF97whjdAp9Ph3//93++SPhG4sIqf3+9Pmvj5/X786Ec/wstf/nJJR799Ph/MZjN4nsfly5dhtVrxohe9SLLtA89N7oZCIdjtduzt7cFut7P+oaqqKkVbHFA0lsPhQG9vr6K8oITDIScnJygtLWWkJVYbwe7uLmZmZtDe3p5UxrKS4Xa7YTabUVxcjNnZXrz1rYlJRVkZh8PD5861hgYOH/94AK97XSiqX2CmrHdyKcEiGWxvb2N2dhZtbW3gOI5NXcttFSMHyEqnsrISHR0dWV2zsCRss9nAcZyokjDHcWGm2ReB9C0sLKC/vz9l54lonoHChJtUnk0ejwdveMMb4PP58P3vfz9nXuKUgrvED2cX6yOPPIKXvOQlkknyJycnbMLu+vXrLCpOyj7CWEMcHMex8uX+/j44jmMPg4qKCsX4GlHMl9/vjxuNpQTQcAj1XFE8V1VVFbvpkK9VLtm1xAJZnNCwwBNPaPDqVyc+Pt/5jhdqNcKSO6KdbjzPh5kcx/MLTBehUAjj4+PsPMv1stv6+joWFxfR09MDk8nE/l5oFeNwOKDT6SS1ipEDNJRSV1enOHVcbEmY4ziWAT8wMJDTPb0AsLW1hfn5eVGZ8YkQCATCei0BsKqKyWRKap95vV78+q//Oo6OjvDII4/kVHVLKbiwxC8QCDArk2Tw8MMP44UvfKEkppq7u7uYnJxES0sLWlpaoFKpcHp6iqeffhove9nL0t4+8JxdS6IhjmiGvORtV1lZmbWbE03uGgwGdHd355TfEsVz7e/vw263Q6vVQqvVwufzSeLJmG04HA6Mj4+jpaUFly9fBs8DH/6wFh/9aGz1QqU68+qbmUnNqy9SXZXKhoPykGnAJpfOs0gI+xMTnWfUu0qkJRgMhqWxKEGJopfjxsZGdp9UMqJZm9DLdElJCSYnJ1nO+l3Slxj0bKJ96nK5onoGCuH3+/GmN70J29vb+MEPfoDy8nJZ1nbRcZf4/Rw/+MEPcPPmzbQkY2E03I0bN8JSJtxuN5544gm88pWvTHn7ws9JJX5N6G23v78Pp9OJsrIyplxlSnGjxIeampqsl3bSBVlPuN1uqNXqMHU1UdyZEkElxM7OTtTW1sLtBt72tjz867/S9+ChUgE8f76P78tf9uN1r0vfFsnn88Fut2N/fx8HBwfIz89n+1RMX6DQzPj69euKUbpTAUV97e7uor+/X9R9KpZyJSTWmcbR0RHMZnNW/BOlQGRJOBAIQKvVorW1FdXV1Yog1qlie3sbc3Nz6O3tzSixokl2u93OiLXVaoXRaMSrXvUqaLVavPnNb8bS0hJ+9KMfoaKiImNru2i4S/x+jscffxw9PT0pv90kiobz+Xx47LHH8IpXvCKtkguZMksxuevxeJgSeHR0hOLiYqYEFhUVpbzdeNjd3WWRZbk+hejz+WCxWKDRaNDT0wOtVouTkxOmXFFTcyYzWlMFDdisrq7ixo0bMJlM2N5W4Y1vzMPYmAY6HY9Pf9oPoxF43/t0YXm8wj4+qZFqX6DT6cTY2BgqKipw7dq1nH654HkeMzMzzAA43apEZNuCsOcqEwM3BwcHsFgsio0tFINQKISxsTGmqDocjphpF7mAbJG+SBCx/sQnPoEvf/nLTA1Uq9V45JFHWAKWnPjsZz+LBx54ALu7u+jp6cFf/dVfYXh4OObPHx0d4YMf/CD+7d/+DQcHB7h06RI+9alP4Z577pF9rWJxYYlfMBgUZcr8xBNP4Nq1aym9RXi9XuYyH6uHKBgM4gc/+AFe+tKXplQGEA5xANIncVAqg1BlIYPjkpKStD+LylSrq6sXogfO6XTCbDbDaDTGtGuhuLP9/X02HJJNlSUWhNOupCaNjanxhjfkYXdXDZOJx1e+4sMLXnD2IhUKAU8+qU7YxyfHOpPpCyRfu4aGBsn9MjMNmhB1uVySpfwIEc0qRlgSllqxttvtmJiYwNWrV9PKJlcChOkifX197CUkXklYqb2WgHJIXyQCgQDe8IY34M6dO2hubobFYkF/fz9e+9rX4rWvfS36+vokv8a/9rWv4b777sPnPvc53Lx5E5/61Kfw9a9/HfPz81FdJ/x+P27fvo2qqir80R/9Eerr67G2tgaj0Yienh5J1yYF7hK/n+Opp55iMr0YkPlzRUVFXL82nufx8MMP48UvfrHom3fkEIfc8Wv0MKAeNo1Gw5TAVO0NSLHo6+vL+Qmsw8NDWCwWNDY2Jk0sfD4fIywOhwMFBQVsn0pBrFNFKBRifmP9/f0wGAz4xjc0+J3fyYPXq8K1axy+/nUfmpuVdZugtgXap9QXWFhYiN3d3QuhKAuHUjIxISrsB7bZbHC73WHEOl3Sub+/j8nJSXR1dclma5UpEOmj3tFYyjMp1kQEaUpYSb2WALCzs4PZ2dlzA0PZBsdxeNe73oUnnngCjz32GBobG7G/v4/vfe97+Pa3v42HH34YAwMDeOyxxyT93Js3b2JoaAif+cxn2DoaGxvxrne9C3/4h3947uc/97nP4YEHHsDc3FxO9HfeJX4/x9NPP42GhgZR0U07OzuYmprClStXcPny5YQP70ceeQS3b98Wpfak2s8nFWJNCCdrcBwIBDA+Po5gMIje3l5FT+4mg52dHczMzKCjoyNlu5ZoxDob1juBQAAWiwU8z/988CEPH/mIDh/96NmN65WvDOEf/9EHBTnsxITP58Pi4iK2t7ehUqlgMBhS6gtUCgKBQBixyEavKBFru92Oo6MjFBUVsX0qNpmBrpvu7m5FJqWIAR0brVYrKlKO53mcnJwwEqiUkrCSSd/v//7v4+GHH8bjjz8etRfU7/djY2MDra2t5zeQIvx+PwoKCvCNb3wDv/RLv8T+/v7778fR0REeeuihc79zzz33oLy8HAUFBXjooYdQWVmJ3/iN38D73/9+RfYW51bnuQiIvYC0Wm3SRJHneSwuLmJtbQ09PT1J38jEZgJnm/QBZxYxJpMJJpMJV69ejWpwHGtCmHzgCgsLw0ohuQihyXRPT09ajcWRhrw0fTk9PY1QKMRKbRUVFbI98GnwgaKxfD4N3vrWPHzzm2ef93u/F8Cf/VkgIyVcKbC3t4e9vT02hUjly/HxcQCZ8wuUAuT/qdfrcePGjaytt7CwEIWFhbh8+TL8fj/bp2tra9BqtWyflpeXx31ZoQnR3t5eRRGLVEDDXHl5eaKPjUqlQmlpKUpLS5lxNBHrpaUlVhKWOjoyHpRM+j7wgQ/gu9/9Lh577LGYA0B5eXmSkj4ALNIvsvpXXV2Nubm5qL+zvLyMH/3oR7j33nvx3e9+F4uLi/jd3/1dBAIB/Mmf/Imk65MCF5b4iUWypCwYDGJychInJyeip4DFED8phzikgkqlgtFohNFoxJUrV9iE8Pr6OmZmZlBWVsZIoMfjwfj4OGpra3M+NJ7jOMzNzcFms2FoaEjSUrWQWHd0dODk5IQlCExNTaG8vJztU6mGQ4SDD1evXsXOjga/+qt6WCxqNsRx//3SD2rIAZ7nsbS0hM3NTQwMDDBPL+pPFfYFLiwswOfzhe1TpZTaCB6PB2NjYygpKVFU1F9eXh5qa2tRW1sb9rIyOzuLQCDAypeRJsfr6+tYWlqS1RYkU/D7/RgbG0N+fr4kOcL5+flobGxEY2NjWEl4cnIyIyXh3d1dxZK+P/mTP8G//uu/4rHHHsOVK1eyvaSE4DgOVVVV+MIXvgCNRoOBgQFsbW3hgQceuEv8lAytVotgMBj3Z8h7TqPRYHR0VPTFmAzxixziUArpi4RKpUJRURGKiorQ0tLCJoT39vbYW1FlZSUaGhoUuf5kQUTf4/FgeHhY1sQHoSJw5coVuN1u7O/vY2dnB3Nzc8zbrqqqKuXhkIODA4yPj6OpqQktLS24c0eDN77xbIijooLHl7/83BCH0sHzPGZnZ2G32zE4OBh1El2lUqGsrAxlZWVoa2tj5cutrS3Mzs6ipKSEkcBsD9xQggURcqVeN5EvK06nEzabDRsbG5iZmWHlS5/Ph+3tbfT39+e8ya7f78edO3dQUFCA7u5uyQk59VHTywq9AK6trWF6ejpsMKygoCDtc4MShmiCXyngeR4f+chH8H//7//Fj370I3R0dGR8DRRysLe3F/b3e3t7MXtTa2trodPpwhTga9euYXd3F36/X3EvmBeW+Im9MBKRsqOjI4yNjaGqqgqdnZ0pXfiJPkNoykwDHEq9+UfCYDCgsbERgUAAJycnqK+vh9vtxs9+9jPWbyXVhHCmQCU3nU6HoaGhjDftFhQU4PLly6zURhPCy8vLYT1spaWlSe3Tvb09TE9Pszi5r39dg7e97bkhjm98w4fLl3Oj5ZeGUlwuF4aHh5PqHRW+rDQ3N4cN3CwtLTG/wKqqqqT3qVQgM+Ncy3dWqVQoLi5GcXExWlpaWPlybW0NHo8H+fn52NvbA8dxKcdzZRtE+sgPUu7vEPkCKHVJmO4D6basSA2e5/HAAw/gC1/4An70ox+hq6srK+vIy8vDwMAAfvjDH7IeP47j8MMf/hDvfOc7o/7O7du38ZWvfIVV6ABgYWEBtbW1iiN9wAUe7uA4DoFAIOmfX1hYQCAQiHqybW9vM++5S5cupXxTfvrpp9HY2BjVxkDYz6dSqXLuBkmTu4eHh+jt7WXlUKknhDMFsmuh0HglrVNowWGz2aBWqxlhidVvRTFf3d3dMJkq8eEP6/Cxj50R2Ve9KoR/+IfcGOIAzr6/xWIBx3Ho7e2V5MZKpTY6T4HM9QXSlHiumhkLITSa7u3tDSPXgLxWMXLA5/Phzp07KC4uVkTpXehrabfbw0rCFRUVCV9OifQpzVKL53n85V/+JR544AE8+uijGBgYyOp6vva1r+H+++/H5z//eQwPD+NTn/oU/uVf/gVzc3Oorq7Gfffdh/r6enz0ox8FAGxsbKCrqwv3338/3vWud8FqteKtb30rfu/3fg8f/OAHs/pdouEu8fs5lpaW4HK5/v/tnXlYU2fe/u8Asqgge0BEQVxAkCVsLl1otRVESZi2Y/vWam2nM110apdfx047Tjvt2Np2Zqzaqq9tX9t3xtYCAdyXqmitjgphl0VFdkhYwxqynd8fvs+ZgOxkOYHnc129rpkYkieHcM59vs/3e98IDg5mHyMnsaqqKoSGho757igzMxN8Pv8e01IuDHGMBaVSidzcXPZCPFAvmlarRXNzM2twPNIJYWNBtkNHYtdiKrRaLVpbW9ljqlKp7hkOuXXrFmpqahAWFgYrq2n47W+tkZZ296L76qsqfPCB+QxxkCqstbX1iCYqR4JWq4VcLmePaU9PD3tx1XdfIPG1I1VYc4ZhGBQXF6OxsfEeo+nBrGJcXV0N2kIxWhQKBbKysjBt2jQEBgZy7jyguyXc2Ng4ZCKLVCpFQUEBgoODOSf69uzZgw8//BCnTp1CdHS0qZcEANi9ezdr4BwaGoqdO3eya4uJiYGPjw8OHDjAPv/KlSt47bXXkJOTAy8vLzz//POcneqlwu//qKioQFNTEwQCAYC7VYW8vDzW30wfSRakgqR7V2/uoq+zsxPZ2dmwt7cfUSwWuRAQm5ienh5WsJgyQ5jYTvj7+4/I2ocL6EZzyWQydHZ2YtKkSdBqtQgJCUF3twueeMIGubl3hzh27lRi3TrzGOIA7vbY6l6IjVF9GcgvUB99gSTFZjz42pGKf2trK8LDw4cUcl1dXewx1bWKIbm3pj4PKhQKZGZmshV/U69nOOgmsrS0tMDW1pY9p6pUKs6Kvq+//hp/+tOfcPz4cSxdutTUS5oQjFvhxzAMlErlsJ9fXV2Nuro6REZGoqurCxKJBDY2NggNDdWbCMnLy8OUKVPg5+dn8CQOY9Dc3Iy8vDxMnz4dc+fOHfX6B8oQJhdXY3j/6UaWLVy4kFO9L6OBGMySPqvr1y3w8cfRaG62gYuLFt9/34OlS83nT7+9vR0SiQR8Pt+k+c66W5e6CTcj6bUE7p5vSktLObflNhq0Wi1rAh4eHj7i6XOVSsV62zU1NcHS0pIVLM7OzkavmJAbDGdnZ7ON+9PdEpbJZFCr1XB0dMSMGTOGtSVsDBiGwXfffYe33noLR44cQUxMjKmXNGGgwu//qKurQ3l5Ofz9/SGRSODp6Ql/f3+9VhUKCwsxadIkzJ07l7VqAcxT9NXW1qKoqGhMRsYD0d3dzW6z6WYIj2WadTCIXUtjY+O4SBbRHUoJCQmBWGyDF1+0Rk8PD7Nnd2LLlivw8WFMNsgwUkgPHBl04cpa+8ad8Xi8Xj1sAwkW4gcZGhpq9hYnGo0GeXl56Onp0Uu6iK5VTENDA5RKJVxdXdnjauhG+a6uLmRlZXF+snq4yGQy5OXlYc6cOVCr1WhoaGBzb00ZH8kwDL7//nts3rwZ6enpWLZsmdHXMJGhwu//aGhoQEFBAdRqNebPn2+QuKfi4mJotVrMmzePjV8zdbPwSCG+aVVVVUaxAuibIWxnZ6fXqDOypd/T04OwsDCzTxYhW++Ojo7w91+AbdtssH373bv7uLi7QxyTJ/ceZODxeL3MeLnUkyKTyVBQUMD5Hrjh9AXqeg4KBAI4mMs0zQBoNBrk5ORAo9EgLCxM71UkhmFYq5iGhga0t7ezlkZEsOhTmBHR5+7ubvbeo8Dda1peXt49aSnd3d1shbXvlrCxjKOTk5Px8ssvIykpCXFxcQZ/P0pvxq3wA+5WPoYDwzDIzc1FfX09IiMjDSZmSktL0d3djYCAALPs59NoNCgsLIRcLkdYWJhe+h5HwkATwu7u7qM6YSkUCuTk5GDSpEkIDg7mxPbHWJDL5cjOzoaXlxc8Pefgt7+1QXr63SGOzZtV+Mtf7h3iIMMhRFwTM153d3eTbwnV1NSguLgYQUFBI87QNiUD9QUCd8VFZGSkyT0DxwppJeDxeEaLlOu7za7PpIvOzk5kZWXBw8NjTG0rXIGIvqH+dtRqNZqbm0c9JTwa0tPT8Zvf/Abff/89EhIS9P76lKEZ18JPqVRiqI9HsmQ7OzuhVqsNVnJmGAb19fXIz89nq1bu7u4jzrw0FUqlEjk5OQCAkJAQvaVIjJa+E8IMw8DV1XXYE8JctmsZDQ0NDcjPz8ecOXNgYTELv/71f4Y4du1S4plnhh7iIBUWckxJryXZEjZmNVQ3Hs/Z2dlo72sIuru7kZ+fj/b2djAM06tqzfVt9v4gsWWklcAUFeL+bE10t9lHIlg6OjqQlZWF6dOnm5WH4kCQc0FgYOCIbph0p4TJlrCjoyN7XPVxs3Ls2DE8++yz+O677/DYY4+N+fUoo2NCCz9S2rezs8OcOXNw7do1PProo3pdAxni0I1g061aTZo0Ce7u7uDz+Zy9CJDtQxIjxaWtQGDgCeGBqlZ90yu4eMxHgm5lrLLSE7/+tQ1kMh5cXRn88EMPFi8eXRIHSWORyWTs5KVur6UhjhvDMLh58ybq6uoQFhY2LrZD8/LyoFAoIBAIYGlp2W9fIPFg5NrfVl8MnWAxGvoTLOSGxc3NbdAJYyL6vLy8OG/dNBwaGxuRm5urlyq57pYwabMZy5bwmTNn8F//9V/46quv8NRTT41pbZSxMWGFX1NTE+u3M3/+fPT09CAjIwMrVqzQ2x+/ruAD7h3i0Gg0vapWPB6PvbByxdyYiKQZM2aYxd3wQFUrUmFpaWnBjRs3EBAQ0K+RtjnBMAzKyspQWVmJkJAQnDnjhpdeujvEERioRVJSD2bN0s+ft1KpZC8CjY2N7DYb2WbXx/dC1xJEIBD08oEzR3SNpvvrgdPdZje0X6A+IL52XMsR7ktXV1evHrYpU6awx1S3L7i9vR1ZWVmsX6e5QzwhFyxYoHd7oP62hMnQzXC2hDMyMvDrX/8aX375JZ555hnOX0fGOxNS+FVWVqKkpAQBAQFsw7hKpcLZs2exfPlyvfSrEKuW4Q5x6BrxymQyaDQak5sbk0qSOXraEciEMKlaAcD06dPh4+Njtn1WGg1w6RIPEkkdJk1qxNNP++Dzz53w6ad3T74rV6rxzTdKGGo4ue8NC4BeySGj+a72rYyZupVgrCiVSmRnZ8PKygqhoaFDHhPdvkCZTIb29naTT17qQixOzMnXDrh7XtetsJKUmylTpqCsrAw+Pj7w9fU19TLHTFNTE3Jzcw0i+voy0i3hn3/+GY8//jj+8Y9/4Pnnnzeb7854ZlwLP5VKxVbbgP/YdpBtJN3eIa1Wi9OnTyMmJmbMvUxjNWXuu3WpVCrZhns3NzeDN1IzDINbt26hurp6XPRYabVaFBUVobGxETNmzEBbW5tBJoSNQXq6Jd58cxJqa/9zI2Fry0ChuLv2115T4f33jZfEwTBMr+QQXSNuV1fXYVWtVCoV2z+qT99MU6FQKCCRSDBlypRRb4cqFIp7ttlGms2sL8jgg7u7u0k9FMcKubmurq6GVCrtZb/j6upqtjcbRPQFBATA09PT6O/fd0v4888/h5eXF1avXo1p06bhiSeewLZt2/Dyyy+b7XdnvDFhhB+5uBC/qf62kU6fPo2lS5eO6e5at9KnD38+3a1LksagKwL1vR1EJnfb2toQFhZm8krDWBnIrkWtVqOxsbFXr6Xu1iUXt7HS0y3x9NPWuPsX2/d7xeB3v1Pj738fflqNvunPiNvR0ZH9rvbXa6VQKJCdnQ1bW1sEBwdzvsdtKIj5u5OTEzu9P1YG8gs0Rl/geBt8kMvlkEgk8PX1haur6z2T14ayijEUphZ9fVGr1fjhhx9w9OhRnD9/njX1fv311xEXF2dw38ovvviCjVkLCQnBrl27EBUV1e9zDxw4gA0bNvR6zMbGBgqFwqBr5AITQvh1dHSwd+AhISEDVszOnj2LyMjIUTeU6w5wGMqupauri72wtrW1sRdWfUxd9vT0IDc3F8DdygvXeoxGChEVNjY2CA4OHvD33t+EMLkAcCVDWKMB/P1t/q/S19/3isGMGQxu3FBwJneXREjJZDK0tLSwsVzu7u6YOnUqK5JIQgIXxfZIICLJw8PDYD5wA/UFkkEmff7NtrW1QSKRYObMmfD19TULITQYra2tyM7Ohp+f3z0+rT09Pb3SQ/RpFWMouCb6dMnJycHKlSvx9NNPw9HREUePHsWNGzdw3333YfXq1UhISMCcOXP0+p6HDh3CunXrsHfvXkRHR2PHjh1ISkpCSUlJLx9DwoEDB/Dqq6+ipKSEfYzH45mVddRoGdfCT61WQyqVIicnB97e3kOejDMyMhASEjLiu5KhhjgMRd8L61gSLoi9CclB5YLYGQvt7e3Izs6Gi4vLiETFSCeEjcXJkwo89tjQW+4nTijwwAOjm+I1JCSWSyaToampCVZWVlCpVHBzcxsX3zfioejt7W20SXHdCisxONZXXyARSbNnz8asWbP0uGrT0NLSguzsbMydOxfe3t6DPpf0sBJxPRarGEPR3NyMnJwc+Pv7c25IraCgACtXrsTmzZvxzjvvsH8LFRUVOHr0KI4cOYLZs2fjyy+/1Ov7RkdHIzIyErt37wZw9ybJ29sbmzZtwpYtW+55/oEDB7B582a293siMa6F3+3bt1FUVIQFCxYMazjh0qVLmD9//oiyM0c6xGEodBMumpqaMGXKFFYETp06ddALUVNTE/Ly8tjpNnO/syefZ9asWWOqVAw1IWwsX7umpibs2tWITz8NG/K5//M/Pfj1r4f27DMlxHJi6tSpUCgUI/Zg5BrkIjxnzhyDJP4MF9IXSFJuJk+ePKq+QPJ5hiOSzAHyeUaT/jKYVYyrq6tJJs+5LPqKiooQFxeHF198Ee+///6A3znSCqUvlEolJk+ejOTkZIhEIvbx9evXo7W1Fenp6ff8zIEDB/Cb3/wGXl5e0Gq1EAgE2LZtGwIDA/W2Lq5ieLt1E2JjY4PIyEg4OjoO6/mWlpbQaIZ/0dSt9Jk6icPa2hpeXl7w8vLq1b92/fp1WFtbsyKw7wWgurqanXDm2klkNJAMYX18Hh6PB3t7e9jb28PPz4+dEK6vr0dJSQkcHBxYEWioXsi6ujrcuHEDISGCYT3fw4Pb93FSqRQFBQXs70e3wlpaWmrQrUtDQCLluHARtrW1xYwZMzBjxoxefYHZ2dnsNOtQsXzEEoQLn0cfkO3Q0X4eHo+HadOmYdq0aZgzZw7rbdnQ0IDS0lLWKsbV1dUoQzdcFn2lpaVYtWoVNmzYgPfee2/QY6Hv49TY2AiNRnPPNi2fz0dxcXG/PzN//nx88803CA4Ohlwux2effYYlS5agsLCQ0/GQ+mBcV/w0Gg3UavWwn3/t2jVMnz59WL/0sU7uGouBvALd3NzQ1NSEuro6BAcHm/3krq6nnbEyhMkxbWpqwuTJk/WexlJeXo6ysjIEBwfDyckVAQG2qK3lgWHufW0ej4GXF7d6/PpSVVWFmzdvYuHChf1W1QeyNCHfV675+pGbjL5ZqFxjuH2BRJQHBgYa3BLEGBARa6geuP6sYnS3hPVduSbb1fPnz+ecvVZZWRliY2Px+OOP4+9//7vRd75qa2vh5eWFy5cvY/Hixezjb731Fi5cuICrV68O+RoqlQoBAQF46qmn8MEHHxhyuSZnXFf8RoqVldWwKn7GGOLQF5aWluydvlarRUtLC6RSKXJzc6HVauHm5ga1Wg2NRmN2W2wEYtfS3NyMyMhIo2QIW1tb96qukAprZmbmmCeEGYZBaWkp6uvrERERwQ4bffqpCk8/bQ0ej+kl/ni8u/dun3xiPBuXkaArygUCwYAVeB6Ph6lTp2Lq1Knw9fVle1gbGhpw8+ZNtn3Bzc3N5FGHlZWVuHXrFkJDQw1+kzFWLCws4OzsDGdnZ8ybNw8dHR1oaGhAVVUVbty4gWnTpsHW1hYymQzBwcEjanXhKiS2zJC+dpMmTYKHhwc8PDx6iWtSuXZ2dmbPvWO1iuGy6KuoqEB8fDwSEhJMIvoAwNXVFZaWlpBKpb0el0qlw/79T5o0CWFhYbh165YhlsgpaMVPh9zcXNjb22P27Nn9/juJXyPi0FhDHPqkp6cHOTk54PF48PX1RUtLC+sVqDvEYIzQdX2gVquRm5sLlUqF0NBQo+bJ9sdAE8LDtd7QarUoKChAW1tbv7ZD6emW+H//bxJqav5zcp0xQ4tPPlFBKORebx/DMCgpKYFMJoNAIBi1KCfVFVPb7zAMgzt37qCiogJhYWHDbiPhKgqFAjdv3kR9fT14PN6o+wK5hEwmQ35+vl5iy0aDbuWaWMXY29uzx3Wonuu+ENE3mh5FQ1NTU4MVK1Zg2bJl2Ldvn0mnn6OjoxEVFYVdu3YBuHsunTlzJjZu3NjvcEdfNBoNAgMDsXLlSvz973839HJNyrgWflqtFirV8H3NCgoKYGNjg7lz597zb1wZ4hgL7e3tyMnJYd33yWcwtlegvhiuXYup6GturGvE3d+EsEqlQm5uLjQaDcLCwgY87hoN8MsvFqiv58HDg8HSpVpOVvqIiG1vb4dAIBg0M3Wkr6srrknlmmyxGep7oJsjLBAIYG+oaBQjUllZidu3byM0NBT29vbs1mVDQ8Ow+wK5BNmu5tL2e9+4Q2tra/a4DhXN2draColEwknRV19fj9jYWCxevBjffPONyb8fhw4dwvr167Fv3z5ERUVhx44d+PHHH1FcXAw+n49169bBy8sLH330EQDgL3/5CxYtWoQ5c+agtbUVn376KdLS0pCVlYUFCxaY9LMYGir8dCgqKgIABAQE9HqcDHFoNBrOb+0ORGNjI/Lz8zFz5swh7SZ0+6z07RWoL4hdi6urK/z9/TkvxPsT12QryN3dHQzDjCsjY91KrEAgMNjNA5m6JCKwu7sbzs7Oer9pYRgGN27cQHNzM8LDwznXbzga7ty5g/LycggEAkybNq3Xv+luXeruCIwkkcXY1NfXo7CwkNPb1bpWMWQggeQz970ZJJY6c+fO5Zzok8lkWLlyJUJDQ/Hdd99x5qZ79+7drIFzaGgodu7ciejoaABATEwMfHx8cODAAQDAa6+9BrFYjPr6ejg5OSE8PBwffvghwsKGdk8wd6jw0+HmzZvo6elBUFAQ+5i5DHEMRlVVFUpLS7FgwYIRNzkrFIpeWbfGmGQdCmLX4uPjAx8fH7P8nXR1dbEX1dbWVra/LSgoyCg9ioZEN6d2MMN0Q6Dra9fW1sb62rm7u49arGm1WuTn56OzsxMCgYAzNz+jhWEY3L59G9XV1QgPDx+yckluWkglUNcvcCzHVZ/U1dWhqKgIwcHBcHV1NfVyhgXDMGhvb2ePK0m6IT2BRUVFmDNnDucsdZqamhAfH4958+bh+++/54SvIWVkjGvhxzAMlErlsJ9fVlaG9vZ2hISEADCvIY7+IEMCdXV1ozKm7stYvAL1RU1NDYqLi0clYrkI2cpxcnICwzCs/5q+J4SNRXd3NyQSCaZOnTrqnFp90dPTw35fdY/rSLKZNRoNcnNzoVQqDVq5NBbknCCVShEeHj6qmzfdoZux+AXqi9raWhQXFyMkJITzgzaDQTJv6+rqIJfLYW1tjenTp3Oq37KlpQWrV6+Gt7c3kpKSzP7vYaJChZ8OlZWVaGhogEAgMPshDrVajYKCAnR2diIsLEzvd+V9s24H8wrUB7qToSEhIWZvPwP8xwNOt3+nvwxhIlacnJw4/T0k0Yhubm7w9/fn1FrJcSVbbJaWlr2Oa38CleR783g8hIaGcmY7a7QwDIOioiI0NTXpbbua+AWS76ux+wJrampQUlKC0NDQcXFOIFnCPj4+mDx5Mvt9BWDyGEm5XI6EhAS4uroiLS1tzJPKFNNBhZ8ONTU1qKmpYYUfYJ6iT6FQICcnh91qM3QpXqPRsCd/0hROROBQzcvDQavV4saNG2hpaUFYWJjZb4UC//G0CwoKGrAJXavVss32MpkMAEY0IWxMWltb2WhEY0WWjRZia0S+rxqNpldyiJWVFZRKJSQSCTs4xKVjPRrI35BcLkd4eLhBtqv79gWqVKpe/Wv6rg5VV1ejtLR03Im+vlnCWq0WcrmcrbIqFAq2P9jV1dUorQft7e1ITEzE5MmTceTIEb0NalFMAxV+OtTV1eH27duIjIyEpaUlpy9eA0GGHpydnXtN7hoL3YuqTCYbsZ1JX1QqFfLy8qBSqRAWFmb2d5m6/VWhoaHDtgMZ6YSwMSFGueYY8aUbySWTydDV1QVHR0d0dnZi2rRpCA4O5vzg0FDo9iiGh4cb5W9Ity9QJpOho6NDr2bcVVVVrI/iWFtYuAARfcPJRta1ipHL5WOyihkOnZ2deOyxx2BhYYFjx46ZrLeboj/GtfAD7vb5DAfSaJuZmQmGYdiKlbOzs9mc+Ilpqa+vLyeGHnTjuEbjFUjsWmxtbbFw4UKz32rTNZoeS+VyoAlhclE1pjgmkXLjKe0hPz8fFhYWUKlUnBhmGgsajQZ5eXno6ekxaY/iQH2B7u7uw+63JBALmvHgowgAbW1tyMrKGpbo64uuVUxTUxPrbzkcq5jh0N3djSeeeAJKpRInTpwYFxZGlAkg/JRKJYb6iLpDHDwej62syGQyaDQa9gTF5QD5yspK3Lx5k7MX4L5ipaura1DbDXOzaxkKtVrNXoDDwsL0uj3T1dXFVgLlcjkrVgw9cVlRUYHbt2+bfVM9oa2tDRKJBF5eXpgzZw47zETEip2d3ajFiinQaDTIyclhfSG5Mn3Zt99yJH2B5eXluHPnTr8WNObIWERfXzQaDVpaWtjvrFqt7hUhN1LRr1Ao8NRTT6G1tRWnT58eF8ebcpcJLfyGSuIYqGLF5/PZiBhTQ5IRiG+RudwBE9sNksnq5OTEisCOjg7k5eVxpnI5Voi9iaWlpcF7LvtOspIQeX1OCDMMg1u3bqGmpgZhYWHj4oLQ0tKCnJwc9jvXFzLEoGtuTL6vXNwVMJfBFNIXSG5cBusLJIkpAoGAjTE0Z8iNBrGl0if9WcUQC57hVK+VSiXWrl2Luro6nDlzZlz0UFL+w4QVfsSUWavVAhh6iIP8IRGx0t3dDRcXF1YEmuJuWq1WIz8/H93d3QgNDeWEn9Zo0PUKbGlpAQDw+XzMmTPHbD8ToaurCxKJBA4ODggKCjKqQDDEhLDudrVAIDDL7c++kB7F4aYjkD5WIrCJCS/ZFTB1ZU2lUkEikWDSpEkICQnhxA3qcNDdFdAVK+7u7lAoFKirqxuW76A50N7ejqysLIOIvv7ou9VOqtdubm5wdHTsdS5QqVR49tlnUVZWhrNnz5qNLyJl+Ix74adSqVhxR9A1ZebxeKO6GJMTlFQqNUnEGel/s7a2RnBwsMkvNmOFDD1UVlZixowZ6OzsNJlXoL6Qy+XIzs6Gp6cn5s2bZ9K1k8QAclEFRj4hrNFokJ+fj66urnFhZAz8J+JrtC0SujeEDQ0NvRJZ3NzcjH6Menp6IJFIMHnyZJP7KI4VckNYWVmJ7u5u2NnZwcPDY0Q+jFyEiL5Zs2bB19fX6O+vW71ubGzEtWvXkJmZifj4eMTHx+PNN99EYWEhzp8/z5nYO4p+mXDCzxBJHKTHSiqV9tq2dHd3N0ijfVtbG3JycuDi4oKAgACzPrkDA9u1qFSqXhUrGxsbg3oF6hNSRfLz8xtz746+0Z0QJrYbunFc/d1EkBxhrVbLqX6xsUDsQBYuXKi3iC/dRBbSb6m7vWbI76xCoUBWVhYcHBwQGBho9ucFcjNYU1ODkJAQtmplCr9AfWFq0dcXhmGQmZmJAwcO4OzZs6iuroadnR3+9Kc/Ye3atUaJivviiy/YmLWQkBDs2rULUVFRQ/7cDz/8gKeeegpCoRBpaWkGX+d4YkIJP2PEr3V3d7MXVLlczm5VuLu768X7iJj+kmZgLouf4UAEhVqtHtSupa9XIDHgdXd3h6OjI6cucrW1tSgqKuLsoI0uw5kQJlUkGxsbs9o6HAwyJGBIOxDd4ZCmpibY2tqyx1XfNy7d3d3IysqCs7MzAgICzP68wDAMbt68ibq6OkRERPRqKdDdah+qL5BLdHR0IDMzk81L5xJarRabNm3CTz/9hGeffRY///wzLl26hJCQECQkJCAhIQGhoaF6/14dOnQI69atw969exEdHY0dO3YgKSkJJSUlg1Yby8vLcd9992H27Nlwdnamwm+ETAjhp9FoevX0GSt+raenp1fvmr29Pdzd3cHn80fcu8YwDGtjEBgYCD6fb6BVG4/u7m5kZ2fDzs5uRCa5+vYK1BcMw6C8vBzl5eVmmy5CqtcymQxtbW2YOnUquru74eTkNC487XR9FI05JKB749LY2Agej6e3ilVnZyeysrLg7u6O+fPnjwvRN9xYuf76AknerT78AvUF10XfG2+8gdOnT+P8+fNsz2FTUxNOnDiBw4cP4+TJk8jNzdV7lTI6OhqRkZHYvXs3uxZvb29s2rQJW7Zs6fdnNBoNHnjgATz33HP4+eef0draSoXfCJkQwk+36meqJI6Bcm75fP6Qfm5arRYlJSWQyWQIDQ0dF1OUbW1tyM7OZi9WoxUUZPJaKpX22rYcrlegvmAYBsXFxZDJZBAIBOOiAb2pqQm5ubmYNGkSenp6zLrfEvjPBLxMJht1Tq0+6C/hYqit9oFob2+HRCLB9OnTMWfOHLP7nfSF/I4aGhpGFSvXd4iBTLWbsi+QiD5vb2/4+fkZ/f0HQ6vV4u2330ZaWhoyMjIGXJ9SqdR7JVWpVGLy5MlITk6GSCRiH1+/fj1aW1uRnp7e78/9+c9/Rl5eHlJTU/Hss89S4TcKuDnjrycYhsGOHTuwbNkyzJ0716RbVNbW1vDy8oKXl1ev3rXy8nLY2dmxF9S+lhvE/02hUCAqKmpcROUQo2l9bFfzeDw4OjrC0dER8+bNYxvty8rKUFhYCGdnZ3by2lBbQBqNBgUFBejo6Bg3v6Pm5uZeljq63mvXr19nJ4TJVjvXBQfpI21tbUVkZKRJf0cWFhZwdnaGs7Mz5s2bx1asKioqUFhY2MvaaLDhEDI8xMUq0mggN09NTU2IiIgY1e/I1tYW3t7e8Pb2hkqlYocYJBIJ2xdoTGP+jo4OZGVlcVb0bd26FSkpKYOKPgAGOXc2NjZCo9Hcs3vF5/NRXFzc789cunQJX3/9NXJycvS+nonEuBZ+bW1tuHjxIv70pz/Bz88PQqEQiYmJJh+ImDRpEjw9PeHp6QmNRoPGxkZIpVJkZmbC2tqavaBaW1sjNzcXNjY2iIyMHDcN9SUlJQbpf+PxeHBwcICDgwPmzJnDegVWVVXhxo0bw76gjgTil8YwDCIjIznbXzQSSB+prr1J3+8smRDOzc0FwN0MYeA/08jd3d2IjIzkVOwfj8eDvb097O3t4efnh+7ubjQ0NEAqlaKkpISN43J3d+81HNLa2ors7Gy9GP9yAYZhWJug8PBwvQjzSZMmwcPDAx4eHr36AouKinr1Bbq5uRnk3EpE34wZMzgn+hiGwV//+lf861//wvnz5zFv3jxTL2lI2tvb8cwzz2D//v3UYmaMjPutXuDuSfLIkSMQi8U4deoUZsyYwYpALvUt6fYBEX+wKVOmYP78+XB2duZ8VWUwdE1/Q0JCjJ6vSS6oMpkMra2tekm3ID2KxDqDa4JnNNTU1KCkpARBQUHDsnIYaELY2FvtA6FWq5GTk2OW08gkjou0h5CpdltbW9y8eRPz5883ytSloWEYBoWFhZDL5QgPDze4BY4x+gI7OzuRmZkJLy8v+Pn5cerczTAMPvnkE3zxxRc4d+4cgoODTbKOkW715uTkICwsrNd5lrRwWVhYoKSkhHMCm6tMCOGnS3t7O44fP46UlBScOHECrq6uEAqFEIlEiIiI4IQIlMlkyM/Ph4eHB3g8HmQyGdsMzufz9ZLBaEy0Wi17Yg8LCzO56a9SqWSFCukDGmnvGomUc3Nzg7+/P6dO7KNBH4MpA3namSJDGPhPYoqVlRVCQ0PNWpiTm8Kqqio0NzfD0tISfD6fs1XW4ULODe3t7QgPDzdJNba7u5sV2C0tLWPuC+S66Pv888/x2Wef4cyZMwgPDzfpeqKjoxEVFYVdu3YBuPt9mDlzJjZu3HjPcIdCocCtW7d6Pfbuu++ivb0dn3/+OebNmzcudlyMwYQTfrp0dXXh5MmTSElJwbFjx+Dg4ICEhAQIhUIsWrTI6CdThmFQUVGBsrKyXhUXhmF6TbGS/GA+n8/5kz6xa9FoNAgNDeXUNhvQv1cguaAOdNJvbm5Gbm4u68XFpRP7aCBTlPX19XodTOk7IUwiowydIQzcvUhIJBJMmTLF7I2MCbpm0zY2NqzA7unpYYdDDLVtaQi0Wi3bG2sq0dcX0hdIqqyWlpZsBXs4fYFE9HFx2IZhGHz55ZfYtm0bTp48iejoaFMvCYcOHcL69euxb98+REVFYceOHfjxxx9RXFwMPp+PdevWwcvLCx999FG/P0+HO0bHhBZ+uigUCpw5cwYpKSk4fPgwbGxssHr1aiQmJmLp0qUG37LSarUoLi5GQ0PDoJO7uvnBUqkUKpWKvZhyJT+YMFq7FlMxHK/A+vp6FBYWwt/fH15eXqZe8pjRHXoQCAQGE2T9ZQgbakKYxOQ5OTmZvJ9XX9TV1aGoqOges2mybUmObUdHB5ycnFgRyNVBI61Wy6bAhIeHc7JSM5BfIDnX9hXYxFbH09OTk6Lvq6++wtatW3H8+HEsXbrU1Eti2b17N2vgHBoaip07d7KiNCYmBj4+Pjhw4EC/P0uF3+igwq8flEolzp8/j+TkZLbPID4+HomJiXjggQf0fpJSqVTIy8uDUqlEaGjosE/WultrUqkUCoWCvTt1c3MzaX8VsWvh8/lm6S1GTvpSqRQNDQ1gGAaTJ09Ge3s7goKCxoWPokajQW5uLnp6eiAQCIxWcdGtsjY1NcHa2pq9eRnrhDBpqPfw8DB5TJ6+IAkjISEhcHFxGfS5pJe1oaEBLS0tmDp1KntsuWLBo9VqWacCgUDASdHXF3KuJcdWty/Q3d2dTcDw8PDA3LlzOXGcCQzD4LvvvsNbb72FI0eOICYmxtRLopgYKvyGQK1W4+LFi0hOTkZaWhoUCgXi4+MhEonw0EMPjbkRmVTFbG1tERwcPGqxxjAMOjs7WT87U+QHE/Rp18IFyJZUQ0MDrKysoNFo4OrqCj6fDxcXF5MPMIwGlUqF7Oxs8Hg8hIaGmmx7sG+GsK6xsYuLy4iqdcTexNvbG7Nnzzb77x0A1rR9NAkjgwnsadOmmaQSqtVq2ZuN8PBws9mW7ktfgQ0ADg4OmDdvHqfiJBmGwcGDB/Haa68hPT0dy5YtM/WSKByACr8RoNFo8MsvvyAlJQWpqamQy+WIi4uDSCTC8uXLR7xNJpfLkZOTAz6fj3nz5un1REysTGQymVHygwlVVVW4efPmuEkX6TuYQqp+5Nh2d3f3EtjmcCEj/W9cm0YeyNh4OBPCzc3NyMnJwZw5czBz5kwjrtpw3LlzBxUVFQgLCxuzaTsR2OTYAuglsI3xHSAVZhLPaA5/K0PR1dWFzMxMTJ06FVZWVmxfoG4qiylbDZKSkvDKK68gKSkJcXFxJlsHhVtQ4TdKtFotrl27huTkZKSmpkIqlWLFihUQCoWIjY0dMo1DKpWisLAQc+bMgbe3t0HvEPvLDyYDDPqyTtC1awkNDYWjo6NeXteUqNVq5ObmQqVSDZgjbCqBPVo6OzshkUjYTFeu9r+NZEKYTMEHBARg+vTpJly1fiCxcjU1NQZJgdHtE5bJZOjp6enVu2aI3QGNRoOcnBxoNBoIBAKzrJL3pauri43KI20F/fUFjjaVZaykpaXhhRdewPfff4+EhASjvS+F+1Dhpwe0Wi2ys7ORnJwMsViMqqoqLF++HEKhECtXruw1HarVarFz5074+/sjPDy8V6O2MegvP5iIwNE29pOt0La2Nk7YteiDnp4eZGdnw9raethb8Lrmu3K5XC9egfqEbIV6eXlxrvl8KDo7O9lqFZkQJlPvt27dwsKFC4flO8h1RpJTq6/30z227e3tvXrX9DEcotFokJ2dDYZhEBYWNi5EX3d3NzIzM3uJvr4M1BdIbl4MOXhz9OhRbNiwAd999x0ee+wxg70PxTyhwk/PMAyDgoICJCUlITU1FaWlpXj44YchFArxyCOP4PXXX8cvv/yCw4cPIzQ01KRrJfnBUqkUzc3NmDp1aq9Jy+Ggm1wRGhpqFo3aQ0GqYk5OTliwYMGoqmIDTbHy+fxeCQzGguTu+vn5mX3SA7l5qaysRFdXF+zs7ODp6cmpAYbRQNIrmpqaRpVTqw9I1q2upx0RKn3jJIeDWq1me0n7mu+aK0T0ubm5jWhwrW9foKFyhE+dOoVnnnkGX331FZ588km9vCZlfEGFnwEh2ZPJyclISkpCQUEB7Ozs8Oabb2LDhg1wc3PjzEWKNIJLpVI0NTWx+cF8Pn/Ai2l3d3cvr7TxcFJvbW1FTk6OXqtifb0CbW1tWYFtjOB4YkGzYMECeHp6GvS9jAHDMGz/28KFC6FSqQwyIWxMiK2OsdIrhgP53jY0NKCxsRGTJk3qdWyHuiEios/CwsLsDbQJoxV9fdE9tvrsCzx//jzWrFmDL7/8Es8884zZfP8pxoUKPyNQVlaG+Ph4TJ8+HQ8++CCOHTsGiUSCJUuWQCgUIiEhAZ6enpz5I1Wr1b2ECskP5vP5rFDRHUwxR7uW/iDTyIYcEBiOV6A+IcM2wcHB4yLfkmEY3Lx5E3V1dff0vw00ITxc811ToetpZ0xbnZGg1Wp7HVuGYXr1rvUVdWRq3MrKCiEhIeNG9GVlZcHFxUWvaT26fYEymQxqtXpUfYE///wzHn/8cezYsQPPPffcuDgnUwwDFX4G5vLlyxCJRPiv//ov/O1vf4OlpSUYhkFlZSVSUlIgFotx9epVREVFsakhhh72GAn9CRV7e3s0NzfDz88PPj4+pl6iXiBeacacRu7vYkqEykitTPrCMAzKyspQVVU1boZtGIbBjRs30NzcPORWKJkQJseWaxnCBI1Gg7y8PNZL0RxaJchwCBEqCoWi1+ANj8eDRCJh+2PHg+hTKBTIzMzUu+jri25fILHlGo4h95UrV5CYmIiPP/4YL730EmeuHxRuQoWfAcnJycF9992H7du345VXXun3OQzDoLa2FmKxGGKxGJcuXUJYWBiEQiGEQiGnIsG0Wi1KSkpQU1MDCwsLdnvCHPODCUQgVVZWjsorTZ/rIEKFWJnoisCRCBXSYtDQ0ACBQDDsfk0uoxvvJRAIRrQVqjshLJPJ0NXVBRcXF/b4mkpskalxjUZj1vYmZLK9oaEBcrkclpaWrC/pePjuEdFHJuGNeT7ury+Qx+NBpVJh6dKlsLCwQGZmJhISEvD+++/j97//PWeuFxTuQoWfAdFqtZBIJIiIiBjW8xmGgVQqRVpaGsRiMTIyMhAYGMiKQFMmEZAtttraWoSGhsLBwYEVKlKpVK/VKmNBYvIaGxs5JZD6CpWReAUSgdTe3g6BQMDZyK6RQPzflEqlXqpiA00I62uKdTiQrVBLS0uEhIRwpgI5FpRKJa5fvw5LS0tYW1uzQ03kvDCa4RBTY0rR1xfSFygWi/Hee+9h8uTJCA0NxZUrV/DOO+9gy5YtRlvfF198wcashYSEYNeuXYiKiur3uWKxGNu2bcOtW7egUqkwd+5cvPHGG3jmmWeMslbKvVDhx1EYhkFzczMrAn/66SfMnTsXQqEQiYmJRj0JaTQaFBYWDmjXQrZ+SGoI6VHhYn4wgWyxKRQKhIWFcaKZfiBIFqtUKmWzWPvzCiQVJGKQaw7bhkNBpsYBGMQKhEyxNjQ0GDxDmKBUKiGRSGBjYzNutkKVSiWysrIwZcoUBAUFwcLColevMBlgIDcv5rBDwCXR1xeFQoF9+/bhvffeg62tLRiGQVxcHGshZsjWjkOHDmHdunXYu3cvoqOjsWPHDiQlJaGkpKRfS6WMjAy0tLTA398f1tbWOHr0KN544w0cO3YMK1asMNg6KQNDhZ8ZQITV4cOHIRaLcfr0aXh7e0MoFEIkEiE4ONhgJ1GlUonc3Nxh27UwDIO2tja2WsWl/GCCUqlETk6OyePKRkN/ZtxkMKSoqAiTJk0aVxUkYwqkvtPXNjY2rAjUVwxXT09Pr9QUrouf4dDT04OsrCzY29sjMDCw389EBhjIljCJPRxNK4MxUCgUyMrKgqOjIxYsWMAp0QcARUVFiIuLw4svvoj33nsPOTk5SE9PR3p6OgoLC/HAAw9g165dWLBggd7fOzo6GpGRkdi9ezeAu79bb29vbNq0CVu2bBnWawgEAsTHx+ODDz7Q+/ooQ0OFnxnS3t6OY8eOISUlBSdOnIC7uzsSEhKQmJiI8PBwvV1Murq6kJ2djalTpyIoKGjEF16GYdDR0dGrt8rZ2Rl8Pt9k8WbEgma0n4lLEK/Auro6tLa2wsrKCjNnzjSZV6A+Ib8nBweHAcWEISFDTaQaqI8JYSImpk2bNmp/SK6h+5kCAwOH9Z3TvTlsaGhAd3c3nJ2d2QEGU0819/T0IDMzk7Oir7S0FHFxcVi/fj22bdt2z/eovLwcR44cwZo1a/Ruaq5UKjF58mQkJydDJBKxj69fvx6tra1IT08f9OcZhsG5c+eQkJCAtLQ0PPLII3pdH2V4UOFn5nR2duLkyZNISUnBsWPHMG3aNCQkJEAkEiE6OnrUwoakPHh6euqtt5A0getuWRIRaIyTfVtbG7Kzs8eVBU1HRwckEglcXV3h6OjIeq4Z2ytQnxADbVdXV4NOUA6XvhPCarW6V8TZcKpVJN7LxcWFc9uGo4VshRKj89F+pr49lyTxxs3NzegpQET0jUTIGpOysjLExsbiiSeewN/+9jej3zzU1tbCy8sLly9fxuLFi9nH33rrLVy4cAFXr17t9+fkcjm8vLzQ09MDS0tLfPnll3juueeMtWxKH6jwG0d0d3fjzJkzEIvFOHz4MGxtbbF69WokJiZiyZIlw95OkclkKCgoMKifHdmylEqlaGtrY6OM9JkfrEtTUxPy8vLg6+uLWbNmce6EPhpaW1uRnZ2NmTNnYvbs2exn0mg0vbYsrays2GqVk5MTpz97W1sbJBIJZ2Pl+hu80bUy6a8VorOzE1lZWeDz+SYd0NInxNNO3/1vpIpNei7t7OzY766hb2DIljWpMnPt91RRUYHY2FisWrUKu3btMknFeLTCT6vVoqysDB0dHTh79iw++OADpKWlISYmxkgrp+hChd84RalU4ty5c0hJSUFaWhp4PB5WrVqFxMRE3H///QP26pWXl6OsrAxBQUFGyz4lDfZSqRStra3sHT+fz9fLlGVdXR1u3LgxbpIrgP+YTc+dOxfe3t4DPk/XK1AmkwEAK7C5Zmrc0tKCnJwc+Pj4wNfX19TLGRa6Vib9TQi3t7ezQtbPz49zYmI0kOqloSuyarWa9RBtbGxk7aPIDYw+v7tcF301NTVYsWIFli9fjr1795rs73asW72E3/zmN6iqqsKpU6cMtFLKYFDhNwFQq9W4cOECkpOTkZaWhp6eHqxatQpCoRAPP/wwbGxsoNFo8PLLL6O9vR1ffvmlyQx/lUolK1J084NJ39pIYBgGFRUVKCsrQ0hICFxcXAy0auNSW1uLoqIiBAUFjchsuq9XIJemrxsbG5GXl4d58+ZhxowZJlvHWOibc2tnZweFQgEvL69x01rQ1dWFzMxMo1cv+6ZbkOEQkm4xluEQpVKJzMxM2NvbIygoiHO/p/r6eqxYsQJLly7F119/bfK+5OjoaERFRWHXrl0A7v5uZs6ciY0bNw57uOO5555DWVkZMjIyDLhSykBQ4TfB0Gg0+OWXX5CcnIzU1FS0t7fjkUceQXFxMWsfExgYaOplArg7ZUlO9MPNDyYwDIPS0lLU19cjLCwMDg4ORly54aioqMDt27fHLGT7m74erlegvpFKpSgoKEBgYCA8PDyM9r6GpLGxEbm5uZg8eTK6uroMMiFsbMiWtYeHB+bOnWtST1Gy3d7Q0IDOzs5e2+0j6RfmuuiTyWSIi4uDQCDAt99+y4np50OHDmH9+vXYt28foqKisGPHDvz4448oLi4Gn8/HunXr4OXlhY8++ggA8NFHHyEiIgJ+fn7o6enB8ePHsWXLFuzZswe/+c1vTPxpJiZU+E1gtFotTp06heeffx5NTU2wsrJCbGwsRCIRVqxYwRlDY6D//GA+n99v7w/xHWxvb0dYWNig0V7mAsMwuHXrFmpqahAWFoZp06bp9fV1p687OjpGfSEdKSQqb+HChXBzczPY+xiTpqYm5ObmstVL3djDxsZGs8kQ1qWjowNZWVmYPn0653ovu7q6eiWHODg4sMd3sF2C/rwHuURjYyPi4+Mxf/58fP/995yyndq9ezdr4BwaGoqdO3ciOjoaABATEwMfHx8cOHAAAPDuu+/i0KFDqK6uhp2dHfz9/fHqq69izZo1JvwEExsq/CYwt27dQlxcHEJDQ3HgwAEUFRUhOTkZYrEY1dXVWL58OUQiEeLi4jg1Gdo3P9jKyoqtpkyZMgV5eXnQarXD8h00B7RaLYqKitDc3AyBQGDwSceBvAL1nWxRXl6OO3fumDQqT9+Q3suAgIB++0l1J4R1tyy56mcH/Ef0mUOfolKpZHcJmpub2el2Nze3XpVWrou+lpYWrFq1CjNnzkRSUtK4OI9RuAMVfhOUK1euICEhAc8++yy2b9/e68RHYr+ICLx16xYefvhhCIVCxMfHc2oylAwvkNQQjUYDGxsb+Pv7m0103GBoNBrk5+eju7vbJAkjZMqyb88lEdmj+R4wDIPbt2+juroaAoFg3GzDky3r4fZeku12cnyHMyFsbNrb25GVlQVvb2/4+fmZejkjggyHkClhCwsLNjXkzp07rJcn184RcrkcCQkJcHNzQ2pqqsl9DSnjDyr8Jihr167FokWLsHHjxkGfxzAMiouLWRFYWFiIBx98ECKRCKtWrYKrqysnRCDxs5s6dSpsbW3R0NBglvnBuujGlXEhYaRvz+VovAIZhkFJSQlkMhmn8pHHSm1tLYqLi8e0ZT3UhLCxIdY6s2bNMpsp64Egldb6+nrU1tYCAHtucHV1NfnfFqG9vR0ikQhTp07F4cOHx0XWNoV7UOE3QWEYZsSCjfSZpaSkQCwWIzs7G0uXLoVQKERCQgI8PDxMIgKJDYiun91AE6x8Ph8uLi4mn4wbChLtZWtry8k81/68AolIcXR07Pd7oNVqcePGDbS2tiI8PHzcXNRIn6I+J8f7Tgjro9I6EuRyOSQSCXx9feHj42PQ9zIWKpUKWVlZsLW1ha+vL/v9JcMhJDnEVLndnZ2deOyxx2BhYYFjx44Z3byaMnGgwo8yKohVChGB165dQ3R0NBISEiAUCjFjxgyjiECpVIrCwsJBbUB0J1ilUil6enpYEThWKwhD0NXVBYlEwkZGcb1SORyvQN0ta4FAMG62r4hdUFhYmMEskEillaSyGHpCmIi+2bNnY9asWXp9bVNBRJ+dnd09Gcmkp7WhoQGtra2wt7fvlRxijPNYd3c3nnjiCSiVSpw4cQL29vYGf0/KxIUKP8qYYRgGNTU1EIvFEIvF+OWXXxAWFgaRSAShUAgfHx+DnDyrqqpw8+bNEZlN6+YHS6VSdHd3m8zGpD9IrJynp6dJLTNGC8MwaGlp6TW84OLigo6ODlhaWkIgEJj8GOuLsrIyVFZWGmTKeiAMPSFM0mD8/PwMltpjbHQrfcHBwYMeI6VSyVYCm5qajGLDo1Ao8NRTT0Eul+PUqVNG+y5RJi5U+FH0CsMwkEqlSE1NhVgsxoULFxAYGMiKQH2IGV1rk9DQ0DFVWvrmB5Pmend3d6M31zc3NyM3N3fcbK8xDIOmpiYUFhZCrVYDQC/DaHMVgOT7V1tbC4FAYLLqjL4nhFtaWpCdnT1kGow5MRLR1xciskm1lYhsNzc3ODs766X9QqlUYu3atairq8NPP/00bqbbKdyGCj+KwSAX/vT0dKSkpODs2bOYN28ehEIhRCLRqDI+SZ9YS0uL3q1Nuru72elgY+QH60ImQv39/eHl5WXQ9zIWCoUCEomEtczQtYkxplegPtEdTgkPD+dMH5ZuO0NDQ8OIJ4Sbm5uRk5Nj1skpfVGpVJBIJLC2tkZISMiYqqFEZJO+S5VKxe4UjPYmRqVSYf369bhz5w7OnTs3bpKFKNyHCj+KUWAYBnK5HIcPH0ZKSgpOnz6NWbNmsSKwb99Nf6jVauTl5aGnp8fgfWIKhYIVKYbID9aFDAcYMx/Z0JA+RScnJwQEBNzzuzWWV6A+YRiG9VPk+nAKqWTLZDK0t7ezNzFubm73rJsYTvv7+2P69OkmWrF+0afo64tuu0hDQwM6Ojrg5OTEbrkP5yZRrVbjN7/5DQoLC3H+/Plx83dPMQ+o8KOYhLa2Nhw7dgwpKSk4efIk+Hw+EhISkJiYCIFAcM+Jurq6Gjdu3ICLiwtCQkKMOpDRX34wSQ0ZS8WHYRiUl5ejvLx8XJkYE8NfDw+PYeW59vT0sMe37wQrV+xetFotCgsL0dbWhvDwcJNNfo6GwSaEu7u7BzWcNkdUKhWys7MxadIkvYu+/uju7ma3g3WPr5ubW7/RkhqNBi+99BIyMzORkZExbmIKKeYDFX56JiEhATk5OZDJZHBycsLy5cuxffv2cXMnbQg6Oztx4sQJpKSk4Pjx43B0dERCQgJEIhGioqJQVFQEkUiEhIQEfPbZZyadciUTllKpFM3NzbCzs2NF4FD5wbroZgmbsk9M38jlcmRnZ8Pb25u11hkJA+Uzu7u7w97e3iTDLlqtFvn5+ejq6jL7iWTdCWHidenq6gpfX1+zzRDWRa1WQyKRwMrKCiEhIUa3QepvAvvGjRvw9vbGI488Ah6Ph02bNuHSpUvIyMgw2rb6F198wUashYSEYNeuXYiKiur3ufv378d3332HgoICAEB4eDi2bds24PMp5gcVfnrmH//4BxYvXgxPT0/U1NTgzTffBABcvnzZxCszD7q7u3H69GmIxWIcOXIElpaWaGtrQ0xMDH744QdOXXRJfrBUKmVP8gPlB+tCqkdyuRwCgWBcZAkD/+kTmzNnjl4mQknyAtlSmzRp0pBegfpGo9EgNzcXKpUKYWFhnEjT0AcymQx5eXmYOXMmG3NmYWHBHl8nJyfO2wj1xdSiry8ajQbNzc348MMP8eOPPwIAXFxc0NnZiQsXLsDf398o6zh06BDWrVuHvXv3Ijo6Gjt27EBSUhJKSkr63WJ++umnsXTpUixZsgS2trbYvn07UlNTUVhYOG76jyc6VPgZmMOHD0MkEqGnp8dspxhNxeHDh/Hkk08iMDAQ5eXl4PF4WL16NUQiER544AFOHU8yAUhEIDE05vP5vSopREgolUqEhYVxSsiOBZlMxg6nGKK6rdVqe4lAfduY9IdarUZOTg4YhuFEcoq+IINECxcuZC/8Wq0WLS0tbLXVHDKEdeGa6OsLmd7NyMiAs7Mzmpqa8Oijj7IJSIYc7IiOjkZkZCR2794N4O7v2tvbG5s2bcKWLVuG/HmNRgMnJyfs3r0b69atM9g6KcaDCj8D0tzcjJdeegk1NTW4dOmSqZdjVhw4cACvvPIKvvnmG6xZswYqlQoXL15EUlIS0tPToVQqsWrVKgiFQjz00EOcElD9iRQiUMrLy2FpaYnQ0FDOX0yHS11dHW7cuNFLSBiS/mxMdKP59HHRJ31i5HfFNSExWurr61FYWIjg4OABo+XGOiFsbNRqNbKzs2FhYcHJ35VWq8XWrVvxww8/ICMjA3PnzkVhYSHS0tKQlpaGnJwcxMTE4OTJk3o/JyiVSkyePBnJyckQiUTs4+vXr0drayvS09OHfI329na4u7sjKSkJq1at0uv6KKaBCj8D8Ic//AG7d+9GV1cXFi1ahKNHj9JR/RGwbds2fPLJJ0hNTcVDDz10z79rNBpcunQJycnJSEtLQ3t7O1auXAmhUIjly5dzatqSVFJqa2shlUoBAB4eHvDw8DBYpcqYEBNtfcaVjQRdkSKTyaBQKMbsFahUKiGRSGBjY8PJuLzRUldXh6KiIgQHB8PV1XXYPzeSCWFjw3XRxzAMPvzwQ3zzzTc4f/48FixYcM9zqqqqcPXqVTz++ON6f//a2lp4eXnh8uXLWLx4Mfv4W2+9hQsXLuDq1atDvsbLL7+MU6dOobCw0KyGmigDQ4XfMNiyZQu2b98+6HOKiorYno3GxkY0NzejoqIC77//PqZNm4ajR4+afeO0sfjkk08QGxuL4ODgIZ+r1Wrx73//mxWBDQ0NWLFiBUQiEVasWMEJn7WOjg5IJBK4uLjA09OT3U5Tq9V6r1QZC4ZhcOfOHVRUVBg0rmyka9IVKaMx5CYZyZMnTx6WxZC5UFtbi+Li4jELdGJz1HeC1VgZwrqYg+j75JNP8OWXX+LcuXNYuHCh0dcwVuH38ccf45NPPkFGRsawzscU84AKv2HQ0NCApqamQZ8ze/bsfi8s1dXV8Pb2vucPj6J/tFotsrKykJycjNTUVNTU1GD58uUQiUSIi4uDg4OD0ddEplxnzJgBPz8/9sLYNz9YqVT2qlRxeRuYYRjcvHkTdXV1nJ5I7urqYkVgW1vbkF6BCoUCWVlZmDZtmllkJA+XmpoalJSUIDQ0FM7Oznp73b7xZra2tmwl0NATwhqNBtnZ2QCAsLAwToq+zz//HJ999hl++uknCAQCk6xjLFu9n332GT788EP89NNPiIiIMMJqKcaCCj8DU1lZiVmzZuH8+fOIiYkx9XImDFqtFnl5eUhJSYFYLMbt27exbNkyCIVCxMfHG2UqtLGxEXl5eUNOuRJDWJIawrX8YF2IiXFTUxPCw8PNZiK5Py87XS/Grq4uZGVlwcXFZVSJMlyFmIOHhYUZ1CdSN0O4oaEBlpaWbDVb3xPC5iD6vvzyS2zbtg2nTp0yuQ1KdHQ0oqKisGvXLgB3z40zZ87Exo0bBxzu+OSTT/DXv/4Vp06dwqJFi4y5XIoRoMJPj1y9ehXXr1/HfffdBycnJ9y+fRt/+tOfIJVKUVhYyKkBhIkEESvJyckQi8W4ceMGYmJiIBQKsWrVKri6uur9Qk8GHhYsWDBiY1ySCjDa7UpDodVqUVBQgI6ODggEArPt9+nrFWhjYwOlUgk3NzcEBgaOm0pfVVUVbt26ZfSt+P4mhEnGraur65iEmjmIvq+++gpbt27FiRMnsGTJElMvCYcOHcL69euxb98+REVFYceOHfjxxx9RXFwMPp+PdevWwcvLCx999BEAYPv27di6dSsOHjyIpUuXsq8zdepUzhiqU8YGFX56JD8/H6+++ipyc3PR2dkJT09PxMbG4t1336X+RxyBYRjcunWLFYE5OTm47777IBQKkZCQAD6fP2YRWFlZiVu3bo24ib4/+m5XOjo6gs/nw83NzajCS9eGRiAQcG6yc7S0trZCIpHA1tYWCoXCJF6BhqCyshK3b982ef9lf8M3uhm3I/keaTQa5OTkQKvVQiAQcFL0ffvtt9iyZQuOHDmCBx980NRLYtm9ezdr4BwaGoqdO3ciOjoaABATEwMfHx8cOHAAAODj44OKiop7XuPPf/4z3nvvPSOummIoqPCjTFhIZFpKSgpSU1Nx7do1LFq0CAkJCRAKhfDy8hrRhZ9hGNy+fRvV1dUICwvDtGnT9Lpe0lgvlUohl8vh4ODAblcacrpSpVIhJycHwN0qC5f7D0eCXC6HRCKBj48PfH19WcPdvl6BfD7frAyNy8vLcefOHQgEAr1/B8dKR0cHWwnUnRAeKuNWV/Rx8TvIMAwOHjyI119/Henp6Xj44YdNvSQKZUCo8KNQcPfEXV1dDbFYDLFYjMuXL0MgEEAkEkEoFGLWrFmDikCyndzY2AiBQGDwLZGenh42Oq6/njV9MV6tTVpaWpCTkwM/P79++y+N4RVoCMiktUAgMMkw00ggNzIymQytra0DTghzXfQBQFJSEl555RUkJycjNjbW1MuhUAaFCj8KpQ8Mw6C+vh6pqakQi8W4cOECFi5cyIrAOXPm9BKB3d3d+O6777Bw4UKEhYUZ3dtMNz+4qakJU6ZMYVNDxmKx0d3dDYlEAgcHh3HV+9bU1ITc3FzMmzdvWFmpfSewe3p6xuwVaAjKyspQWVmJ8PBwzk5aD8RAE8IuLi64c+cONBoNBAIBJ0VfWloaXnjhBfzwww9YvXq1qZdDoQwJFX4TgPLycnzwwQc4d+4c6uvrMX36dKxduxbvvPPOuOnVMhQMw6CpqQnp6elITk7GuXPnMH/+fAiFQgiFQvD5fDaSLyMjw+RTrmq1mt1Ka2xsZC+gfD4f9vb2wxaBnZ2dkEgkcHV1hb+/v9n2uvWloaEB+fn5CAgIGPHQDfAfr0Aygd3Z2Wny4RuGYVBWVoaqqiqzFH190Wg0bAa2TCYDAEyfPp2TW+5Hjx7Fhg0b8L//+7/41a9+ZerlmByGYfDII4/A0tISp06d6vVvX375Jf74xz+ioKBgWDdcFMNBhd8E4OTJkzh06BCeeuopzJkzBwUFBXjhhRfwzDPP4LPPPjP18swGhmHQ2tqKw4cPIyUlBadPnwbDMHB1dcX//M//YMmSJZy6KJELKOlZI4MLffOD+9LW1gaJRAIvL697qpvmDMmoDQoKAp/P18tr9ucVSIZvjFH5JcNKtbW1CA8PHzdTl2SYSKVSwdfXF01NTWhoaNDrhPBYOXXqFNauXcvGSlLuUlVVhYULF2L79u343e9+B+BuC8LChQuxZ88ePPPMMyZeIYUKvwnKp59+ij179qCsrMzUSzFL7ty5g+XLl7NC6syZM/D09ERCQgISExMRFhbGORFIBhdkMhksLS17Ta+Stba2tiI7O5sdeBgvkOSKhQsXDphRO1b6egXa29v36lnTN8RIu76+HuHh4ZxIqdEHWq2WFX1hYWHsVvpgE8LG9rs8f/481qxZgz179mDt2rXj5uZIX3z77bfYuHEj8vLy4OPjg2XLlsHR0RFisdjUS6OACr8Jy7vvvouTJ08iMzPT1EsxO/Lz87FixQo8/vjj2LFjBywsLNDR0YETJ05ALBbj2LFjcHZ2xurVq5GYmIjIyEhODQMQnzWpVIqGhgYwDMNOVd65cwfz588fV1sxJE9Y38kVg0F61qRSKZqbm2FnZ8eKwJFsuQ8EwzAoLS2FVCpFRESEyVsM9AURfcQ2aCAx1188n5OTEzuAY0iro59//pn923/uueeo6BsAkUgEuVyOX/3qV/jggw9QWFhosJsuysigwm8CcuvWLYSHh+Ozzz7DCy+8YOrlmBX//ve/ERcXhzfffBN//OMf+z3pd3d349SpUxCLxThy5AgmT56MhIQEiEQiLF68mFMN6mT7+s6dO2hqaoKFhQU7Hczl6dXhUlFRgbKyMpP62anVanbLvbGxcdhb7gPBMAxKSkrQ0NBgVukpQzFc0dcffSeESbXVzc1Nr9vfV65cQWJiIrZv344XX3yRir5BkMlkCAwMRHNzM1JSUnpFxlFMCxV+ZsyWLVuwffv2QZ9TVFQEf39/9v/X1NTgwQcfRExMDL766itDL3HcUVlZifPnz2P9+vXDer5CocDZs2chFouRnp4OS0tLrF69GiKRCPfffz8nJkJJlmtQUBBsbGzYpnqSH8zn8+Hi4sIpwToUDMPgzp07qKys5JS1SX9egaQSOJzBBWIb1NzcjPDwcKNPkBsKErHY09MzYtHXl4EmhN3d3eHg4DBqsZaZmYmEhAT85S9/waZNm6joGwbvvvsu0tLSUFBQYOqlUHSgws+MaWhoQFNT06DPmT17NjtpWFtbi5iYGCxatAgHDhzgVA/aREClUuHChQtITk5GWloaVCoVVq9eDaFQiJiYGJNE+hGz39DQ0F5ZrgzDoL29na2ikPxgPp/PKQuT/jCXgYeRegUyDIMbN26gpaUFERERZhuZ1xci+hQKBcLDw/X63dIdcGpsbBx1hnBOTg7i4+Pxzjvv4I033qCib5i89957SEtLYw3gKdyACr8JQk1NDR566CGEh4fjn//8p9lv4Zk7arUaly5dYkVgR0cHVq5cCZFIhGXLlhm8kqObMjKcihjJD5ZKpayFCZle5ZIlENkGlclkZjXwwDAM5HI568fY1yvQysoKhYWFkMvlCA8PH1eiLz8/H93d3XoXff29V0tLCyu0tVrtsEy5CwoKEBcXhzfeeANvv/02FX0jgAo/bkKF3wSgpqYGMTExmDVrFr799tteJzgPDw8TrowC3K1K/Pvf/2aj45qamrBixQqIRCI8+uijehcvuuJoNCkjxMJEKpWivb0dTk5O7FaaKaqWhPGyDcowDCu0iVcgEUQCgcDsffoIxhR9fdEV2roTwpaWlmyPK3C3VSYuLg4vvfQS3nvvPaOJvi+++ILN1g0JCcGuXbsQFRXV73MLCwuxdetWZGVloaKiAv/4xz+wefNmo6xzKKjw4yZU+E0ADhw4gA0bNvT7b/TXzy20Wi0yMzNZEVhTU4NHHnkEIpEIsbGxY+5V02q1uHHjBlpbW/UijvrmB0+bNo0VgcYUXlqtFoWFhWhvb4dAIBhXFbGcnBy0tbXB1tYWHR0dw8635TJE9HV1dSE8PNykVWPdCeE9e/Zg3759CAkJQXR0NJKTk/Hcc8/ho48+MproO3ToENatW4e9e/ciOjoaO3bsQFJSEkpKSlhBqsv169fx448/Ijw8HK+99hr+8Ic/UOFHGRQq/CgUjkJ6n5KTkyEWi1FWVobly5dDKBQiPj5+xBOhGo2GrbAIBAK9V+d6enrYKpWujx2fzzfo5CmXRIQ+6e9zGdsr0BBotVoUFBSgs7OTk7+v0tJS/Pd//ze++uorqNVqREREIDExEYmJib0G5QxFdHQ0IiMjsXv3bgB3j5e3tzc2bdqELVu2DPqzPj4+2Lx5M2eEH4WbUOFHoZgBpLGfiMCioiI89NBDEAqFWLVqFVxcXAYVgWq1Grm5udBoNL1McQ2FUqlkBYo+84P7opvwMNZpUC6hO/AgEAj6FUd9j/HkyZPZYzx16lRO9qJxXfQBdy2AYmNjsXr1amzduhXHjh1DamoqTp8+DR8fHyQmJuLll1+Gt7e33t9bqVRi8uTJSE5O7mV/sn79erS2tiI9PX3Qn6fCjzIczMefgTJu+etf/4pjx44hJycH1tbWaG1tNfWSOAePx0NgYCACAwOxdetW3Lx5E8nJyfjmm2/w6quv4v7774dQKMTq1avB5/N7XfSlUimOHj2K0NBQowXdW1tbw8vLC15eXlCpVOxkZXl5OWxtbdk+qrGYGavVauTk5IBhGISHh5uV3cxgED+7np6eQXvfdI+xrlfg9evXYW1tzVYCR+MVaAjMQfTV1NRg5cqViI2Nxc6dO2FhYYENGzZgw4YN6OjowKlTp5Camoquri6DvH9jYyM0Gs09kYJ8Ph/FxcUGeU/KxINW/Cgm589//jMcHR1RXV2Nr7/+mgq/EUD86khP4PXr17Fo0SIIhUIIhUIolUqsWrUK8+fPR3JyssktfIi9hlQqRWNj46gFikqlQnZ2NiwtLREaGjpuptRJBVOtVo+6MjtWr0BDoNuDGRERwUnRV19fjxUrVuC+++7DV199ZZLvVG1tLby8vHD58mUsXryYffytt97ChQsXcPXq1UF/nlb8KMNhfNwiU8ya999/H8DdIRTKyODxeJg9ezb+3//7f3jzzTdRXV0NsVgMsViMP/zhD7CysoKfnx+2b9/OiaoPmZrk8/msQJFKpayI0xUoA61XqVRCIpHAxsYGwcHB40r05eTkQKPRjKkyS7zq3NzcelmYFBQUDNvCRJ8wDMN50SeTyRAfH4+oqCjs37/fZN8pV1dXWFpaQiqV9npcKpVSBwaK3qDCj0IZJ/B4PHh7e+PVV1/FsmXLsHz5cgQEBIDH4yEiIgLBwcEQiUQQCoXw8/MzuRDsT6BIpVLk5eUBANuvplul6unpQVZWFqZOnYqgoCCTVzD1hUajQXZ2NhiG0et2vIWFBVxcXODi4gJ/f3/I5XLIZDKUlpayySzkd2CIrXJd0cfV7d3GxkasXr0aQUFBOHDggElbBqytrREeHo6zZ8+yPX5arRZnz57Fxo0bTbYuyviCCj8KZZxx/fp1xMbG4ve//z22bt0K4O7FLS0tDSkpKfjwww8xf/58VgT6+/ubXATqCpSAgAC2SlVYWMgmWjg5OeHOnTtwdHTEggULxo3oU6vVyM7OBo/Hg0AgMFi1icfjwdHREY6Ojpg7dy7rFVheXo7CwkK4uLiw+bb6EGhE9LW1tSE8PNykHo8D0dLSwt4I/etf/+LEcNDrr7+O9evXIyIiAlFRUdixYwc6OztZS65169bBy8sLH330EYC7FfAbN26w/7umpgY5OTmYOnUq5syZY7LPQeEutMePYhBGkyN84MABbN68mfb4jYGMjAwkJCTggw8+wKuvvnrPvzMMg5aWFhw+fBgpKSk4c+YMZs+ejYSEBCQmJiIwMJBTgooY7dbU1KCurg7AfyqBZFvMnFGr1ZBIJCbvVezs7GQnhNva2sbsFUhEn1wuR0REBCdFn1wuZ4ehxGIxp9a4e/du1sA5NDQUO3fuRHR0NAAgJiYGPj4+bGtMeXk5fH1973mNBx98EBkZGUZcNcVcoMKPYhBGmiMMUOGnD65fv46ioiKsW7duWM+Xy+U4evQoxGIxTp48CU9PTwiFQiQmJiI0NJQTIrCzsxNZWVlwd3eHp6cnG2umUCh6xZpxoVozEsiAipWVFUJCQjgjYokpt0wmQ2tr64i9Aon1UGtrK2dFX3t7O0QiEezt7XH48GGzNcKmUEYDFX4UzkCFn2np6OjA8ePHIRaLcfz4cTg7OyMhIQEikQiRkZEmESbt7e3IysrCjBkzevUlkrQFqVTKxprpe6vSkKhUKkgkElhbW3N6QGUgP0Z3d/d+vQJ1RR9XM4U7Ozvx2GOPwdLSEkePHjUb42sKRV9Q4UcxOZWVlWhubsbhw4fx6aef4ueffwYAzJkzZ8Q5shT90NXVhdOnTyMlJYW9OBIRuHjxYqMIFblcDolEAh8fn363snQhkVsymYxT+cH9QaaSbW1tERwczImq6nDQ9Qrsz4oHuNu+0dLSwlnR193djccffxwqlQonTpwYN7nHFMpIoMKPYnKeffZZfPvtt/c8fv78ecTExBh/QZReKBQKnD17FikpKTh8+DCsrKywevVqiEQi3HfffQbZYm1paUFOTg78/Pwwc+bMEf1sd3c3KwJJfjAxjDa1GFEqlcjKysLkyZOxcOFCsxF9fdFoNGhqamK9Ai0sLDBp0iSoVCpERkYaNKJvtCgUCjz55JNoa2vDqVOnWLFKoUw0qPCjUCjDRqVSISMjA8nJyUhLS4NGo8Hq1ashFAoRExOjly3WpqYm5ObmYv78+fDy8hrTa/WXH0xEoLHFyXi2osnNzUVrayv7mYhXoLOzMye2sXt6erB27VpIpVKcOXMGTk5Opl4ShWIyqPCjUCijQq1W49KlS0hKSkJaWhq6urqwcuVKCIVCLF++fFTVtYaGBuTn5yMgIACenp56XS/pV5NKpWhubsaUKVNYEWjolgIi+uzt7Tk3OT0WGIZBcXExmpqa2EEO4hUok8lYr0AygGMKjzyVSoV169ahvLwc586dg4uLi9HXQKFwCSr8KBTKmNFoNLhy5QobHdfc3IzY2FiIRCI88sgjw2qgr6+vx40bNxAUFAR3d3eDrpfkB0ulUjQ1NcHOzo7tVxtLfnB/KBQKZGVlYdq0aQgMDDS5Z6K+0BV94eHhsLOzu+ffiVegqQZw1Go1nn/+eRQVFeHcuXMG/15RKOYAFX4USh+++OIL1kMrJCQEu3btQlRUlKmXZTZotVpcv36dFYG1tbV49NFHIRQKERcX129D/aVLl6BUKhEcHAxXV1ejrletVqOpqeme/GA+nw8HB4cxCTWFQoHMzEw4OTlhwYIF40r0lZSUoKGhAREREfeIvv7oO4AzVq/AodBoNHjxxRchkUhw/vx5GnlGofwfVPhRKDocOnQI69atw969exEdHY0dO3YgKSkJJSUltFowCrRaLXJzc5GcnAyxWIzy8nIsX74cCQkJiI+Px7Rp0/DJJ5/gs88+wy+//IJ58+aZdL19hxZIfjCfz4ejo+OIhFt3dzeysrLg7OzMRueNB0Yj+vrS1yvQwcGBFYH66L3UaDT4/e9/j0uXLiEjI2PMvaIUyniCCj8KRYfo6GhERkZi9+7dAO4KF29vb2zatAlbtmwx8erMG5LmkJycjNTUVBQXF8Pb2xtVVVX4+uuvkZiYyClxpNVq0dzczAoUHo8HNze3e/KD+6OrqwtZWVlwc3PD/PnzOfW5xgLDMCgtLYVMJhu16OvLSL0Ch0Kr1eL111/HTz/9hPPnz2PWrFljXiOFMp6gwo9C+T+USiUmT56M5ORkNiAdANavX4/W1lakp6ebbnHjDK1Wi82bN+Prr7+Gt7c3bt++jfvvvx8ikQirV6+Gu7s7p8SSVqtFa2srZDIZpFIpGIZhJ1ddXFx6icCuri5kZmaCz+dj3rx5nPocY8EQoq8vpPeSeAXa2Nj08goc6lhqtVps2bIFhw8fRkZGBmbPnq33NVIo5o7xR6woFI7S2NgIjUYDPp/f63E+n4/i4mITrWr8wTAM3n77bfz444+4evUqAgMDUVZWhpSUFHz//fd44403sHjxYgiFQiQkJGD69OkmF08WFhZwdnaGs7Mz5s+fD7lcDqlUiuLiYqhUKlYE2tnZIScnBx4eHpg7d67J160viOiTSqUGE30AMGnSJHh6esLT07PXtnt2dja77e7u7g5HR8d7Kq5arRZ/+tOfkJqaivPnz1PRR6EMwPjwFKBQKGaBVqvF73//exw8eBAXL15EUFAQeDwe/Pz88NZbb+Hy5cu4ffs2fvWrXyE9PR0BAQFYvnw5du7ciYqKCnBhg4LH48HR0RHz58/Hfffdh4iICNja2qK0tBRXr16FpaUl7O3todFoTL1UvcAwDG7evMmKPmP5HxKhFxQUhAcffBCBgYFgGAb5+fm4ePEi9u7dix9++AGdnZ1gGAYffvghvv/+e/z0009G7RX94osv4OPjA1tbW0RHR+PatWuDPj8pKQn+/v6wtbXFwoULcfz4cSOtlEK5CxV+FMr/4erqCktLS0il0l6PS6VSOhGoJ1paWlBSUoKff/6534szj8fDzJkzsXnzZly4cAGVlZVYu3YtTp8+jeDgYDz44IP429/+hlu3bnFGBDo4OLAVKi8vL3h4eKC8vBwZGRnIzs5GbW0tVCqVqZc6Kojoq6+vN6ro64uFhQVcXFwQEBCABx54AKGhoairq8Mf//hHzJo1CyEhIfjyyy+RlpaGgIAAo63r0KFDeP311/HnP/8ZEokEISEhWLFiBWQyWb/Pv3z5Mp566ik8//zzyM7OhkgkgkgkQkFBgdHWTKHQHj8KRYfo6GhERUVh165dAO5WqGbOnImNGzfS4Q4TwjAMGhsbkZqaipSUFJw/fx4BAQEQCoUQiUQmHaBob29HVlYWvL294efnxz5O7EukUik6Ojrg5OQEPp8PNzc3zuUH9wfDMLh16xbq6uoQHh4+LC9GY6PRaPD666/jf//3fzFjxgxUV1fj0UcfRWJiIhISEgxu1jzSYbA1a9ags7MTR48eZR9btGgRQkNDsXfvXoOulUIh0IofhaLD66+/jv379+Pbb79FUVERXnrpJXR2dmLDhg2mXtqEhkzU/va3v8XJkydRX1+PzZs3Izs7G0uWLEFUVBQ++OADFBQUQKvVGm1dbW1tyMrKwqxZs3qJPgCYMmUKfH19sWjRIixduhSurq6ora3Fzz//jOvXr6OyshIKhcJoax0JRPTV1tZyVvQxDIM9e/YgOTkZFy9exK1bt5Cbm4slS5Zgz5498PDwwLJly1BdXW2Q9ye5y8uXL2cfs7CwwPLly3HlypV+f+bKlSu9ng8AK1asGPD5FIohoMMdFIoOa9asQUNDA7Zu3Yr6+nqEhobi5MmT9wx8UEwHj8eDs7MzNmzYgA0bNkAul+PIkSMQi8WIiYmBl5cXu4UWEhJisHg0uVwOiUQCX19f+Pj4DPpcOzs7zJo1C7NmzYJCoWCj40pLS/XuYTdWGIbB7du3UVtbi4iICM6Kvv379+Ovf/0rTpw4wRqsz58/H1u2bMGWLVtQWVmJ9PR0g/lvjmYYrL6+vt/n19fXG2SNFEp/UOFHofRh48aN2Lhxo6mXQRkm06ZNw9q1a7F27Vq0t7fj+PHjEIvFiI2NhaurKxISEiASiRAZGak3EUhE3+zZs0fsE2drawtvb294e3tDqVSyPoG3bt3C1KlTe3nYGRsi+mpqajgt+r799lts3boVR48exZIlS/p93syZM7Fp0yYjr45C4T5U+FEolHGDvb091qxZgzVr1qCrqwunTp1CSkoKEhMTYW9vj4SEBAiFQixevBiWlpajeo/W1lZkZ2fDz88PM2fOHNN6ra2tMWPGDMyYMQMqlYo1Mr5z5w6bH8zn80dlZDwaysrKUFNTw+nt3YMHD+IPf/gD0tPT8cADD5hsLaMZBvPw8KDDYxSTQ4c7KBTKuEehUOCnn35CSkoKDh8+DGtra6xatQqJiYlYunQpJk2aNKzXaWlpQXZ2NubNm4cZM2YYbL1qtbqXkbE+84MH4vbt26iurkZ4eLhJqo1DwTAMkpKSsHHjRiQnJyM2NtbUSxrxMBi5ITly5Aj72JIlSxAcHEyHOyhGgwo/CoUyoVCpVDh//jySk5ORnp4OrVaL+Ph4JCYm4sEHH4S1tXW/P9fU1ITc3FzMnz/fqNmvffODraysehkZ60MEcl30AUBaWhp++9vf4ocffsCqVatMvRwAd+1c1q9fj3379iEqKgo7duzAjz/+iOLiYvD5fKxbtw5eXl746KOPANy1c3nwwQfx8ccfIz4+Hj/88AO2bdsGiUSCoKAgE38aykSBCj8KxUy4ePEiPv30U2RlZaGurg6pqam9ouUoI0etVuPnn39GcnIy0tLS0NXVhfj4eAiFQixbtgy2trYAgNTUVHz44YdITU0d8/buWCD5wVKpFA0NDeDxeKwIHCo/eCDKyspQWVmJiIgIzoq+o0ePYsOGDfjnP/+JxMREUy+nF7t378ann37KDoPt3LkT0dHRAICYmBj4+PjgwIED7POTkpLw7rvvory8HHPnzsUnn3yClStXmmj1lIkIFX4Uiplw4sQJ/PLLLwgPD8evfvUrKvz0jEajweXLl5GSkoLU1FS0trYiNjYWfD4f+/fvx7Zt2/C73/3O1MtkIfnBUqkUMpls0PzggTAH0Xfq1Ck888wz+Prrr7FmzRpTL4dCMXuo8KNQzBAej0eFnwHRarW4du0aPvnkE6SlpWHSpElsJTA2Nhb29vamXmIvGIZh84NlMhnUajVcXV3h7u7ODiH05c6dO6ioqEB4eDjnPg/h3LlzePLJJ7F37148/fTT4yb7mEIxJdTAmUKhUPpgYWGB+vp6nDp1CocOHcKVK1fg7++Pjz76CD4+PlizZg0OHjyI1tZWzkTH6eYHCwQC2Nra4ubNm8jIyEBubi7q6uqgVqsBmIfou3jxIp566ins3LmTij4KRY/Qih+FYobQip9hSU5Oxvr163Hw4EEIhUL2cYZhUFBQgOTkZKSmpqKkpAQPPfQQRCIR4uPj4ezszCmBwjAMOjo62Oi47u5u2NnZQaFQICwsDE5OTqZeYr9cuXIFiYmJ2L59O1588UVOHVMKxdyhwo9CMUOo8DMcpaWlEAgEQ06PMgyDkpISpKSkQCwWIz8/H/fffz9EIhFWr14NNzc3zgmW0tJSVFVVwc7ODl1dXXB2dmaHQwaaZjY2169fh1AoxF/+8hds2rSJc8eQQjF3qPCjUMwQKvwMy507d+Dr6zvs5zMMg7KyMlYEZmVlYfHixRCJREhISICnp6fJBUx5eTnu3LmD8PBwODg4oLu7m+0JbGtrg6OjIysCyTSzscnOzsaqVavwzjvv4I033jD5MaNQxiNU+FEoZggVftyFYRhUVlZCLBZDLBbjypUriIqKglAohFAohLe3t9EFTUVFBcrKyljR1xeFQsFGx7W2trL5wXw+H3Z2dkZZY35+PlauXIk33ngDb7/9NhV9FIqBoMKPQjETOjo6cOvWLQBAWFgY/v73v+Ohhx6Cs7OzSb3lKAPDMAxqa2uRmpqKlJQUXLp0CaGhoawInD17tsEFTmVlJW7fvg2BQIBp06YN+Xzd/ODm5mY2P5jP5xssxu3GjRtYuXIlXn75Zfz5z3+moo9CMSBU+FEoZkJGRgYeeuihex5fv359L4NYCjdhGAYymQxpaWlISUlBRkYGFixYAKFQCJFIhHnz5uld8IxU9PWF5AdLpVI0NzfDzs4OfD4f7u7uessPLi0tRVxcHJ599lls27aNij4KxcBQ4UehUChGhmEYNDc3Iz09HWKxGD/99BP8/PwgFAqRmJiIgICAUaVw6DJW0dcXkh8slUrR2NgIGxsbVgSONj/49u3biIuLw5o1a/Dpp5+O+TNTKJShocKPQukHjUaD+++/Hx4eHhCLxezjcrkcQUFBWLduHf7617+acIWU8URrayuOHDkCsViMU6dOYcaMGawIDA4OHrEgqqqqwq1bt/Qm+vpC8oOJCBxNfnB5eTni4uKwevVq7Ny5k4o+CsVIUOFHoQxAaWkpQkNDsX//fjz99NMAgHXr1iE3NxfXr1/njP0FZXzR3t6O48ePIyUlBSdOnICrqyu7HRwRETGkQCKiLywsDI6OjgZfr1arRVNTE2Qy2bDzg2tqavDoo4/i0UcfxZ49e6joo1CMCBV+FMog7Ny5E++99x4KCwtx7do1PPHEE7h+/TpCQkJMvTTO8dFHH0EsFqO4uBh2dnZYsmQJtm/fjvnz55t6aWZLV1cXTp48iZSUFBw7dgwODg5ISEiAUCjEokWL7oli+/bbb8Hn87Fo0SKjiL6+aLVatLS0sMMhDMPAxsYGVVVVSEhIgK2tLerq6hAbG4v7778f+/fv7zdOzlg0Nzdj06ZNOHLkCCwsLPDYY4/h888/HzS3+L//+79x8OBBSCQStLe3o6WlxSTHmkIZLVT4USiDwDAMHn74YVhaWiI/Px+bNm3Cu+++a+plcZLY2Fg8+eSTiIyMhFqtxh//+EcUFBTgxo0bBpsGnUgoFAqcOXMGKSkpOHz4MGxsbLB69WokJiZi6dKl+Pzzz/Hxxx8jLS0NS5cuNfVywTAMWltbce7cObzxxhvo6upCdHQ0iouLcd999+HgwYMmFX0AEBcXh7q6Ouzbtw8qlQobNmxAZGQkDh48OODP7NixAwqFAgDw9ttvU+FHMTuo8KNQhqC4uBgBAQFYuHAhJBIJrKysTL0ks6ChoQHu7u64cOECHnjgAVMvZ1yhVCpx/vx5JCcnIz09Hd3d3eju7sY777yD1157jXNtCFqtFkePHsXLL78MpVIJAFi5ciUee+wxxMfHD1phMxRFRUVYsGABrl+/joiICADAyZMnsXLlSlRXV2P69OmD/jyZsqfCj2Ju0MYKCmUIvvnmG0yePBl37txBdXW1qZdjNsjlcgCAs7OziVcy/rC2tsaKFSuwf/9+fPjhh9BqtYiPj8f+/fsxe/Zs/O53v8OJEyfYypSpkcvl2L59Ox544AE0NTXh8uXLCAgIwAcffMD2MJ44ccKoa7py5QocHR1Z0QcAy5cvh4WFBa5evWrUtVAoxoQKPwplEC5fvox//OMfOHr0KKKiovD888+DFsmHRqvVYvPmzVi6dCmCgoJMvZxxyzfffIM333wTJ0+eRHp6OqqqqpCWlgZnZ2e89tpr8PX1xXPPPYfDhw+jq6vLJGuUy+UQCoWYPn06Dh06BBsbGwQHB+P9999HQUEBcnJyEBUVhYaGBqOuq76+Hu7u7r0es7KygrOzM+rr6426FgrFmFDhR6EMQFdXF5599lm89NJLeOihh/D111/j2rVr2Lt3r6mXxnleeeUVFBQU4IcffjD1UsYtBw4cwKuvvoojR47g/vvvBwBYWlrigQcewOeff47y8nLWGuadd96Bj48PnnnmGSQnJ6Ojo8Moa2xvb0diYiKcnZ2RkpICGxube57j7++Pd955B+vWrdPLe27ZsgU8Hm/Q/4qLi/XyXhSKOUJ7/CiUAXj11Vdx/Phx5ObmYvLkyQCAffv24c0330R+fj58fHxMu0COsnHjRqSnp+PixYvw9fU19XLGLa+//joSEhIQExMz5HO1Wi2ys7ORnJwMsViMqqoqLF++HEKhECtXrhy1AfNgdHZ24le/+hWsrKxw7Ngx9m/I0DQ0NKCpqWnQ58yePRv//Oc/8cYbb6ClpYV9XK1Ww9bWFklJSUhMTBz0NWiPH8VcocKPQumHCxcuYNmyZcjIyMB9993X699WrFgBtVqNn376icZL6cAwDDZt2oTU1FRkZGRg7ty5pl4SpR8YhkFBQQGSkpKQmpqK0tJSPPzwwxAKhVi1ahWcnJzG/L3u7u7G448/DrVajRMnTphkeGMoyHBHZmYmwsPDAQCnT59GbGwsHe6gjGuo8KNQKHrh5ZdfxsGDB5Gent7Lu2/atGmws7Mz4cooA8EwDIqLi5GcnIzU1FQUFBTggQcegEgkwqpVq+Dm5jZiEahQKPDkk0+ivb0dJ0+eNEhyiL6Ii4uDVCrF3r17WTuXiIgI1s6lpqYGy5Ytw3fffYeoqCgAd3sD6+vrkZmZiRdeeAEXL16Evb09Zs6cSQeZKGYBFX4UCkUvDCQQ/ud//gfPPvuscRdDGTEMw+D27dtISUmBWCyGRCLBkiVLIBQKkZCQAE9PzyFFYE9PD9auXQupVIozZ87AycnJSKsfHc3Nzdi4cWMvA+edO3eyFcry8nL4+vri/Pnz7Jb6e++9h/fff/+e16Lfc4q5QIUfhUKhUHrBMAwqKytZEXj16lVERUWxqSHe3t73iECVSoV169ahoqICZ8+ehYuLi4lWT6FQBoMKPwqFQqEMCMMwqK2thVgshlgsxqVLlxAWFgahUAihUAhfX19oNBo8//zzKCoqwvnz5+Hm5mbqZVMolAGgwo9CoVAow4JhGEilUqSlpUEsFiMjIwMBAQHg8Xjo6urCxYsX4eHhYeplUiiUQaDCj0KhUCgjhmEYNDc34+DBg/j4449x4cIFzJkzx9TLolAoQ0CFH4VCmTDs2bMHe/bsQXl5OQAgMDAQW7duRVxcnGkXRqFQKEaCCj8KhTJhOHLkCCwtLTF37lwwDINvv/0Wn376KbKzsxEYGGjq5VEoFIrBocKPQqFMaJydnfHpp5/i+eefN/VSKBQKxeBYmXoBFAqFYgo0Gg2SkpLQ2dmJxYsXm3o5FAqFYhSo8KNQKBOK/Px8LF68GAqFAlOnTkVqaioWLFhg6mVRKBSKUaBbvRQKZUKhVCpRWVkJuVyO5ORkfPXVV7hw4QIVfxQKZUJAhR+FQpnQLF++HH5+fti3b5+pl0KhUCgGx8LUC6BQKBRTotVq0dPTY+plUCgUilGgwo9CoUwY3n77bVy8eBHl5eXIz8/H22+/jYyMDDz99NOmXhplCJqbm/H000/DwcEBjo6OeP7559HR0THo8zdt2oT58+fDzs4OM2fOxO9//3vI5XIjrppC4R50uINCoUwYZDIZ1q1bh7q6OkybNg3BwcE4deoUHnnkEVMvjTIETz/9NOrq6nDmzBmoVCps2LABv/3tb3Hw4MF+n19bW4va2lp89tlnWLBgASoqKvDiiy+itrYWycnJRl49hcIdaI8fhUKhUDhNUVERFixYgOvXryMiIgIAcPLkSaxcuRLV1dWYPn36sF4nKSkJa9euRWdnJ6ysaN2DMjGhW70UCoVC4TRXrlyBo6MjK/qAu0M5FhYWuHr16rBfRy6Xw8HBgYo+yoSGCj8KhUKhcJr6+nq4u7v3eszKygrOzs6or68f1ms0Njbigw8+wG9/+1tDLJFCMRuo8KNQKBQO8/HHH4PH42Hz5s2mXore2bJlC3g83qD/FRcXj/l92traEB8fjwULFuC9994b+8IpFDOG1rspFAqFo1y/fh379u1DcHCwqZdiEN544w08++yzgz5n9uzZ8PDwgEwm6/W4Wq1Gc3MzPDw8Bv359vZ2xMbGwt7eHqmpqZg0adJYl02hmDVU+FEoFAoH6ejowNNPP439+/fjww8/NPVyDIKbmxvc3NyGfN7ixYvR2tqKrKwshIeHAwDOnTsHrVaL6OjoAX+ura0NK1asgI2NDQ4fPgxbW1u9rZ1CMVfoVi+FQqFwkFdeeQXx8fFYvny5qZdicgICAhAbG4sXXngB165dwy+//IKNGzfiySefZCd6a2pq4O/vj2vXrgG4K/oeffRRdHZ24uuvv0ZbWxvq6+tRX18PjUZjyo9DoZgUWvGjUCgUjvHDDz9AIpHg+vXrpl4KZ/jXv/6FjRs3YtmyZbCwsMBjjz2GnTt3sv+uUqlQUlKCrq4uAIBEImEnfufMmdPrte7cuQMfHx+jrZ1C4RLUx49CoVA4RFVVFSIiInDmzBm2ty8mJgahoaHYsWOHaRdHoVDMHir8KBQKhUOkpaUhMTERlpaW7GMajQY8Hg8WFhbo6enp9W8UCoUyEqjwo1AoFA7R3t6OioqKXo9t2LAB/v7++MMf/oCgoCATrYxCoYwHaI8fhUKhcAh7e/t7xN2UKVPg4uJCRR+FQhkzdKqXQqFQKBQKZYJAt3opFAqFQqFQJgi04kehUCgUCoUyQaDCj0KhUCgUCmWCQIUfhUKhUCgUygSBCj8KhUKhUCiUCQIVfhQKhUKhUCgTBCr8KBQKhUKhUCYIVPhRKBQKhUKhTBCo8KNQKBQKhUKZIFDhR6FQKBQKhTJBoMKPQqFQKBQKZYJAhR+FQqFQKBTKBIEKPwqFQqFQKJQJAhV+FAqFQqFQKBMEKvwoFAqFQqFQJghU+FEoFAqFQqFMEKjwo1AoFAqFQpkgUOFHoVAoFAqFMkGgwo9CoVAoFAplgkCFH4VCoVAoFMoEgQo/CoVCoVAolAkCFX4UCoVCoVAoEwQq/CgUCoVCoVAmCFT4USgUCoVCoUwQqPCjUCgUCoVCmSD8fxbNAX3kquSoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from mpl_toolkits.mplot3d import Axes3D\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np # 确保导入 numpy\n", + "\n", + "# optical_3d_keypoints 是一个列表,每个元素为[[x, y, z], ...]\n", + "# 先将其转换为numpy数组,方便处理\n", + "optical_3d_keypoints_np = np.array(optical_3d_keypoints).squeeze() # shape: (N, 3)\n", + "\n", + "fig = plt.figure(figsize=(10, 8))\n", + "ax = fig.add_subplot(111, projection='3d')\n", + "\n", + "# 绘制3D曲线\n", + "ax.plot(optical_3d_keypoints_np[:, 0], optical_3d_keypoints_np[:, 1], optical_3d_keypoints_np[:, 2], \n", + " marker='o', color='b', label='3D Trajectory')\n", + "\n", + "# 绘制相机位置(Rt 取逆,取平移向量)\n", + "for cam in camrea_parames:\n", + " Rt_inv = np.linalg.inv(np.array(cam.params.Rt))\n", + " cam_pos = Rt_inv[:3, 3]\n", + " ax.scatter(cam_pos[0], cam_pos[1], cam_pos[2], marker='^', s=100, label=f'Camera {cam.id}')\n", + "\n", + "ax.set_xlabel('X')\n", + "ax.set_ylabel('Y')\n", + "ax.set_zlabel('Z')\n", + "ax.set_title('3D Trajectory and Camera Positions')\n", + "ax.legend()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cvth3pe", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/play.ipynb b/play.ipynb index 6509df2..6aa91fc 100644 --- a/play.ipynb +++ b/play.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -92,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -168,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -190,30 +190,58 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { + "text/html": [ + "
[{frame_index: 1650, boxes: [[1.19e+03, ..., 884]], kps: [[...]], ...},\n",
+       " {frame_index: 1651, boxes: [[1.19e+03, ..., 883]], kps: [[...]], ...},\n",
+       " {frame_index: 1652, boxes: [[1.19e+03, ..., 881]], kps: [[...]], ...},\n",
+       " {frame_index: 1653, boxes: [[1.19e+03, ..., 882]], kps: [[...]], ...},\n",
+       " {frame_index: 1654, boxes: [[1.19e+03, ..., 884]], kps: [[...]], ...},\n",
+       " {frame_index: 1655, boxes: [[1.19e+03, ..., 883]], kps: [[...]], ...},\n",
+       " {frame_index: 1656, boxes: [[1.19e+03, ..., 883]], kps: [[...]], ...},\n",
+       " {frame_index: 1657, boxes: [[1.19e+03, ..., 885]], kps: [[...]], ...},\n",
+       " {frame_index: 1658, boxes: [[1.19e+03, ..., 885]], kps: [[...]], ...},\n",
+       " {frame_index: 1659, boxes: [[1.19e+03, ..., 885]], kps: [[...]], ...},\n",
+       " ...,\n",
+       " {frame_index: 1704, boxes: [[1.4e+03, ..., 862]], kps: [[...]], ...},\n",
+       " {frame_index: 1705, boxes: [[1.41e+03, ..., 865]], kps: [[...]], ...},\n",
+       " {frame_index: 1706, boxes: [[1.43e+03, ..., 864]], kps: [[...]], ...},\n",
+       " {frame_index: 1707, boxes: [[1.44e+03, ..., 845]], kps: [[...]], ...},\n",
+       " {frame_index: 1708, boxes: [[1.45e+03, ..., 848]], kps: [[...]], ...},\n",
+       " {frame_index: 1709, boxes: [[1.44e+03, ..., 860]], kps: [[...]], ...},\n",
+       " {frame_index: 1710, boxes: [[1.46e+03, ..., 858]], kps: [[...]], ...},\n",
+       " {frame_index: 1711, boxes: [[1.49e+03, ..., 847]], kps: [[...]], ...},\n",
+       " {frame_index: 1712, boxes: [[1.52e+03, ..., 829]], kps: [[...]], ...}]\n",
+       "----------------------------------------------------------------------------------------------------------------------------------------------\n",
+       "backend: cpu\n",
+       "nbytes: 273.7 kB\n",
+       "type: 63 * {\n",
+       "    frame_index: int64,\n",
+       "    boxes: var * var * float64,\n",
+       "    kps: var * var * var * float64,\n",
+       "    kps_scores: var * var * float64\n",
+       "}
" + ], "text/plain": [ - "{5603: ,\n", - " 5605: ,\n", - " 5608: ,\n", - " 5609: }" + "" ] }, - "execution_count": 6, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "KEYPOINT_DATASET" + "KEYPOINT_DATASET[5603]" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -296,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -374,7 +402,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -452,9 +480,31 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "E0704 11:08:11.573409 46301 pjrt_stream_executor_client.cc:3077] Execution of replica 0 failed: INTERNAL: jaxlib/gpu/solver_handle_pool.cc:37: operation gpusolverDnCreate(&handle) failed: cuSolver internal error\n" + ] + }, + { + "ename": "XlaRuntimeError", + "evalue": "INTERNAL: jaxlib/gpu/solver_handle_pool.cc:37: operation gpusolverDnCreate(&handle) failed: cuSolver internal error", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mXlaRuntimeError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[12]\u001b[39m\u001b[32m, line 22\u001b[39m\n\u001b[32m 15\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m element_camera \u001b[38;5;129;01min\u001b[39;00m cameras:\n\u001b[32m 16\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m jnp.printoptions(precision=\u001b[32m4\u001b[39m, suppress=\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[32m 17\u001b[39m \u001b[38;5;66;03m# display(element_camera)\u001b[39;00m\n\u001b[32m 18\u001b[39m \u001b[38;5;66;03m# display(element_camera.params.Rt.reshape(-1))\u001b[39;00m\n\u001b[32m 19\u001b[39m \u001b[38;5;66;03m# display(element_camera.params.K.reshape(-1))\u001b[39;00m\n\u001b[32m 20\u001b[39m \n\u001b[32m 21\u001b[39m \u001b[38;5;66;03m# compute camera to object point distance\u001b[39;00m\n\u001b[32m---> \u001b[39m\u001b[32m22\u001b[39m transistion = \u001b[43melement_camera\u001b[49m\u001b[43m.\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m.\u001b[49m\u001b[43mpose_matrix\u001b[49m[:\u001b[32m3\u001b[39m, -\u001b[32m1\u001b[39m]\n\u001b[32m 23\u001b[39m \u001b[38;5;66;03m# display(transistion)\u001b[39;00m\n\u001b[32m 24\u001b[39m \u001b[38;5;66;03m# display(jnp.linalg.norm(transistion).item())\u001b[39;00m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/CVTH3PE/app/camera/__init__.py:305\u001b[39m, in \u001b[36mCameraParams.pose_matrix\u001b[39m\u001b[34m(self)\u001b[39m\n\u001b[32m 303\u001b[39m t = \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33m_pose\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[32m 304\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m t \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m305\u001b[39m t = \u001b[43mjnp\u001b[49m\u001b[43m.\u001b[49m\u001b[43mlinalg\u001b[49m\u001b[43m.\u001b[49m\u001b[43minv\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mRt\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 306\u001b[39m \u001b[38;5;28mobject\u001b[39m.\u001b[34m__setattr__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33m_pose\u001b[39m\u001b[33m\"\u001b[39m, t)\n\u001b[32m 307\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m t\n", + " \u001b[31m[... skipping hidden 5 frame]\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Code/CVTH3PE/.venv/lib/python3.12/site-packages/jax/_src/interpreters/pxla.py:1297\u001b[39m, in \u001b[36mExecuteReplicated.__call__\u001b[39m\u001b[34m(self, *args)\u001b[39m\n\u001b[32m 1295\u001b[39m \u001b[38;5;28mself\u001b[39m._handle_token_bufs(result_token_bufs, sharded_runtime_token)\n\u001b[32m 1296\u001b[39m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m1297\u001b[39m results = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mxla_executable\u001b[49m\u001b[43m.\u001b[49m\u001b[43mexecute_sharded\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_bufs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1299\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m dispatch.needs_check_special():\n\u001b[32m 1300\u001b[39m out_arrays = results.disassemble_into_single_device_arrays()\n", + "\u001b[31mXlaRuntimeError\u001b[39m: INTERNAL: jaxlib/gpu/solver_handle_pool.cc:37: operation gpusolverDnCreate(&handle) failed: cuSolver internal error" + ] + } + ], "source": [ "camera_list = [\n", " 5601,\n", @@ -484,7 +534,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -710,7 +760,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -729,7 +779,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -762,7 +812,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -786,7 +836,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1104,7 +1154,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1162,7 +1212,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1185,7 +1235,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1220,7 +1270,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1242,7 +1292,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1297,7 +1347,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1316,7 +1366,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -2973,7 +3023,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -3004,7 +3054,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -3051,7 +3101,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -3071,7 +3121,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3085,7 +3135,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3107,7 +3157,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3140,7 +3190,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3158,7 +3208,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3172,7 +3222,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3196,7 +3246,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "cvth3pe", "language": "python", "name": "python3" }, diff --git a/single_people_detect_track.py b/single_people_detect_track.py index 9468c39..2daaf69 100644 --- a/single_people_detect_track.py +++ b/single_people_detect_track.py @@ -6,6 +6,7 @@ import awkward as ak from typing import ( Any, Generator, + Iterable, Optional, Sequence, TypeAlias, @@ -121,7 +122,7 @@ def get_camera_detect( for element_port in ak.to_numpy(camera_dataset["port"]): if element_port in camera_port: keypoint_data[int(element_port)] = ak.from_parquet( - detect_path / f"{element_port}.parquet" + detect_path / f"{element_port}_detected.parquet" ) return keypoint_data @@ -258,7 +259,13 @@ def sync_batch_gen( for i, gen in enumerate(gens): try: if finished[i] or paused[i]: - continue + if all(finished): + if len(current_batch) > 0: + # All generators exhausted, flush remaining batch and exit + yield current_batch + return + else: + continue val = next(gen) if last_batch_timestamp is None: last_batch_timestamp = val.timestamp @@ -280,13 +287,7 @@ def sync_batch_gen( else: current_batch.append(val) except StopIteration: - finished[i] = True - paused[i] = True - if all(finished): - if len(current_batch) > 0: - # All generators exhausted, flush remaining batch and exit - yield current_batch - break + return def get_batch_detect( @@ -475,38 +476,36 @@ def triangulate_one_point_from_multiple_views_linear( proj_matrices: Float[Array, "N 3 4"], points: Num[Array, "N 2"], confidences: Optional[Float[Array, "N"]] = None, + conf_threshold: float = 0.2, ) -> Float[Array, "3"]: """ Args: proj_matrices: 形状为(N, 3, 4)的投影矩阵序列 points: 形状为(N, 2)的点坐标序列 confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0] - + conf_threshold: 置信度阈值,低于该值的观测不参与DLT Returns: point_3d: 形状为(3,)的三角测量得到的3D点 """ assert len(proj_matrices) == len(points) - N = len(proj_matrices) - confi: Float[Array, "N"] - if confidences is None: - confi = jnp.ones(N, dtype=np.float32) + weights = jnp.ones(N, dtype=jnp.float32) else: - # Use square root of confidences for weighting - more balanced approach - confi = jnp.sqrt(jnp.clip(confidences, 0, 1)) + # 置信度低于阈值的点权重为0,其余为sqrt(conf) + valid_mask = confidences >= conf_threshold + weights = jnp.where(valid_mask, jnp.sqrt(jnp.clip(confidences, 0, 1)), 0.0) + # 归一化权重,避免某一帧权重过大 + sum_weights = jnp.sum(weights) + weights = jnp.where(sum_weights > 0, weights / sum_weights, weights) - # 将置信度小于0.1点的置信度均设置为0 - # valid_mask = confidences >= 0.1 - # confi = jnp.sqrt(jnp.clip(confidences * valid_mask, 0.0, 1.0)) - - A = jnp.zeros((N * 2, 4), dtype=np.float32) + A = jnp.zeros((N * 2, 4), dtype=jnp.float32) for i in range(N): x, y = points[i] A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0]) A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1]) - A = A.at[2 * i].mul(confi[i]) - A = A.at[2 * i + 1].mul(confi[i]) + A = A.at[2 * i].mul(weights[i]) + A = A.at[2 * i + 1].mul(weights[i]) # https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.svd.html _, _, vh = jnp.linalg.svd(A, full_matrices=False) @@ -896,23 +895,68 @@ def update_tracking( tracking.state = new_state +# 对每一个3d目标进行滑动窗口平滑处理 +def smooth_3d_keypoints( + all_3d_kps: dict[str, list], window_size: int = 5 +) -> dict[str, list]: + # window_size = 5 + kernel = np.ones(window_size) / window_size + smoothed_points = dict() + for item_object_index in all_3d_kps.keys(): + item_object = np.array(all_3d_kps[item_object_index]) + if item_object.shape[0] < window_size: + # 如果数据点少于窗口大小,则直接返回原始数据 + smoothed_points[item_object_index] = item_object.tolist() + continue + + # 对每个关键点的每个坐标轴分别做滑动平均 + item_smoothed = np.zeros_like(item_object) + # 遍历133个关节 + for kp_idx in range(item_object.shape[1]): + # 遍历每个关节的空间三维坐标点 + for axis in range(3): + # 对第i帧的滑动平滑方式 smoothed[i] = (point[i-2] + point[i-1] + point[i] + point[i+1] + point[i+2]) / 5 + item_smoothed[:, kp_idx, axis] = np.convolve( + item_object[:, kp_idx, axis], kernel, mode="same" + ) + smoothed_points[item_object_index] = item_smoothed.tolist() + return smoothed_points + + +# 通过平均置信度筛选2d检测数据 +def filter_keypoints_by_scores(detections: Iterable[Detection], threshold: float = 0.5): + """ + Filter detections based on the average confidence score of their keypoints. + Only keep detections with an average score above the threshold. + """ + + def filter_detection(detection: Detection) -> bool: + avg_score = np.mean(detection.confidences) + return float(avg_score) >= threshold + + return filter(filter_detection, detections) + + +def filter_camera_port(detections: list[Detection]): + camera_port = set() + for detection in detections: + camera_port.add(detection.camera.id) + return list(camera_port) + + # 相机内外参路径 -CAMERA_PATH = Path( - "/home/admin/Documents/ActualTest_QuanCheng/camera_ex_params_1_2025_4_20/camera_params" -) +CAMERA_PATH = Path("/home/admin/Documents/ActualTest_WeiHua/camera_params") # 所有机位的相机内外参 AK_CAMERA_DATASET: ak.Array = get_camera_params(CAMERA_PATH) # 2d检测数据路径 -DATASET_PATH = Path( - "/home/admin/Documents/ActualTest_QuanCheng/camera_ex_params_1_2025_4_20/detect_result/segement_1" -) +DATASET_PATH = Path("/home/admin/Documents/ActualTest_WeiHua/Test_Video") # 指定机位的2d检测数据 -camera_port = [5603, 5605, 5608, 5609] +camera_port = [5602, 5603, 5604, 5605] KEYPOINT_DATASET = get_camera_detect(DATASET_PATH, camera_port, AK_CAMERA_DATASET) # 获取一段完整的跳跃片段 -FRAME_INDEX = [i for i in range(0, 600)] +FRAME_INDEX = [i for i in range(552, 1488)] # 552, 1488 KEYPOINT_DATASET = get_segment(camera_port, FRAME_INDEX, KEYPOINT_DATASET) @@ -935,15 +979,14 @@ ALPHA_3D = 0.15 # 帧数计数器 count = 0 # 追踪相似度矩阵匹配阈值 -affinities_threshold = 70 +affinities_threshold = -20 # 跟踪目标集合 trackings: list[Tracking] = [] # 3d数据,键为追踪目标id,值为该目标的所有3d数据 all_3d_kps: dict[str, list] = {} # 遍历2d数据,测试追踪状态 -while count < (max(FRAME_INDEX) - min(FRAME_INDEX)): - count += 1 +while True: # 获得当前追踪目标 trackings: list[Tracking] = sorted( global_tracking_state.trackings.values(), key=lambda x: x.id @@ -951,14 +994,21 @@ while count < (max(FRAME_INDEX) - min(FRAME_INDEX)): try: detections = next(sync_gen) + # 通过平均置信度筛选2d检测数据 + # detections = list(filter_keypoints_by_scores(detections, threshold=0.5)) except StopIteration: break + if len(detections) == 0: + print("no detections in this frame, continue") continue - # print("Detection len:", len(detections), "count:", count) + # 获得最新一帧的数据2d数据 # 判断追踪状态是否建立成功,若不成功则跳过这一帧数据,直到追踪建立 if not trackings: + + """离机时使用,用于初始化第一帧""" + """ # 使用盒子筛选后的2d检测数据 filter_detections = get_filter_detections(detections) # 当3个机位均有目标时才建立追踪状态 @@ -966,25 +1016,35 @@ while count < (max(FRAME_INDEX) - min(FRAME_INDEX)): # continue if len(filter_detections) < len(camera_port): print( - "init traincking error, filter detections len:", + "init traincking error, filter filter_detections len:", len(filter_detections), - "time:", - detections[0].timestamp, ) continue - # 添加第一帧数据构建追踪目标 - global_tracking_state.add_tracking(filter_detections) - # 获得当前追踪目标 - trackings: list[Tracking] = sorted( - global_tracking_state.trackings.values(), key=lambda x: x.id - ) - # 保留第一帧的3d姿态数据 - for element_tracking in trackings: - if str(element_tracking.id) not in all_3d_kps.keys(): - all_3d_kps[str(element_tracking.id)] = [ - element_tracking.state.keypoints.tolist() - ] - print("initer tracking:", trackings) + """ + # 通过平均置信度筛选2d检测数据 + # detections = list(filter_keypoints_by_scores(detections, threshold=0.7)) + + # 当4个机位都识别到目标时才建立追踪状态 + camera_port = filter_camera_port(detections) + if len(detections) < len(camera_port): + print( + "init traincking error, filter_detections len:", + len(detections), + ) + else: + # 添加第一帧数据构建追踪目标 + global_tracking_state.add_tracking(detections) # 离机时:filter_detections + # 获得当前追踪目标 + trackings: list[Tracking] = sorted( + global_tracking_state.trackings.values(), key=lambda x: x.id + ) + # 保留第一帧的3d姿态数据 + for element_tracking in trackings: + if str(element_tracking.id) not in all_3d_kps.keys(): + all_3d_kps[str(element_tracking.id)] = [ + element_tracking.state.keypoints.tolist() + ] + print("initer tracking:", trackings) else: # 计算相似度矩阵匹配结果 affinities: dict[str, AffinityResult] = calculate_affinity_matrix( @@ -1045,8 +1105,7 @@ while count < (max(FRAME_INDEX) - min(FRAME_INDEX)): - element_tracking.state.last_active_timestamp ) # 当时间间隔超过1s,删除保留的追踪状态 - if time_gap.seconds > 3: - # trackings.remove(element_tracking) + if time_gap.seconds > 0.5: global_tracking_state._trackings.pop(element_tracking.id) print( "remove trackings:", @@ -1055,8 +1114,12 @@ while count < (max(FRAME_INDEX) - min(FRAME_INDEX)): detections[0].timestamp, ) +# 对每一个3d目标进行滑动窗口平滑处理 +smoothed_points = smooth_3d_keypoints(all_3d_kps, window_size=5) -with open("samples/QuanCheng_res.json", "wb") as f: - f.write(orjson.dumps(all_3d_kps)) -for element_3d_kps_id in all_3d_kps.keys(): +# 将结果保存到json文件中 +with open("samples/Test_WeiHua.json", "wb") as f: + f.write(orjson.dumps(smoothed_points)) +# 输出每个3d目标的维度 +for element_3d_kps_id in smoothed_points.keys(): print(f"{element_3d_kps_id} : {np.array(all_3d_kps[element_3d_kps_id]).shape}") diff --git a/smooth_3d_kps.ipynb b/smooth_3d_kps.ipynb new file mode 100644 index 0000000..4f12fe7 --- /dev/null +++ b/smooth_3d_kps.ipynb @@ -0,0 +1,122 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 16, + "id": "0d48b7eb", + "metadata": {}, + "outputs": [], + "source": [ + "import json\n", + "from pathlib import Path\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "dfd27584", + "metadata": {}, + "outputs": [], + "source": [ + "KPS_PATH = Path(\"samples/WeiHua_03.json\")\n", + "with open(KPS_PATH, \"r\") as file:\n", + " data = json.load(file)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "360f9c50", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'index:1, shape: (33, 133, 3)'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "'index:2, shape: (662, 133, 3)'" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for item_object_index in data.keys():\n", + " item_object = np.array(data[item_object_index])\n", + " display(f'index:{item_object_index}, shape: {item_object.shape}')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# 对data['2']的662帧3d关键点数据进行滑动窗口平滑处理\n", + "object_points = np.array(data['2']) # shape: (662, 133, 3)\n", + "window_size = 5\n", + "kernel = np.ones(window_size) / window_size\n", + "# 对每个关键点的每个坐标轴分别做滑动平均\n", + "smoothed_points = np.zeros_like(object_points)\n", + "# 遍历133个关节\n", + "for kp_idx in range(object_points.shape[1]):\n", + " # 遍历每个关节的空间三维坐标点\n", + " for axis in range(3):\n", + " # 对第i帧的滑动平滑方式 smoothed[i] = (point[i-2] + point[i-1] + point[i] + point[i+1] + point[i+2]) / 5\n", + " smoothed_points[:, kp_idx, axis] = np.convolve(object_points[:, kp_idx, axis], kernel, mode='same')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "24c6c0c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'smoothed_points shape: (662, 133, 3)'" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(f'smoothed_points shape: {smoothed_points.shape}')\n", + "with open(\"samples/smoothed_3d_kps.json\", \"w\") as file:\n", + " json.dump({'1':smoothed_points.tolist()}, file)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cvth3pe", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/test_filter_object_by_box.ipynb b/test_filter_object_by_box.ipynb index 5638c67..6d70b2c 100644 --- a/test_filter_object_by_box.ipynb +++ b/test_filter_object_by_box.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 311, + "execution_count": 3, "id": "3265b2cc", "metadata": {}, "outputs": [], @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 312, + "execution_count": 4, "id": "e6589e07", "metadata": {}, "outputs": [], @@ -44,12 +44,12 @@ }, { "cell_type": "code", - "execution_count": 313, + "execution_count": 5, "id": "b8898483", "metadata": {}, "outputs": [], "source": [ - "index = 5\n", + "index = 9\n", "DETECT_INDEX = {\n", " 1:\"5601\",\n", " 2:\"5602\",\n", @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 314, + "execution_count": 6, "id": "990361fb", "metadata": {}, "outputs": [], @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 315, + "execution_count": 7, "id": "0b07ef52", "metadata": {}, "outputs": [ @@ -128,17 +128,17 @@ }, { "cell_type": "code", - "execution_count": 316, + "execution_count": 8, "id": "c39a4e73", "metadata": {}, "outputs": [ { "data": { "text/html": [ - "
{name: 'AF_05',\n",
-       " port: 5605,\n",
-       " intrinsic: {camera_matrix: [[2.64e+03, ...], ...], ...},\n",
-       " extrinsic: {rvec: [1.25, 0.0803, -2.87], tvec: [-0.767, ...]},\n",
+       "
{name: 'AE_08',\n",
+       " port: 5609,\n",
+       " intrinsic: {camera_matrix: [[2.79e+03, ...], ...], ...},\n",
+       " extrinsic: {rvec: [-3, -0.0889, 0.853], tvec: [-0.172, ...]},\n",
        " resolution: {width: 2560, height: 1440}}\n",
        "--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
        "backend: cpu\n",
@@ -161,7 +161,7 @@
        "}
" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 317, + "execution_count": 9, "id": "fc7e4711", "metadata": {}, "outputs": [], @@ -198,19 +198,20 @@ }, { "cell_type": "code", - "execution_count": 318, + "execution_count": 10, "id": "ce35eae6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'rvec': array([ 1.253436 , 0.08028614, -2.86865678]),\n", - " 'tvec': array([-0.76656717, 0.42342791, 6.18892342]),\n", - " 'camera_matrix': array([[2.64468145e+03, 0.00000000e+00, 1.28534889e+03],\n", - " [0.00000000e+00, 2.64497010e+03, 6.27208086e+02],\n", + "{'rvec': array([-2.99837244, -0.0889235 , 0.85288411]),\n", + " 'tvec': array([-0.17150598, -0.01129812, 6.82362942]),\n", + " 'camera_matrix': array([[2.78543932e+03, 0.00000000e+00, 1.25498272e+03],\n", + " [0.00000000e+00, 2.78810438e+03, 7.38829853e+02],\n", " [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]),\n", - " 'dist': array([-0.5779251 , 0.43463787, 0.01810833, 0.00847768, -1.06242793]),\n", + " 'dist': array([-5.63745882e-01, 1.98909887e+00, -6.79488058e-04, -2.57257779e-03,\n", + " -3.34679032e+00]),\n", " 'width': np.int64(2560),\n", " 'height': np.int64(1440)}" ] @@ -233,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 319, + "execution_count": 11, "id": "0723986a", "metadata": {}, "outputs": [ @@ -241,12 +242,12 @@ "data": { "text/html": [ "
{frame_index: 1650,\n",
-       " boxes: [[918, 414, 1.24e+03, 965], [2.37e+03, 559, 2.51e+03, 979]],\n",
-       " kps: [[[930, 514], [930, 500], ..., [1.03e+03, ...], [1.03e+03, 604]], ...],\n",
-       " kps_scores: [[0.589, 0.625, 0.478, 0.636, ..., 0.242, 0.242, 0.221], ...]}\n",
+       " boxes: [[1.33e+03, 389, 1.58e+03, 830], [...], ..., [2.21e+03, 543, ..., 751]],\n",
+       " kps: [[[1.37e+03, 478], [1.38e+03, 469], ..., [...], [1.44e+03, 539]], ...],\n",
+       " kps_scores: [[0.813, 0.806, 0.868, 0.732, ..., 0.251, 0.242, 0.207], ...]}\n",
        "-----------------------------------------------------------------------------------------------------------------------------------------\n",
        "backend: cpu\n",
-       "nbytes: 16.1 MB\n",
+       "nbytes: 47.6 MB\n",
        "type: {\n",
        "    frame_index: int64,\n",
        "    boxes: var * var * float64,\n",
@@ -270,14 +271,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 320,
+   "execution_count": 12,
    "id": "809ede80",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "(2, 133, 2)"
+       "(6, 133, 2)"
       ]
      },
      "metadata": {},
@@ -297,7 +298,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 321,
+   "execution_count": 13,
    "id": "7b358faf",
    "metadata": {},
    "outputs": [],
@@ -324,14 +325,14 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 322,
+   "execution_count": 14,
    "id": "1cc53101",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       ""
+       ""
       ]
      },
      "metadata": {},
@@ -339,7 +340,7 @@
     },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAFICAYAAABDdrQZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPVhJREFUeJzt3Xt8VPWdP/7XmWuuM5MEMpNACOFiuIoIGKOAbckSLPVS7VazkVJkZVW0Wl2W0i6o7VoQfl/btcVbv23xsVVp/a5opWIbCRDRGCAEkIARMRBuk0CSmcl1Mpf374/A0ZEASZhkJofX8/F4PyDn8znnfM4cZnjlzLkoIiIgIiIi0gBdpAdAREREFC4MNkRERKQZDDZERESkGQw2REREpBkMNkRERKQZDDZERESkGQw2REREpBkMNkRERKQZDDZERESkGQw2REREpBlRHWzWrl2L4cOHIyYmBjk5OdixY0ekh0RERERRLGqDzZ///Gc89thjeOKJJ7B7925MmjQJ+fn5qKuri/TQiIiIKEop0foQzJycHEybNg2//e1vAQDBYBAZGRl4+OGH8ZOf/CTCoyMiIqJoZIj0ALrS0dGB8vJyLFu2TJ2m0+mQl5eH0tLSLufxer3wer3qz8FgEA0NDUhJSYGiKH0+ZiIiIrp8IoKmpiakp6dDp+v5F0tRGWzOnDmDQCAAu90eMt1ut+PTTz/tcp6VK1fiqaee6o/hERERUR87duwYhg4d2uP5ovYcm55atmwZ3G63WjU1NZEeEhEREfVSYmJir+aLyiM2gwYNgl6vR21tbcj02tpaOByOLucxm80wm839MTwiIiLqY709jSQqj9iYTCZMmTIFmzdvVqcFg0Fs3rwZubm5ERwZERERRbOoPGIDAI899hjmz5+PqVOn4rrrrsOvf/1rtLS0YMGCBZEeGhEREUWpqA02d911F06fPo0VK1bA6XTimmuuwXvvvXfeCcVERERE50TtfWwul8fjgdVqjfQwiIiIqBfcbjcsFkuP54vKc2yIiIiIeoPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINCPswWblypWYNm0aEhMTkZqaittvvx1VVVUhfdrb27F48WKkpKQgISEBd955J2pra0P61NTUYO7cuYiLi0NqaiqWLFkCv98f7uESERGRhoQ92Gzbtg2LFy/Gxx9/jKKiIvh8PsyePRstLS1qnx//+Md455138MYbb2Dbtm04efIk7rjjDrU9EAhg7ty56OjowEcffYRXXnkF69atw4oVK8I9XCIiItIS6WN1dXUCQLZt2yYiIi6XS4xGo7zxxhtqn4MHDwoAKS0tFRGRd999V3Q6nTidTrXPCy+8IBaLRbxeb7fW63a7BQCLxWKxWKwBWG63u1e5o8/PsXG73QCA5ORkAEB5eTl8Ph/y8vLUPmPGjMGwYcNQWloKACgtLcXEiRNht9vVPvn5+fB4PKisrOxyPV6vFx6PJ6SIiIjoytKnwSYYDOLRRx/FjTfeiAkTJgAAnE4nTCYTbDZbSF+73Q6n06n2+WqoOdd+rq0rK1euhNVqVSsjIyPMW0NERETRrk+DzeLFi7F//36sX7++L1cDAFi2bBncbrdax44d6/N1EhERUXQx9NWCH3roIWzcuBElJSUYOnSoOt3hcKCjowMulyvkqE1tbS0cDofaZ8eOHSHLO3fV1Lk+X2c2m2E2m8O8FURERDSQhP2IjYjgoYcewoYNG1BcXIysrKyQ9ilTpsBoNGLz5s3qtKqqKtTU1CA3NxcAkJubi08++QR1dXVqn6KiIlgsFowbNy7cQyYiIiKt6NUpxxfxwAMPiNVqla1bt8qpU6fUam1tVfvcf//9MmzYMCkuLpZdu3ZJbm6u5Obmqu1+v18mTJggs2fPlj179sh7770ngwcPlmXLlnV7HLwqisVisVisgVu9vSoq7MHmQgP84x//qPZpa2uTBx98UJKSkiQuLk6++93vyqlTp0KWc+TIEbn55pslNjZWBg0aJI8//rj4fL5uj4PBhsVisVisgVu9DTbK2TCiOR6PB1arNdLDICIiol5wu92wWCw9no/PiiIiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs3o82CzatUqKIqCRx99VJ3W3t6OxYsXIyUlBQkJCbjzzjtRW1sbMl9NTQ3mzp2LuLg4pKamYsmSJfD7/X09XCIiIhrA+jTY7Ny5Ey+99BKuvvrqkOk//vGP8c477+CNN97Atm3bcPLkSdxxxx1qeyAQwNy5c9HR0YGPPvoIr7zyCtatW4cVK1b05XCJiIhooJM+0tTUJKNHj5aioiK56aab5JFHHhEREZfLJUajUd544w2178GDBwWAlJaWiojIu+++KzqdTpxOp9rnhRdeEIvFIl6vt1vrd7vdAoDFYrFYLNYALLfb3av80WdHbBYvXoy5c+ciLy8vZHp5eTl8Pl/I9DFjxmDYsGEoLS0FAJSWlmLixImw2+1qn/z8fHg8HlRWVvbVkImIiGiAM/TFQtevX4/du3dj586d57U5nU6YTCbYbLaQ6Xa7HU6nU+3z1VBzrv1cW1e8Xi+8Xq/6s8fjuZxNICIiogEo7Edsjh07hkceeQSvvvoqYmJiwr34C1q5ciWsVqtaGRkZ/bZuIiIiig5hDzbl5eWoq6vDtddeC4PBAIPBgG3btuG5556DwWCA3W5HR0cHXC5XyHy1tbVwOBwAAIfDcd5VUud+Ptfn65YtWwa3263WsWPHwr1pREREFOXCHmxmzZqFTz75BHv27FFr6tSpKCwsVP9uNBqxefNmdZ6qqirU1NQgNzcXAJCbm4tPPvkEdXV1ap+ioiJYLBaMGzeuy/WazWZYLJaQIiIioitL2M+xSUxMxIQJE0KmxcfHIyUlRZ2+cOFCPPbYY0hOTobFYsHDDz+M3NxcXH/99QCA2bNnY9y4cZg3bx5Wr14Np9OJ//zP/8TixYthNpvDPWSiAW2UNQMBkxfVp+su3ZmISOMicufhX/3qV/jOd76DO++8EzNnzoTD4cCbb76ptuv1emzcuBF6vR65ubm455578IMf/AA///nPIzFcoqh2i/t76Djdu99RdHogMUWPiVPikTGMvzQQ0cCniIhEehB9wePxwGq1RnoYRH3KCiv+Df+GNVgDwaXfyooCxCTqMDjDhIzxMbAMNqCjNQj9acEtecn46S+OoKk+0A8jJyK6OLfb3avTSvrkcm8i6h+5yMUBHLhoqDHH6ZCcbsCQMTEYlGFCMCBwfuHFpx+1wF3nh79DYNADN19rw3cfTcWbv6pDcwPDDRENTAw2RAOUAgXTMA0v4sWQ6UazAqvdgGHjO4OMTgfUn/ThWGU79m1uQkfb+SHIHwDeL3Zh8FUm3Ph9G4rXNcDXrsmDuUSkcQw2RANUMpLRgQ40GuthSzFgSHYMHCNNMMXqUH/ch1OHvDi4vQXtzUF05wvnD/d6cP9IB7bvasI/LUxB0e/rGW6IaMBhsCEagGJjdJhrnQ5/TiVmZySjqcGP4we9KNvgRos7AAn2fJmupgCaWgLwnwzA+YUXObdb8dEbLgT5rRQRDSARuSqKiC7P2Mx4PJozG0XVO/H3l87gg9ddqN7ThubG3oWacz7c14RZ06yoeK8J3pYgcr9ng8JPCSIaQPiRRTTA6A3A6c8sqG9yY8LtCrImx0FRwrPsyi9aMdxhhtmoYPd7HpjjdBh7Y3x4Fk5E1A8YbIgGkCTFhjuGzMY0yUFpYAtOb23HqKmxmHarFXrj5acbn19Q8VkLJl0Vj4AP2PanRmSMj8HY6Qw3RDQwMNgQDSAT5WoYjw7CFEzBy3vKMHl4HDb/vgE6HZC3MBmxiZf/li6p8GDGNRYoChDwCUpebcSoqXFIH80b+BFR9GOwIQozgx7I7PpZrb2mABicBNyUMAlJk/ajPnM7UlI9GGQLIGOwCR+/5cYXu9sw58FBGJRhvKx1nXH54fcL0lI6l9PWFMT7v6/HtFstSGO4IaIox2BDFGaBIHDaFZ5l6RQgfRCQPhh49Umg8D8349tDs1FS/zkGJwHv73DhO9MtgACHdrRi++uNuKkwCSOnxF7WeTdbd3tw05Qv79zd1hTEB6+7kHunFZZB+svfMCKiPsJgQxRmIkBre/iWZzZ13kDvb0WJ2Ls7Ca2nBqM+9gj2HALqGrwYZDPCmtAZNk7X+PDu2jO46vp4TLvVAn0vD95UftGKscNjYTZ9mY4aTvqw7X8akfevKUhkuCGiKMVgQxTFggJUnwRqGwB7ioJYWzM+aalBbIIPZ1zAnkNA8a5m3HB1ojpPW1MQ/3jpDHR6BTfdk4yY+J6/zX1+QdXRNky+KvSk4foTPux+14OZBUkwxYbpUiwiojBisCGKcmMygcQ4wAYHmj4fgabsbZhxTee5PACwo7IZU8cmwKD/MmgE/MDHb7pxrLIds/8tBUlpPb8XZ/EuN66fkHje9CP72lFZ0oxZ96Yw3BBR1GGwIYpynx4FEmKBpNrRcH58NX77Ths2fQT1HJrW9iCqT3oxaXTcefMe2tGKj/6fCzfdk4zMiTGdZyF3k7PeB4NBwWDb+aHoyL52OA97ccM/26Djt1JEFEUYbIgGgA4/cObkKHwS+Aw+8aOmFvD5v2wvKnPhW9OsXZ4wfKbGh7+/eAZjpydg8uzEbgcREeCDPR7MvNbSRSOw5+9N8Jz244bvMdwQUfRgsCEaAOrdwCrP/8Wbure6bK9t8KG1PYhMR9eXY7c1BVH0uzMwx+vwjR8kwxzXvbf+3s9aMC4rDkbD+YlJBNhb1ARTnA7jb0ro9rYQEfUlBhuiAeLEkRZ42tou2P7+DjduvsF2wfaAH/h4gxvOz724efEg2OyXPu+mvUPgrPdh/Ijzv+Y6t8xtf2pAapYJ42fy7sREFHkMNkQacaimDTFmHZIsFwksAhz4oAUfv+lC3r+mdJ53cxFGg4IMuwlJiRf+ringAz78swsjp8Rh6BjewI+IIovBhkgjggJs39OEm3Ntl+zrPNyBTWvP4OpZiZg8p+vzbgx6BQ9/Pw37D7di627PRZfX3hzEP35Xj2vyLRiSzXBDRJHDYEOkIXuqWpCZZkZczKXf2i2uADatPYOEJD2+9cPkkEu3FQW4659SYDQoeHNLA0Quve725iA+/HMjcr9ngzW155eXExGFA4MNkYb4AoIdlc24qasrmbrg9wm2r3fhRJUXcx8eDKvdAEUB7vhmCoakmvHsayfhD3Qj1UAB9Aa4Gs3Y+v90mHlfNsyWi3/NRUTUF/hrFZHGfLSvCQ9934GiMne3QokIcHB7CxpP+TD7X1PQ8YkfM0YlYvmLx+Dzn51f0QF6A3QxiVCMZuitqdDFJ0MXZ4Eu3gbFYAb0Boi/A20d7Sj/PBGw+ADPZ328tUREoRhsiDSmzRvE8doOTB0bj4/3N3d7PufhDtQVt+Phf0vHLzcY4M/OR3xMInTxts7vphQdpL0Z4u9AwF2LYHMD/KerEWxxQXztEJ+3MyVBoMz8AXyu+j7bRiKiC2GwIdKg90obce+tduyobEawO98kAciwm1DwjRQs/f/a4Mn8Jvy1HyHY1oxgqwsS8AF+H4BuLEzRQYlJQLC96bK2gYioN3iODZEGNTYF0NQawFWZsd3qn2E3Ycm8IfjlH07gpGkCGj56D76TVQg0noB4WwB/B7oVagAoRjMQDJydh4iofzHYEGnU37Y3Iv962yX7WeL1WPbDofifv53G8eY46OJtCDQ6e71eXXwSgq3uXs9PRHQ5GGyINOrkmQ6YjQqGDDZdsE9inB7LFw7Fuo112HmwGaaRU+H9fAe6e3SmK7p4G4Itjb2en4iil6Kgy2fSRROeY0OkUSLAX0saMW5ELE6cPv9rIaNBwSN3p6Gsshk7KpuhmGJhSMlAe+WWy1qv3pYGf+Opy1oGEUWXrHTgpmsUtLbokZkuOFRtxKYdfuhNfgSDQHsUffPcJ0dsTpw4gXvuuQcpKSmIjY3FxIkTsWvXLrVdRLBixQqkpaUhNjYWeXl5OHToUMgyGhoaUFhYCIvFApvNhoULF6K5uftXeBAR8OnRNmzb5cZchP4WoyjAg99z4LOaNvxvcefVS8ah49BRXdH5AKjLoLfZEXDXXtYyiCi63DTKhqXfGoF7lXsxt+ke3HjkPvwi+DR+lbgCd42YAX0UHSYJ+1AaGxtx44034pvf/CY2bdqEwYMH49ChQ0hKSlL7rF69Gs899xxeeeUVZGVlYfny5cjPz8eBAwcQE9N5U6/CwkKcOnUKRUVF8Pl8WLBgARYtWoTXXnst3EMm0rRJAWAFgG0Azv1qYBCgstyN+i/akC7ACb0BpsxJaNl+ue8vBbpYC4Tn2BBpisdpw4dlScg4PRb3bn0O1TgCI4yYmhgDl8uIYCDSI/wKCbOlS5fK9OnTL9geDAbF4XDImjVr1Gkul0vMZrO8/vrrIiJy4MABASA7d+5U+2zatEkURZETJ050axxut7vzhhos1hVeSwGpASQXkGRA5gCyDpDqszUdEEPaaDGPnXn56zOYJfGf7hcoSsS3m8Viha+uHgV5+PuK/PK+WBmaClHOTr9+PMSg75t1ut3uXuWQsH8V9de//hVTp07FP//zPyM1NRWTJ0/G7373O7W9uroaTqcTeXl56jSr1YqcnByUlpYCAEpLS2Gz2TB16lS1T15eHnQ6HcrKysI9ZCJN+xuAIwAqAXwTwC8BDAEQD2AxgO1QYB55HXxH9132unQx8Qi2uNCth0sR0YBR1wjYkwVTJrRhwXcAnQ5IjAPaOgB/NB2tQR98FfXFF1/ghRdewGOPPYaf/vSn2LlzJ370ox/BZDJh/vz5cDo7LyO12+0h89ntdrXN6XQiNTU1dKAGA5KTk9U+X+f1euH1etWfPZ6LP42Y6EqxH8A8AE1n/54MwA7gMQDvAdAnpSHY5kaw1XXZ69IlpvDGfEQadLoReH8H8KdNQI0TGGwDsjOBsspIj+x8YQ82wWAQU6dOxS9/+UsAwOTJk7F//368+OKLmD9/frhXp1q5ciWeeuqpPls+0UB29OyfhwDcD6ADQPHZaXHZN8L76fawrEdvS7use+AQUXQKBIFdB4EpY4EYE+BqBkr2ROfB2bB/FZWWloZx48aFTBs7dixqamoAAA6HAwBQWxt61URtba3a5nA4UFdXF9Lu9/vR0NCg9vm6ZcuWwe12q3Xs2LGwbA+RlgTReZTmXKjRxSdBMRgRcIUnjBhsjrAti4iiS3MbsG03sOcQcORUdIYaoA+CzY033oiqqqqQaZ999hkyMzMBAFlZWXA4HNi8ebPa7vF4UFZWhtzcXABAbm4uXC4XysvL1T7FxcUIBoPIycnpcr1msxkWiyWkiOjizKOuu+wb8n2VLo435yOiCOvVKccXsWPHDjEYDPL000/LoUOH5NVXX5W4uDj505/+pPZZtWqV2Gw2efvtt2Xfvn1y2223SVZWlrS1tal95syZI5MnT5aysjLZvn27jB49WgoKCro9Dl4VxWJdvBRTnCR8Y4FApw/PMvUGSfjWvwoUXcS3jcViDfzq7VVRYQ82IiLvvPOOTJgwQcxms4wZM0ZefvnlkPZgMCjLly8Xu90uZrNZZs2aJVVVVSF96uvrpaCgQBISEsRisciCBQukqamp22NgsGGxLl6mkdeJafjksC1PibNKwjfvjfh2sVis8JXNppfBw4wyqIeVmmEUk/HybvvQ22CjiETrt2SXx+PxwGq1RnoYRP1jBIAaAN29abDeiIQZ96B5+2uA33vp/t1gSM2CKXMSWne+FZblEVFk6XXA0z8Zjr8fdaPD17OocO2EBJz5uB2vv3um1+t3u929Oq0kim6CTES9YgLwMoAHAXzWvVmM9hHwOQ+FLdQAgJ4nDhNpSpLFgPRhJnz0axe8rT0LNvEJesyelIj//Uc9Ovz9e/yET/cmGugUAHEA9N3tr4N59PXoCMMN+b5Kb7UjwIdfEmnGmOGxaLd0fi/UE4oO0Mcq2PNJCyaMjOuTsV0Mgw3RFUafPASB5gZIW3hvYqmLsyHQ3BDWZRJR5FxzVTwOHm/r8XxGc+cDF4rL3Mi7rv9PCWGwIbrCxGTfgI7DO8O7UJ0eijkW4msP73KJKCL0OmDIYBNqnD3/ujoxxYCmBj+cZzpgMuqQmmTsgxFeGIMN0UCXCMAIoBsHS3QJyQCUsJ8Lo5hiIX4fEPCFdblEFBm2RAPavEG0eYM9njc53Ygzx3wICrC13I3rJyb0wQgvjMGGaKAzo/Od3I0jxubR18Mb7qM1OHtjvlZ32JdLRJExPM2MQzXtaG8NwhzXs6iQPMSI+uMdAIDyT1tw9ah4GPRKXwyzSww2RFcIxRwPXbwN/rrqsC9bnziIV0QRacg12fH49EgbvL0INtbBBjTVdz7yu80bxGmXD2OGx/bFMLvEYEN0hTBlXg3fsUpAen5o+VL0SWkIuHhFFJEWKAqQlR6Dwyd6fs6c3tB5VZS39cvPmaIyF26a3H+POWKwIboS6I0wpmWj4/iBvlm8ZTCCzY19smwi6l+WeD1EBE2tgR7PG2fVw+eVkN+fjpzywpKghyW+u/ekuDwMNkRXAKNjVOcN+fri5F5FB8Uch2B7U/iXTUT9btTQGBw+7u3V07uT0oxoPBn6ORMMAjsqm3H9xMQwjfDiGGyItE7RwTzqurDfkE9dvDGm8+stP6+IItKCsVmx2PNZS6/mTU43ouHUl58FigLYk41ITTLi+gn9c3UUH6lApHGGQRkIeM5A+uiIii7OgmBbE3p+f1IiikbD02Lw949dF2zXARiEzgsxmxH6zk9ON+JIRRvsyUZMHZuAa8fEQwQo29+Ev33YP19XM9gQDXRJAFoAdHTVqMB81Q1o31/cZ6vXJQ5CoKm+z5ZPRP1Hr+s8x8bTfP75NXoAk87+ORbAdQAOAPgDAJ8OyHCYkT/Bim/GJ6C2rgO7Djbjv9efQlNLoF9/7WGwIRroktH5a1MXwUaXkAzpaEPAXdtnq9cnpSHQeLLPlk9E/cdoUBAUwB84P4qYATwDwA7g6NmfbwMwA8D2WSmwjYjFycYO/P6Pp9DcGv6rL7uLwYZIw8zZN6DjyN4+XYfekoqOo327DiLqH3ExenT4ggh0kUvaAFQD+AaA0ej8CmofgO0A/mdzPUyfGjHmhviIhhqAwYZIu3R6GGxpaKt4t+/WoSjQxSRAWnlFFJEWJFsMaPD4u2wTAE8B2ArgWgCbAJQCaAWAIDAmw4QzxyJ/EQGDDZFWKQpgMKJX12x2dxUGE6AoEH/PH5RHRNHHlmhA4wWCDQCcAPDa2fo6a6oBh8tb+2po3cbLvYmo9xQdhA++JNKMrHQzjpz68heVoF+g7+Zznmx2A5obe35Tv3BjsCGiXpOONgQ9Z6C3OSI9FCIKgxSrAfXuL4/YNJ7yw5ZmvOR8+rNdvBE+vwZgsCGiy+Q9UgHzyGmRHgYRhUGy1YB695dHYSUo0HUjKcRZ9Ohol754FF2PMdgQDXRWAG5E7P54gYYT0MXbAIM5MgMgorBQFCAhVo+mlp5/nZScbkTjqej4WprBhmigywRwDJG78W8wAH/9cRjTsyM0ACIKB71OgUGvwOvr+YdJylAj6k8w2BCRRnRUl8M0fFKkh0FElyHGpOB4XQd8/p4HG5vDCJczOoINL/cmossWbHEBgQB0CckINjdEejhE1AtKWxCb/tcZMs0XNMOUnAXD4HoE25sBAOLrgPjaOjuIQEEAsQk6tHqi4AQbMNgQaZaiMwDBAPrrO6qOmn0wjZiC9n1F/bI+IgqvuQCm+QWPf2XaSdcomJOuhXHocegTUwAAAoEuxgIogPg7YDAAR1zHEPC9F5Fxfx2DDZFGKeY4SEdbn96g76t8pz6DecRUQKc/G6iIaKDQAbgV5z9yToI6tFd/Au9nH4U2KGfPZFEU6C2pqJlySz+Msnt4jg0RhYe/A4HmehgGZUZ6JETUQ1novA7hdHdnkGBnBQMIepsh0XCd91kMNkQUNh2Hd/IkYqIBaAgALzqf/zTQhT3YBAIBLF++HFlZWYiNjcXIkSPxi1/8AvKVw+EighUrViAtLQ2xsbHIy8vDoUOHQpbT0NCAwsJCWCwW2Gw2LFy4EM3NzeEeLtHAF4vOx+5GgYC7FrqYRCgxCZEeChH1wOfoPGIz62vTFXM8xBv55z/1RNiDzTPPPIMXXngBv/3tb3Hw4EE888wzWL16NX7zm9+ofVavXo3nnnsOL774IsrKyhAfH4/8/Hy0t7erfQoLC1FZWYmioiJs3LgRJSUlWLRoUbiHS9TvRgD4OYB7AFwHIB1AAi7jzZgNoCosQ7t8IvCdrOI9bYgGmJMA7gVQ97XpusRkBJrrIzCiyyBhNnfuXLn33ntDpt1xxx1SWFgoIiLBYFAcDoesWbNGbXe5XGI2m+X1118XEZEDBw4IANm5c6faZ9OmTaIoipw4caJb43C73YLOy0FYrKiqwYA8DMjLgBQBUnq2/grIs4DcD8i3ABkJSDIgxkst8/cQFJw/XZeQLAk3ze/37VPM8RI/Y55AUSL+WrNYrJ6V8rWf467/nuhTMi4+T2yiJHzrX8M+Frfb3ascEvarom644Qa8/PLL+Oyzz3DVVVdh79692L59O5599lkAQHV1NZxOJ/Ly8tR5rFYrcnJyUFpairvvvhulpaWw2WyYOnWq2icvLw86nQ5lZWX47ne/e956vV4vvN4vn0jq8XjCvWlEYXEawLnjl3p0Hq0ZjM7DwJkAxgP4NoDUs+0eAEcAHADwxdk6hc6nKHSg8xMgmoi3BfB7obc6EHCdivRwiKgHou3zpDfCHmx+8pOfwOPxYMyYMdDr9QgEAnj66adRWFgIAHA6O2/+Y7fbQ+az2+1qm9PpRGpqauhADQYkJyerfb5u5cqVeOqpp8K9OUR9KoDOgOJG53fc5+gAxAGwQIchiEEWgDGIw/eQiCEAzPAjiHocRxv2bha8XAec6f/hX5D38C6Yhl+Dtj0MNkTUv8IebP7yl7/g1VdfxWuvvYbx48djz549ePTRR5Geno758+eHe3WqZcuW4bHHHlN/9ng8yMjI6LP1EfWMcrZiz/5pBpB89u8Z6IwxCQBGAVAQxHA0w4pmmHASqdgJBYAPCkwwIYh4HIIdxzASZRj52j+g00XXyX3++mOImTir88GYfu+lZyCigUvQ+QTNKBH2YLNkyRL85Cc/wd133w0AmDhxIo4ePYqVK1di/vz5cDgcAIDa2lqkpaWp89XW1uKaa64BADgcDtTVhZ7C5Pf70dDQoM7/dWazGWYzny5M0cQK4EF0hpVUdB6HGXz2zw58ebpwLTova2pB53EbAfB3dB7H8QKoOTvNDUEbvAC8aEcDBAfPHTiOnltIdAr44K89DKN9BHwnDkZ6NETUh6SjDYreGDU35wx7sGltbYVOF3p9h16vRzDY+cmblZUFh8OBzZs3q0HG4/GgrKwMDzzwAAAgNzcXLpcL5eXlmDJlCgCguLgYwWAQOTk54R4yUR8JAKhH5xkytWd/rjn7ZyuAc7cv6ED0JZPL13F0L2KvuZnBhkjrJHj2iE10HLUJe7C55ZZb8PTTT2PYsGEYP348Kioq8Oyzz+Lee+8FACiKgkcffRT/9V//hdGjRyMrKwvLly9Heno6br/9dgDA2LFjMWfOHNx333148cUX4fP58NBDD+Huu+9Genp6uIdM1EeaAbwc6UFETLCpAYqigy4+CcGWxkgPh4iuFL26luoiPB6PPPLIIzJs2DCJiYmRESNGyM9+9jPxer1qn2AwKMuXLxe73S5ms1lmzZolVVVVIcupr6+XgoICSUhIEIvFIgsWLJCmpqZuj4OXe7Ou9IrU5d5fLWPGBIkZOzPirwWLxepdxed+X/TJQy7eT9FJYv5igc4Q1nX39nJvRaSfnpDXzzweD6xWa6SHQRQxuoRkxE25Bc3bXonYGBRjDOJvLOgcQxQ9S4aIuicxbxGaP3i18zYOF6LokDj7ATQVvQQE/WFbt9vthsVi6fF8fFYUEfUZ8bUj4KmDPmVopIdCRL2h6AbcLyUMNkTUpzqO7IF55LRID4OIrhAMNkTUpwKNp6Azx0MxxUZ6KER0BWCwIaK+JcHOB2MOHRfpkRDRFYDBhkijdHFWBFtdkR4GAKDjxEEYh45HtNzngoi0i8GGSKMUczyC7dHxqAVp8wABH3SWQZEeChF1l94IKArE3xHpkfQIgw0R9YuO6t08iZhoIDl3N+HgJa6KkmDnYxXM8f0yrEthsCGifuGr/QJ6S2rnb4FEpC3BIBRddESK6BgFEWlfwIeAuxZGx8hIj4SIukHRGyEBHzpvBDxwMNgQUb/xfrELpsxrIj0MIuoGJSbh4ncc/grxtUXNLR0YbIio3wQ9Z6AYTFBie36bdCKKXsGWRujibZEeBgAGGyLqV4KOY5/AxHvaEEU9RdFd+sThKMRgQ0T9ynfiIGKHjIZOx3vaEEUzvdWOgLu2W307H6cdHe9pBhsiDdEpgNUMjB8M/FNGG7Ji3JEekkoBMCIJWHR1O+5L3oE7x+sjPSQiuhidDggGutU14HJCb3P08YC6xxDpARBR7+gUINEEDLEA2SnAlHRgkqMz2ByqB/5efRQ/HHIMrwwGDpyO3DjN+s5x5Y8E3F5g0yHg+J4qPPENoLUd+NuhyI2NiMLE3wHFYIr0KAAw2BANKMNtwDUOYFQykBoPJMV0/qnXAdWNwO93AztOAM5mICh+7DoOLLkRWFEMnO7nmxBbzcDskcDkNOBwI/BSOXC65csLR5/ZDqy4CTjuAfZ272g3EfUjvWUw/PXHIj2MHmOwIRogFADjBgP+INDu75xW4wHeOADsOgk0tp1/t4kvGoHXPgEeuR74xTbA272jypclNR64Y2xn+NpeAzxdArT4zu/X2A78n1LgpkwGG6JopJhiId62bvUVXzsUU0wfj6h7GGyIBggB8O4hYHAc0ObrDCxdhZmv++Bo54UNeh2APg423xwOXJ8B/P1z4A8VQMcl1nfcA7z6Sd+OiYj6XrDFBV2cLdLDAMBgQzTgnG4FNlf3bJ4P++loculxYNtRIDiwblRKRF1R7zw8sPCqKCIKm3Y/Qw2RVhjirQi2urrZW84+NDPyGGyIiIhIZdQBMzKBxWl7MC7J2615gt5WKEYzoEQ+VkR+BERERBRxRh1wQwbwpzuBB6cB/yjehYVX+2DrxjnBigRh0bVHxT36eI4NERHRFW5iKvDt0cD0TGCfE3jmQ8DjBb5oAJq6cdBmSEIAz9vXo0AfREuEn8LAYENERHSF8wWBoRbg1X3A/x7o/BnovC1Dd3xjOKD42pBo7vr2Dv2JwYaIiOgK90Vj532ljrh6Pq9R1/m4lE2HgLTEzhuERhLPsSEiIrrCdQR6F2oAYFRK57wHTgNpCeEcVe/wiA0RERH1WkMr8E4V0OoDDFFwuITBhoiIiHqttuXLv/fHY1supcfZqqSkBLfccgvS09OhKAreeuutkHYRwYoVK5CWlobY2Fjk5eXh0KHQx/c2NDSgsLAQFosFNpsNCxcuRHNz6Jdy+/btw4wZMxATE4OMjAysXr2651tHREREV5QeB5uWlhZMmjQJa9eu7bJ99erVeO655/Diiy+irKwM8fHxyM/PR3v7l6dWFxYWorKyEkVFRdi4cSNKSkqwaNEitd3j8WD27NnIzMxEeXk51qxZgyeffBIvv/xyLzaRiIiIrhhyGQDIhg0b1J+DwaA4HA5Zs2aNOs3lconZbJbXX39dREQOHDggAGTnzp1qn02bNomiKHLixAkREXn++eclKSlJvF6v2mfp0qWSnZ3d7bG53W5B5/MBWSwWi8ViDbByu929yiZhPc2nuroaTqcTeXl56jSr1YqcnByUlpYCAEpLS2Gz2TB16lS1T15eHnQ6HcrKytQ+M2fOhMlkUvvk5+ejqqoKjY2NXa7b6/XC4/GEFBEREV1ZwhpsnE4nAMBut4dMt9vtapvT6URqampIu8FgQHJyckifrpbx1XV83cqVK2G1WtXKyMi4/A0iIiKiASUKLswKj2XLlsHtdqt17NixSA+JiIiI+llYg43D4QAA1NbWhkyvra1V2xwOB+rq6kLa/X4/GhoaQvp0tYyvruPrzGYzLBZLSBEREdGVJazBJisrCw6HA5s3b1aneTwelJWVITc3FwCQm5sLl8uF8vJytU9xcTGCwSBycnLUPiUlJfD5vnzgRFFREbKzs5GUlBTOIRMREZGW9PRs46amJqmoqJCKigoBIM8++6xUVFTI0aNHRURk1apVYrPZ5O2335Z9+/bJbbfdJllZWdLW1qYuY86cOTJ58mQpKyuT7du3y+jRo6WgoEBtd7lcYrfbZd68ebJ//35Zv369xMXFyUsvvdTtcfKqKBaLxWKxBm719qqoHgebLVu2dDmA+fPni0jnJd/Lly8Xu90uZrNZZs2aJVVVVSHLqK+vl4KCAklISBCLxSILFiyQpqamkD579+6V6dOni9lsliFDhsiqVat6NE4GGxaLxWKxBm71NtgoIiLQII/HA6vVGulhEBERUS+43e5enS+rmauiiIiIiBhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzehxsSkpKcMsttyA9PR2KouCtt95S23w+H5YuXYqJEyciPj4e6enp+MEPfoCTJ0+GLKOhoQGFhYWwWCyw2WxYuHAhmpubQ/rs27cPM2bMQExMDDIyMrB69erebSERERFdMXocbFpaWjBp0iSsXbv2vLbW1lbs3r0by5cvx+7du/Hmm2+iqqoKt956a0i/wsJCVFZWoqioCBs3bkRJSQkWLVqktns8HsyePRuZmZkoLy/HmjVr8OSTT+Lll1/uxSYSERHRFUMuAwDZsGHDRfvs2LFDAMjRo0dFROTAgQMCQHbu3Kn22bRpkyiKIidOnBARkeeff16SkpLE6/WqfZYuXSrZ2dndHpvb7RYALBaLxWKxBmC53e4eJJIv9fk5Nm63G4qiwGazAQBKS0ths9kwdepUtU9eXh50Oh3KysrUPjNnzoTJZFL75Ofno6qqCo2NjX09ZCIiIhqgDH258Pb2dixduhQFBQWwWCwAAKfTidTU1NBBGAxITk6G0+lU+2RlZYX0sdvtaltSUtJ56/J6vfB6verPHo8nrNtCRERE0a/Pjtj4fD58//vfh4jghRde6KvVqFauXAmr1apWRkZGn6+TiIiIokufBJtzoebo0aMoKipSj9YAgMPhQF1dXUh/v9+PhoYGOBwOtU9tbW1In3M/n+vzdcuWLYPb7Vbr2LFj4dwkIiIiGgDCHmzOhZpDhw7h/fffR0pKSkh7bm4uXC4XysvL1WnFxcUIBoPIyclR+5SUlMDn86l9ioqKkJ2d3eXXUABgNpthsVhCioiIiK4wPT3buKmpSSoqKqSiokIAyLPPPisVFRVy9OhR6ejokFtvvVWGDh0qe/bskVOnTqn11Suc5syZI5MnT5aysjLZvn27jB49WgoKCtR2l8sldrtd5s2bJ/v375f169dLXFycvPTSS90eJ6+KYrFYLBZr4FZvr4rqcbDZsmVLlwOYP3++VFdXX3CAW7ZsUZdRX18vBQUFkpCQIBaLRRYsWCBNTU0h69m7d69Mnz5dzGazDBkyRFatWtWjcTLYsFgsFos1cKu3wUYREYEGeTweWK3WSA+DiIiIesHtdvfqtBI+K4qIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0o8fBpqSkBLfccgvS09OhKAreeuutC/a9//77oSgKfv3rX4dMb2hoQGFhISwWC2w2GxYuXIjm5uaQPvv27cOMGTMQExODjIwMrF69uqdDJSIioitMj4NNS0sLJk2ahLVr116034YNG/Dxxx8jPT39vLbCwkJUVlaiqKgIGzduRElJCRYtWqS2ezwezJ49G5mZmSgvL8eaNWvw5JNP4uWXX+7pcImIiOhKIpcBgGzYsOG86cePH5chQ4bI/v37JTMzU371q1+pbQcOHBAAsnPnTnXapk2bRFEUOXHihIiIPP/885KUlCRer1fts3TpUsnOzu722NxutwBgsVgsFos1AMvtdvc8mIhI2M+xCQaDmDdvHpYsWYLx48ef115aWgqbzYapU6eq0/Ly8qDT6VBWVqb2mTlzJkwmk9onPz8fVVVVaGxsDPeQiYiISCMM4V7gM888A4PBgB/96EddtjudTqSmpoYOwmBAcnIynE6n2icrKyukj91uV9uSkpLOW67X64XX61V/9ng8l7UdRERENPCE9YhNeXk5/vu//xvr1q2DoijhXPQlrVy5ElarVa2MjIx+XT8RERFFXliDzQcffIC6ujoMGzYMBoMBBoMBR48exeOPP47hw4cDABwOB+rq6kLm8/v9aGhogMPhUPvU1taG9Dn387k+X7ds2TK43W61jh07Fs5NIyIiogEgrF9FzZs3D3l5eSHT8vPzMW/ePCxYsAAAkJubC5fLhfLyckyZMgUAUFxcjGAwiJycHLXPz372M/h8PhiNRgBAUVERsrOzu/waCgDMZjPMZnM4N4eIiIgGmp6ebdzU1CQVFRVSUVEhAOTZZ5+ViooKOXr0aJf9v35VlIjInDlzZPLkyVJWVibbt2+X0aNHS0FBgdrucrnEbrfLvHnzZP/+/bJ+/XqJi4uTl156qdvj5FVRLBaLxWIN3OrtVVE9DjZbtmzpcgDz58/vsn9Xwaa+vl4KCgokISFBLBaLLFiwQJqamkL67N27V6ZPny5ms1mGDBkiq1at6tE4GWxYLBaLxRq41dtgo4iIQIM8Hg+sVmukh0FERES94Ha7YbFYejyfZp8VpdG8RkREdEXo7f/jmg029fX1kR4CERER9VJTU1Ov5gv7DfqiRXJyMgCgpqaGX0lFiMfjQUZGBo4dO9arw4l0+bgPIo/7ILL4+kdeT/eBiKCpqanLZ012h2aDjU7XeTDKarXyH3OEWSwW7oMI4z6IPO6DyOLrH3k92QeXc0BCs19FERER0ZWHwYaIiIg0Q7PBxmw244knnuDdiCOI+yDyuA8ij/sgsvj6R15/7wPN3seGiIiIrjyaPWJDREREVx4GGyIiItIMBhsiIiLSDAYbIiIi0gxNBpu1a9di+PDhiImJQU5ODnbs2BHpIWnGk08+CUVRQmrMmDFqe3t7OxYvXoyUlBQkJCTgzjvvRG1tbcgyampqMHfuXMTFxSE1NRVLliyB3+/v700ZMEpKSnDLLbcgPT0diqLgrbfeCmkXEaxYsQJpaWmIjY1FXl4eDh06FNKnoaEBhYWFsFgssNlsWLhwIZqbm0P67Nu3DzNmzEBMTAwyMjKwevXqvt60AeNS++CHP/zhee+LOXPmhPThPui9lStXYtq0aUhMTERqaipuv/12VFVVhfQJ12fP1q1bce2118JsNmPUqFFYt25dX2/egNCdffCNb3zjvPfB/fffH9KnX/ZBr54JHsXWr18vJpNJ/vCHP0hlZaXcd999YrPZpLa2NtJD04QnnnhCxo8fL6dOnVLr9OnTavv9998vGRkZsnnzZtm1a5dcf/31csMNN6jtfr9fJkyYIHl5eVJRUSHvvvuuDBo0SJYtWxaJzRkQ3n33XfnZz34mb775pgCQDRs2hLSvWrVKrFarvPXWW7J371659dZbJSsrS9ra2tQ+c+bMkUmTJsnHH38sH3zwgYwaNUoKCgrUdrfbLXa7XQoLC2X//v3y+uuvS2xsrLz00kv9tZlR7VL7YP78+TJnzpyQ90VDQ0NIH+6D3svPz5c//vGPsn//ftmzZ498+9vflmHDhklzc7PaJxyfPV988YXExcXJY489JgcOHJDf/OY3otfr5b333uvX7Y1G3dkHN910k9x3330h7wO3262299c+0Fywue6662Tx4sXqz4FAQNLT02XlypURHJV2PPHEEzJp0qQu21wulxiNRnnjjTfUaQcPHhQAUlpaKiKd/0HodDpxOp1qnxdeeEEsFot4vd4+HbsWfP0/1WAwKA6HQ9asWaNOc7lcYjab5fXXXxcRkQMHDggA2blzp9pn06ZNoiiKnDhxQkREnn/+eUlKSgrZB0uXLpXs7Ow+3qKB50LB5rbbbrvgPNwH4VVXVycAZNu2bSISvs+e//iP/5Dx48eHrOuuu+6S/Pz8vt6kAefr+0CkM9g88sgjF5ynv/aBpr6K6ujoQHl5OfLy8tRpOp0OeXl5KC0tjeDItOXQoUNIT0/HiBEjUFhYiJqaGgBAeXk5fD5fyOs/ZswYDBs2TH39S0tLMXHiRNjtdrVPfn4+PB4PKisr+3dDNKC6uhpOpzPkNbdarcjJyQl5zW02G6ZOnar2ycvLg06nQ1lZmdpn5syZMJlMap/8/HxUVVWhsbGxn7ZmYNu6dStSU1ORnZ2NBx54APX19Wob90F4ud1uAF8+7Dhcnz2lpaUhyzjXh/9/nO/r++CcV199FYMGDcKECROwbNkytLa2qm39tQ809RDMM2fOIBAIhLxoAGC32/Hpp59GaFTakpOTg3Xr1iE7OxunTp3CU089hRkzZmD//v1wOp0wmUyw2Wwh89jtdjidTgCA0+nscv+ca6OeOfeadfWafvU1T01NDWk3GAxITk4O6ZOVlXXeMs61JSUl9cn4tWLOnDm44447kJWVhcOHD+OnP/0pbr75ZpSWlkKv13MfhFEwGMSjjz6KG2+8ERMmTACAsH32XKiPx+NBW1sbYmNj+2KTBpyu9gEA/Mu//AsyMzORnp6Offv2YenSpaiqqsKbb74JoP/2gaaCDfW9m2++Wf371VdfjZycHGRmZuIvf/kL3/R0xbr77rvVv0+cOBFXX301Ro4cia1bt2LWrFkRHJn2LF68GPv378f27dsjPZQr1oX2waJFi9S/T5w4EWlpaZg1axYOHz6MkSNH9tv4NPVV1KBBg6DX6887E762thYOhyNCo9I2m82Gq666Cp9//jkcDgc6OjrgcrlC+nz19Xc4HF3un3Nt1DPnXrOL/Zt3OByoq6sLaff7/WhoaOB+6SMjRozAoEGD8PnnnwPgPgiXhx56CBs3bsSWLVswdOhQdXq4Pnsu1MdisfAXt7MutA+6kpOTAwAh74P+2AeaCjYmkwlTpkzB5s2b1WnBYBCbN29Gbm5uBEemXc3NzTh8+DDS0tIwZcoUGI3GkNe/qqoKNTU16uufm5uLTz75JORDvqioCBaLBePGjev38Q90WVlZcDgcIa+5x+NBWVlZyGvucrlQXl6u9ikuLkYwGFQ/eHJzc1FSUgKfz6f2KSoqQnZ2Nr8C6YXjx4+jvr4eaWlpALgPLpeI4KGHHsKGDRtQXFx83ld24frsyc3NDVnGuT78/+PS+6Are/bsAYCQ90G/7INun2Y8QKxfv17MZrOsW7dODhw4IIsWLRKbzRZyFjb13uOPPy5bt26V6upq+fDDDyUvL08GDRokdXV1ItJ5yeWwYcOkuLhYdu3aJbm5uZKbm6vOf+5yv9mzZ8uePXvkvffek8GDB/Ny74toamqSiooKqaioEADy7LPPSkVFhRw9elREOi/3ttls8vbbb8u+ffvktttu6/Jy78mTJ0tZWZls375dRo8eHXKpscvlErvdLvPmzZP9+/fL+vXrJS4ujpcan3WxfdDU1CT//u//LqWlpVJdXS3vv/++XHvttTJ69Ghpb29Xl8F90HsPPPCAWK1W2bp1a8ilxK2trWqfcHz2nLvUeMmSJXLw4EFZu3YtL/c+61L74PPPP5ef//znsmvXLqmurpa3335bRowYITNnzlSX0V/7QHPBRkTkN7/5jQwbNkxMJpNcd9118vHHH0d6SJpx1113SVpamphMJhkyZIjcdddd8vnnn6vtbW1t8uCDD0pSUpLExcXJd7/7XTl16lTIMo4cOSI333yzxMbGyqBBg+Txxx8Xn8/X35syYGzZskUAnFfz588Xkc5LvpcvXy52u13MZrPMmjVLqqqqQpZRX18vBQUFkpCQIBaLRRYsWCBNTU0hffbu3SvTp08Xs9ksQ4YMkVWrVvXXJka9i+2D1tZWmT17tgwePFiMRqNkZmbKfffdd94vU9wHvdfVaw9A/vjHP6p9wvXZs2XLFrnmmmvEZDLJiBEjQtZxJbvUPqipqZGZM2dKcnKymM1mGTVqlCxZsiTkPjYi/bMPlLMDJiIiIhrwNHWODREREV3ZGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDMYbIiIiEgzGGyIiIhIMxhsiIiISDP+f5KgvAmBzDTAAAAAAElFTkSuQmCC",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAFICAYAAABDdrQZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAARtVJREFUeJzt3Xt8VOWdP/DPOXPLdWZyITMJJBgEoQgiCsYoaltSglKr1W2VZpG6rqwWrVaXWrYVL90tiF1rtV7726rtqrR2RVtW6EauUmPAyB2MoEi4TQJJZibXuZ3v748JA0PuYZJJTj7v1+t5QeY8c+aZOZnJZ855LoqICIiIiIh0QI13A4iIiIhihcGGiIiIdIPBhoiIiHSDwYaIiIh0g8GGiIiIdIPBhoiIiHSDwYaIiIh0g8GGiIiIdIPBhoiIiHSDwYaIiIh0Y1AHm+eeew7nnXceEhISUFBQgC1btsS7SURERDSIDdpg88c//hEPPPAAHnnkEXzyySeYMmUKiouLUVNTE++mERER0SClDNZFMAsKCjB9+nT85je/AQBomobc3Fzce++9+MlPfhLn1hEREdFgZIx3Azri9/tRUVGBxYsXR25TVRVFRUUoKyvr8D4+nw8+ny/ys6ZpqKurQ0ZGBhRF6fc2ExER0bkTETQ0NCAnJweq2vsLS4My2Jw8eRKhUAgOhyPqdofDgU8//bTD+yxduhSPPfbYQDSPiIiI+tnhw4cxatSoXt9v0Pax6a3FixfD4/FESlVVVbybRERERH2Umprap/sNyjM2mZmZMBgMqK6ujrq9uroaTqezw/tYLBZYLJaBaB4RERH1s752IxmUZ2zMZjMuvfRSrF27NnKbpmlYu3YtCgsL49gyIiIiGswG5RkbAHjggQcwf/58TJs2DZdddhmefvppNDU14fbbb49304iIiGiQGrTB5pZbbsGJEyewZMkSuFwuXHzxxVizZk27DsVEREREpwzaeWzOldfrhc1mi3cziIiIqA88Hg+sVmuv7zco+9gQERER9QWDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6QaDDREREekGgw0RERHpBoMNERER6UbMg83SpUsxffp0pKamIisrCzfeeCMqKyuj6rS2tmLhwoXIyMhASkoKbr75ZlRXV0fVqaqqwpw5c5CUlISsrCwsWrQIwWAw1s0lIiIiHYl5sNm4cSMWLlyIjz76CKWlpQgEApg1axaampoidX70ox/hr3/9K9566y1s3LgRx44dw0033RTZHgqFMGfOHPj9fnz44Yd47bXX8Oqrr2LJkiWxbi4RERHpifSzmpoaASAbN24UERG32y0mk0neeuutSJ19+/YJACkrKxMRkffee09UVRWXyxWp88ILL4jVahWfz9ejx/V4PAKAhYWFhYWFZQgWj8fTp9zR731sPB4PACA9PR0AUFFRgUAggKKiokidCRMmIC8vD2VlZQCAsrIyTJ48GQ6HI1KnuLgYXq8Xe/bs6fBxfD4fvF5vVCEiIqLhpV+DjaZpuP/++3HllVdi0qRJAACXywWz2Qy73R5V1+FwwOVyReqcGWpObT+1rSNLly6FzWaLlNzc3Bg/GyIiIhrs+jXYLFy4ELt378aKFSv682EAAIsXL4bH44mUw4cP9/tjEhER0eBi7K8d33PPPVi1ahU2bdqEUaNGRW53Op3w+/1wu91RZ22qq6vhdDojdbZs2RK1v1Ojpk7VOZvFYoHFYonxsyAiIqKhJOZnbEQE99xzD1auXIl169YhPz8/avull14Kk8mEtWvXRm6rrKxEVVUVCgsLAQCFhYXYtWsXampqInVKS0thtVoxceLEWDeZiIiI9KJPXY67cPfdd4vNZpMNGzbI8ePHI6W5uTlS56677pK8vDxZt26dfPzxx1JYWCiFhYWR7cFgUCZNmiSzZs2S7du3y5o1a2TEiBGyePHiHreDo6JYWFhYWFiGbunrqKiYB5vOGvjKK69E6rS0tMgPfvADSUtLk6SkJPn2t78tx48fj9rPl19+Kddee60kJiZKZmamPPjggxIIBHrcDgYbFhYWFhaWoVv6GmyUtjCiO16vFzabLd7NICIioj7weDywWq29vh/XiiIiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt3o92CzbNkyKIqC+++/P3Jba2srFi5ciIyMDKSkpODmm29GdXV11P2qqqowZ84cJCUlISsrC4sWLUIwGOzv5hIREdEQ1q/BZuvWrXjppZdw0UUXRd3+ox/9CH/961/x1ltvYePGjTh27BhuuummyPZQKIQ5c+bA7/fjww8/xGuvvYZXX30VS5Ys6c/mEhER0VAn/aShoUHGjRsnpaWlcs0118h9990nIiJut1tMJpO89dZbkbr79u0TAFJWViYiIu+9956oqioulytS54UXXhCr1So+n69Hj+/xeAQACwsLCwsLyxAsHo+nT/mj387YLFy4EHPmzEFRUVHU7RUVFQgEAlG3T5gwAXl5eSgrKwMAlJWVYfLkyXA4HJE6xcXF8Hq92LNnT381mYiIiIY4Y3/sdMWKFfjkk0+wdevWdttcLhfMZjPsdnvU7Q6HAy6XK1LnzFBzavupbR3x+Xzw+XyRn71e77k8BSIiIhqCYn7G5vDhw7jvvvvw+uuvIyEhIda779TSpUths9kiJTc3d8Aem4iIiAaHmAebiooK1NTU4JJLLoHRaITRaMTGjRvxzDPPwGg0wuFwwO/3w+12R92vuroaTqcTAOB0OtuNkjr186k6Z1u8eDE8Hk+kHD58ONZPjYiIiAa5mAebmTNnYteuXdi+fXukTJs2DSUlJZH/m0wmrF27NnKfyspKVFVVobCwEABQWFiIXbt2oaamJlKntLQUVqsVEydO7PBxLRYLrFZrVCEiIqLhJeZ9bFJTUzFp0qSo25KTk5GRkRG5/Y477sADDzyA9PR0WK1W3HvvvSgsLMTll18OAJg1axYmTpyIefPmYfny5XC5XPjZz36GhQsXwmKxxLrJRER9pqiAJVFFcpoBdocR6dkmXGxNxLur61BTH4h384iGnX7pPNydX/3qV1BVFTfffDN8Ph+Ki4vx/PPPR7YbDAasWrUKd999NwoLC5GcnIz58+fj8ccfj0dziYigGgBLsorUdCPsTiPSnCYkpxlgSVShaYImdwie6iCOH/Bh0oxEvPKrcfj1C0exdqsHIS3erScaPhQRkXg3oj94vV7YbLZ4N4OIhqCkBBX2USbYssMBJjXdAINJga9JQ0uDhvrqAOqPB+A9EYKvKYRQCOGZN9okJKuYvyQb49wmNNWG8Ju3juNEPWdOJ+oNj8fTp24lDDZERGe582YH0i4y493Vtah3BdFQG4SvWYMW6vk+8iYlYMrXU9FS7set38jEH//vJNZ9zLM3RD3V12DDRTCJiM7yzrpaFGQkI9moouZLP1oaehdqAKBqTyu8dUEcMwfxk2cPofCiVDx8Ry4ybHHpAUA0bDDYENGwZYIJl4+5IPKzAgXT0ybB5zfixT8cx6P/OhpjLk7s284F2PpXLyZenYIWRfDvvzuCD3c14Il7R+PyySlQlBg9CSKKwmBDRMPWJbgE5x+cBgAwwogfJs/HN0JfRaAVWLvVgz0bGnH3D3OQPdbcp/03e0LY/jcvrviOHQLg/z5yY8lLh3Hj1RlY9I85sKUYYvhsiAhgsCGiYUqBgq/j61gn65GiJGExFkNVFGy94Hm0hFqhacBTrx1FfpMJN9/rQGauqU+P8/knLRARnH9pEgDg2Ak/fvZiFfZ92YJf3nceCien8uwNUQwx2BDRsOQw2zDpyi8x52sB/Pe/jEX1eevx68ZX0ezXYGrrBnOiPoiX/nAc4+qNuOJmO1Izen+GRTSg7M8eXDwrFcn28P2DIcFfP6jHoy8fxg3XpONfefaGKGYYbIhoWBo7MgMzv/slfpL2z9jwRR1ed22GQODMAM4cK7ruYw/cx4KwnVQw++5MJKT0/mOzyR3C7vWNuOwGG3DG2ZmjJ/z42QtVaPFpeHHx+bCYeOqG6Fwx2BDRsLT14BH8/ueXozpjG4y2GqRZAWsKcPQEEDxjBFRIA557y4VrzkvFwQ+aMeMWO0wJvQ8gn5U3ITFVRe7E04sDm4wKbrwmHReNTcYv/3AU/oAuZ98gGlCcx4aIhi2bIRUTxwuum9EIawrw7iZgyx6gsaV93W8U2HD5pFS887kbuZMS8LeXTiLUyxUTbFlGFP1zBv731yeQlWrED2/JwZFqH/7rLzVoaO7leHIineMEfWeJR7BJMAPWZMAXAAwqYDAAJ93Rp7WJaPBRFcBkBIIawrMId8CgAo/cmYs1ZW60ZAOWJBVb/uLp9fw2U76eguuvTEdeyISXVrrwyadN/Iwg6gCDzVkGLNgowMTMLORoIzDrgizkXbsZB8rykeKoR8ZINx5/LYj9R3T5EhP1G6MhXALBcJeU4CCZrTcn04S5xSPwqzePoeAmG1RVwYdvuXscTPKcZtx3aw6Sxxrx9O+O4dNPmvu3wURDWF+DDafAPEeqChSOzoP14Fis2f4FrjJNxoz6b8OadAAbNn+G87P3Y/+Rk/FuJtGgpyhATiZgTQIum6jiqxfYUbVyNjJHAov3/Rletz/eTcTxkwEkmFVk2IzY8q4HV89Nw/grkvHp35u6vJ/JqOBbV6ej+HI7Xl7pwqH/8WPG99Lw+d4WBFr5xYcolnjGJgYybIAjHdh7EDCqKn59fQH89iq8sP4o3A1ATf2ANINoSEsyK3j+vkSM0cbBursYK91lWFlxAtkXHkbpziZog+ST6sopqbAmG7D6QzcMJgXX/iATn1c0Y9/mjsNNrsOM+27NxtEaP/7fu6f70lxybSrMCSo+WukZyOYTDRlcKyqOvE3hb5qKAhRO1mC7pAypo44iKw1wN8a7dURDw+Ts8+H7+Bp88M4E1JgP4c9VFdgZ/BQ+Q1PUEOl427G/CZdPSoVBBUIBwdrf1WLs9CRkj7O0q3tl2/pQK/6vFk+vOB7VQXjn+41wjDHDeX7fZjUmoo4x2MRAIAjs/gKYfD7w+VHgg+1A+e5wqPH3ctQE0XBVceQLvHBkDV7x/RHegj9j7reakecIf3HAIDlbAwCNzRpctX7kOcNBpqVBw/v/rxZX/IOt3dIL+75swQO/OoiP9zVG98NRVISUBJStMePim8ZBNfKjmChW2McmRly1QFICkOcEtlUCFjOwvyrerSIaOoIhDVXVQPHlwPH6EA7XhPuwmU0YNJehTnnvg3oohvBpJCMAtUGD5ff1mHGrHWteq0PDyfCZmboGDYrJAoPdBoPdCYM9G6o1E6olGRBBU2sjtlU5INgPIP59iIj0gH1sYsxsCg8dbeVnFFGfjMoCxo4KT4znaQyfDdUGyagoAEgCsBzAfwLIAfCPAKYAWA3g5ZEmXHLLaGzeeB60pGyoCSkABFqzByG3CyH3cYS8J6G1NABBP9RkO5Km3YDGja/G7fkQDVYcFTVI8NIT0bk5UhM+A5qSCHibB1eoAYDZAP4BwO8AvAhgNIBfA3gCgP9oAFv3TIOvdh+Cn22H1uIFgp1/yzGOOA/BE18OQKuJhg8Gm36iqKf7Ow62D2aiwS4Y6r7jvdGsQNGAQHBgTzp/BqAB4Q6KJwG8B+DnaLuQpCho9SfBf2Rfl4HmFKNzLHz7P+rH1hINPww2vZRhN2LC5cloUTQoqgLbCCPUsxflVQBLYjjZjEg04ugHrSj90B2P5hLpgmoEUtIMyBhlxog8M+wOI9LTjEh3qXj+teMD2pbjADwADACSAXyA071jFHMiFNUIBHtw6lZRYUjNQMhT019NJRqWGGx66R+KMtCcCWz4wAPRBPvLm9pNqS4CtDZpEBFMviwF/zRzBN7/0D2YBnYQDVqqEUhKNSAtx4TMXBPsDiNMFhW+Fg31xwI4vLcVu9YHYM0w4slH87FqTS2qqgeuU1stgJsBuAEsAFB3ZttTMxFqrEVPhnGpSTaIvwUI+vqjmUTDFoNNLxhU4KJJyfjfIx4c3tPao/skZBqQkmZEcqKKxhZekyLqzOQJSRh5ZSLURAX+Fg11xwOo/sKPTz9sgq9Ra3dJN9kuWL/Lgxu+mo5n/+ga0LYeavt3+1m3G2wOhNzVPdqHccRoBE8c6r4iUTcUDKoZEeKOwaYXRqSZ4PGEEOjFZGGaCD6rasEFoxPxyaddT7tONFwpABbc6sTLq6uxt6IJoWDP7nfgSCsKTEkYlWXGkZr4D0U0ZuTC/0VFz+qOOA+tn5X1c4tIz4wAFqvA+XYVv0kFPjkk0DqJOAY1PGI3MAwWkeesUL1w0bhkfLyrAaYEpcczoSanGfDhVi+mjk/u38YRDWFms4KUVAMSMgw9DjVAeH6bdzfWYcaU3g8JjT0FhtRMhBp6sDacaoRqHQGtsbb/m0VDmsmoItWY2OG2dBNw24XJ+M6TTrzxYC7umzQb5oT2f9aTzWb89qfJ+K/vXYhHCmcge8RgeL/0HwabXpg2IRlbdjVCNMBk7lmyMVlU7DvQgtwsCwx8tYk6lGkz4UiVD/aRph7fJ9lmQJM7hANHWpE9woQMW5xPQBtMgMEY7jfTDTUlHeJrRq9SHA1LV16YiLf/YRYe+b4Rqaboma2LA8DxUBOqk+qw11uNd2rfR8DfcZcHZyawV6vEybQdqPPoe1V5/qntoaQEFSlJBrhOBiCaQDX2LNioKtDUHEJIE2TYev6hTaRrYwGcsbRSzggz9nzaDNUAGEw9e28l2Qxo8YQgAmze3oBvzkjrn7b2kJpsC0+8J933pTM5xiBYc3AAWkVDXXOwCUfH/C9+cHMKJuRG/46vBbDkc+Cl91rxxvpWHHIFkKMBZ5/fafL78fhvm+DXgnjjgwb4/PoO1Aw2PTQmJwFVLh+CIUGTO4SUtLPHeLenGgCjRYGvWUPFp02YOKbj04lEw4oBwNMAJp2+afzoBHx5tBUtXg2p6d2/t872SWUj8pwWpFvjd9bGYM1CqP5oj+oas8YgWP15P7eIhiKTUUFBYSqyx5phSVaxYz/w1sYgbni0BdsPnb7MaVCBgq+mY5MfeOIPwJ/Whi/N3ghgVAf7/Wg38NSbQH3DQD2T+GGw6aHpF6Zgy57wjGG+FoE5sXcv3Z7PmzH9Kyn90TSioScR4YDTxpFuxpfHfag9FkBmXu9Xuw6FgDVlbnz10vj1HTBmjEKo7lj3FVUj1CRb27Bwomh5Tgu+9+0RyJuciK/NS8N37nJg35cWfFThQyAU7vmrACgqtGPCxUnIuygBeZMSYMsyIi/dgDkqMKaHZz31ql+CzdGjR/GP//iPyMjIQGJiIiZPnoyPP/44sl1EsGTJEmRnZyMxMRFFRUXYv39/1D7q6upQUlICq9UKu92OO+64A42N3UxF2k9UFRiXm4DKqvC1c091ALas7r8ZmhNUBP0CTQOO1/qRYTfB1MNLWES6lQLACqAtAxjU8IjD+oYgqj/3IaMX/WzOtOeLZkwZlwwlTm8xQ1o2Qp7uh3qrKWnhpRbYv4Y6kOe0IJAMbHnXg7+9VIu6PX5cNik1qk5OlhkP3TYSH3zWALvDhIxRJlwyOxUTv2lF62gzflU8IursZYJZwTfmpOHym2wouNGGcZcl4fxLEzH+kiTYrb0/QzrYxTzY1NfX48orr4TJZMLq1auxd+9e/Od//ifS0k5fG1y+fDmeeeYZvPjiiygvL0dycjKKi4vR2np6bpiSkhLs2bMHpaWlWLVqFTZt2oQFCxbEurk9kpVmQlOLhqa2eWiavRqSrN2/dAaTglBQAAlP2qegx4OpiPTL0FbaRmdbkw3wBzT4/ALvySDSso19Cifh/QjisqyvYoBitIT72HTDmJWPwPHPBqBRNBTlOc2oC4ZgNCsQARqDGpwjosP+Vy+x4pgpiI/e92L7/zVg25oGrP99Pdb8vh6/OOiHw69hYv7prg/pNhOuGZeKL3e04NCuFqgGIMlqwMQpSSj55oiBfor9LuYXpJ944gnk5ubilVdeidyWn58f+b+I4Omnn8bPfvYz3HDDDQCA3//+93A4HHjnnXdw6623Yt++fVizZg22bt2KadOmAQCeffZZXHfddfjlL3+JnJycWDe7S5POT8KeL073Im+qD+G8yQnd3k81AlrblzKzKfxLOtDr2hANdlnpZtTUhZcgCLSG3x+mRAX+5t69V7IzzTh+Mj5z2SiWJEjQd/oN3wXjiPPQuuv9AWgVDUXZGWYcdvlgMisItApaoGFcsooUAI0IX0G4fFIq/n6sEWoH36+/SFRQd7gZBRNSsXlHOGgrCC/z4/rCDwjg+jz8Pkmao+LGb6ThpT9WIxjSz9+mmJ+x+ctf/oJp06bhO9/5DrKysjB16lT89re/jWw/ePAgXC4XioqKIrfZbDYUFBSgrCw8WVVZWRnsdnsk1ABAUVERVFVFeXl5rJvcLRFEfYNs8oRgSe7+pbNmGuE9GUQKgLsNCtSPuawCUeRTp+3NkOc045ArvKyACFB3LAhrZu+/c6VbjajzxufyjsGWhVBDXfcVjWYYUtKhNXv6v1E05KgqYE814vgRP5LTDOG/OwENt3xYj+K2bgwpiQZs3duIz6taYbS0P7WpphvxSr4Ro3MsMBrC280mBQar0u6KgaYCTT4NI9L0NVdvzIPNF198gRdeeAHjxo3D3/72N9x999344Q9/iNdeew0A4HKFpz53OBxR93M4HJFtLpcLWVlZUduNRiPS09Mjdc7m8/ng9XqjSqy4av1wZpzu0BgKhjsPK928eooS/qAuAvBgYwjerfwwI4ITQBOAtreoqihRl49qj/jhHGPp6J5dGp1twZfH47PukjEjF6Haw93WM1hHQGusQ7sF5ogAJFlUZNqNKBiVjB/dmoPHFuTiBzdmQ/1KCq4vykCiRYW3KYQ/rD6BloYQElPb94+xZxvxvy0anKMSkNUWWEZmmRFMbB+CElMN+HhHIybmJ/X7cxtIMY9pmqZh2rRp+MUvfgEAmDp1Knbv3o0XX3wR8+fPj/XDRSxduhSPPfZYv+zbVRuAM+P0Nc6gP/wpbDQpCPg6PweTkm5EY20QCoB6AGu5VBRR+FNHAHTyfjh5JIApRd1f6j1bdoYJ1XXxuRRlsDt61G/G5BiLgOvAALSIhiJfQLD6QzdMI1TUB0IoL/Vg9PREbBidhL+8V48WX/hNIxLOxh1dirKOMOLEoQCee8sFVQ2HGVVRwovJJijwt5z+m2VJVlG+uQFfn2zFWh198Y75GZvs7GxMnDgx6ravfOUrqKqqAgA4nU4AQHV19OiB6urqyDan04mampqo7cFgEHV1dZE6Z1u8eDE8Hk+kHD7c/bennmpu1WAxq6d/iQQI+CS8tEIXElNVtDRoeAfA1QC4KgxR9xprg0hMVaF2M1hDNSCyMKaqAMmJBjQ0xeFMiKJATU4Ln4nphjHrPC58SZ0KBAX/s64WGys8cGshuBtCCAQFH+5pRH1j9O92vSsAu7P9CMIkmwHN3hA2fuKNWj/NZFGgqNF/s1QVcJ0IX5GI12jC/hDzYHPllVeisrIy6rbPPvsMo0ePBhDuSOx0OrF27drIdq/Xi/LychQWFgIACgsL4Xa7UVFxejG5devWQdM0FBQUdPi4FosFVqs1qsSKLxD+9LSYTr9cviat2342qkGBFhIIgB6sHkM0PJgABNDpcsShYPjbaEJK1++vNKcJ9cfDnY4NBgUmoxL5RjuQFFMCIAIJdHMZzGiGYk6E1uwekHbR0NXkDiHZ3nWy10LoMPynpBnQWN8+4J99hufUBLJJRhWNLaH4jCbsJzEPNj/60Y/w0Ucf4Re/+AUOHDiAN954Ay+//DIWLlwIAFAUBffffz/+/d//HX/5y1+wa9cu3HbbbcjJycGNN94IIHyGZ/bs2bjzzjuxZcsW/P3vf8c999yDW2+9dcBHRAHhb4VNLSFYk0//Fnlrg7BmdH0lz5ZlhOcE56oginI+gEMAunhrnKzyd/ht9EyKevqMjTXZgKZWDaE4XO5Vk9PaOgN3/ZeB/Wuop3zNAnNi14stN5xs38leNYR/vQJnBXwB0FgXREoHs3o74ziasL/EPNhMnz4dK1euxJtvvolJkybh5z//OZ5++mmUlJRE6vz4xz/GvffeiwULFmD69OlobGzEmjVrkJBw+rr666+/jgkTJmDmzJm47rrrMGPGDLz88suxbm6PHT3hR07m6Q7Evsbuz9ic6jxMRGcwoNP+NafUHPIj+/yedyDOsBlR5wmcW7v6yJA+EsG6I93WM2aNgf/IvgFoEQ11wYAGg1Hp8vKQr1mDJSn6b5DRpMBgVNpl50ybESfcQShn7NCSrCLQKsiym+Cqjc97p7/0yxivb37zm/jmN7/Z6XZFUfD444/j8ccf77ROeno63njjjf5oXp8cO+FHzggztn3WBCB8fXP0RV2s/aSEr2mempeDiHrO7QriKzOSe1Q3BcD33UGs21Tfv43qhMGWBX/V7m7rqcl2hOp7sOQCDXuhAODx5SBlyoXQHAb4Pt8JIHpF7oBP2g33TrQa0NIYanfyMNNuQvUJP4zm0/VVVYFoQG6WGR9sj90o4sGAa0X10Al3IGqsv79VYO6i87CihGce7mwJeaJhy4AuL0MBQLM3BEVRolf6VlTAYIKSaIWamolQ4khkiYoXACzyBpETp6HeBpsTWlN8QhXp166qGfA3B3DMcwFcJ7LabW9uEITSL0LC5JmwjC2A0TkOyfnnw1Pbcd+cuuMh2HPtUBJTAdWIRJsJLd4QUowKjp3Q16Uofc3K04+OnfBj9uWnl4XornOXoiCcmnnChijaVwB0c0VGNKDOkwH7FZfDhxGAaoBibuukG/RDgj5U1o/Ag8EGTEIVDAAmdr3L/sNrztQPQs2NCByrhDHzPAS97RdMDYbM2HWwACHvGigGE0w549GUNhKfHdoDYHNU3d17G9GUfgFqx8xCcmEtFKMZxvQEnHfk77iifAt+E9DX7y+DTQ95m0JITFChKuGl4UMBgaIaoJpM0LTwL4VitIQ/fAEkpqjw+Y3sJ0h0tlOjoto0NIVgMrQ/+/npoUkINdTCX1UGCQUhvmYAEul8q4wrQIo5FQ0I5yQrwn0tB/ojWloboSamItTa/TpRRD2ltTRATbRCTbJCOpmpOtTsReDQztM/518CNTG1Xb3kz5owdoyKP7k/hO/TDwDVgJaMPEw/72LMCAgyABztrycSBww2PdTUouH9v9YgQcJXOoMBoLLxeqQWJUaCjZyxAJ5qNmOnSwPwu/g0mGiIUHY34GtKeJ6nM0+IiwDBE4c6nR8m0FgP1e7AQQDpALYjPidIQ24XDHYn+89Q7BlMABRIqH3nXiUhBVprY492kw9gFoA/n7pBC0FrqsNeowmvQH/TkTDY9JAJwENHWuEG8AOEZxI+4UpA47rfQoJtv3Ryuj+NmmyHNv3bA99QosHOjKgEM1uA2yT84focTocTrcUb7g/QiWBrIz5ImYjxAP4GYH2/NbhrwfpjMGWPAw7GqQGkS+JvhmpOhARaO5wiQDFZup87qc1fAdjO3r8I3khMRSP012OCnYd7KAfAdACjANwHwGS0AFoIEvCHA41EdxJWUzJ6NBMp0bCiIjyPTdvqA0YAVwI4BiCvbdMpWpMbapK9011pzW68Z3PgcQBvADjeLw3uXnftJOqLkPckTDkToPmaen4nRYF00N/LBeBZRM+yIL5mwJQA6W6K7yGIwaaHrkH4LE0QwAgACYra1mGwk6yrKBDhiCiids6Yx8aOcJhRAbwPYHQvdiPBQHikVJw/mKW1EWpCSlzbQPpksDugeXt+ochgz0aovuOI3/4vld7O05zGYNND0xBekNgAYAeA1vg2h0gX6gGsQbjjrxG9POsSahszbojvFXUJtJ6a3yGu7SCdEQ1q6ghoje1HRAEAFEO7KwWKwQhoPZztXgtBgn4o5i7mYxuiGGx66H0ABwB4AHwOIGROCH+gdUJNTofWyLktiKIoCH/qtHUZCAF4DMAHAH4MoKVXOxNoreGRI3ElGrTWRqiWnk0oSNQTIU81TCMnINTQ8Rkbo92JkNt1bg+iaXE/49kf2Hm4h/4CYAPCp85Povse6WpiCrSGTpI20XCVjPAQpjNWIDgG4F8QPmtz5jtKfI1Qk7oOLZr3BNSEVGjeEzFvam9ozR6oqZlc4JJiRzRISwO0JnfH208tDHUuD+FvhmpOQqiT4eRDFc/Y9IIXQBXOntiaiHrsrDM2pwjCZ0PPvFlrcsNgc3S5O621EWpqZmzb2AdaYx3UlPR4N4N0xJg5GlpTPcTfu/OYvaE1e7v98jAUMdj0kQIlvKBHZ9tNCT0eikdEfRNyH4cxzRnvZiDkqYbB3nUII+oNc/4lCNYdbdePJkJVzzn0SKAFiimh+4pDDINNHxnsTgS7uL6ppmQgxEtRRNGMCI+IitGM3FpLI5SEzue6GShaQy0MqRldVwoFobCDMfWEaoRp1EQEjld2WsVgz+60/01HFIPpdIf7NiFPDVRb+3WohjoGm74yGLteH0YB9DycjqhPshCenM8dm92Jr2lQdNrVWhvDo0uUzj9SQ+7jMNjjf3aJBj81NR2qJRnB2sOd1lGUzhdh7ojB7kTIc9aXcZ2GbQabfqLEZdUaokHu1CdOD94aooW6HbEhgdbwlww1zuMgtCCgCRSjufM6Il0GH6JTTFnnQwKtCNV1sUyHamhbP+0MXS3I2sG2UMMJGAZBH7VY47usj9TktM57qysKlIRkaC09W8eDiNrTWrxtC/p18c1U08LfOk1dBIqBIBLurzAIzh7R0Gd0jkXIUw2ti4VV1SR7uz42ako6Qr2Z8V4kHHh0hsGmj9SEFEhXC5ApauedvoiGq0SEJ6vpyclMAboMNW2VtEALFHPSubbsnIU8NTBY9fftlwaYaoTB7kDIewII+Luo2MGbqMu/O+3P2Gi+pvB7R2fhhsGGiAbOaIQnrul8QOEZ2pYs6eYzV/OeGBSBIlh/FKp1RLybQUOcmpoOoyIwNVWj028ABiMkFIQEuwo+Z+032Y7Q2fMsaSFAVdH9F4ihhRP09ZWqdr4WlMEUPkWu8YwN6cNXAFyPrj/+VAAXAOhy8OgW4FXMxN8wG+GpLgHgS4R7E2tt/w8C8ANBNyRghGKyQvydTyAWqj8Ogz0bgaOf9uzJ9BOt0Q2T84K4toGGNgXARflpmG3/O0aYv8AX04FVnwFVntMRx6AAl+QAttTjWAstKvqkqD6EVK3dDN5GFUg1aWgJBaIHJGohGEJ+KCYzxK+fhYIYbPpITbRCOpmtUTGYAAmFC5EOGBG+itRVsNEQXvepy4/Hw8C+w7UA9iG8njcAzEZ4Tm8FgBPhFdkAQNC8JQ2i/QPCIUgQXtikGeGhVZ8CCCFYa4Yl8zwARxFeferUx3pLW6sGphO/1uyGmmQbkMcifbrYCdyZdxCjQgfQoIXgTgR+NRvYdAh4pjwcav7968DX8oP4zcerkWQEmtrOfloMwE9s78H09Rb87H2gvhUYkwaUTAYmjAA+lQ34eHQrVn92+vHybYK787bgv9JCqKyOz3PuDww2faUoEI56omFiV1uJje1t5UynIlNC2//NANJhzJwCqA74D37ZdvtYhNdlMAP4LgAVWmMqfPsnRn4O19MAnACwB8BP0cNrX+dEfM1QzAnsX0d9tu8k8OB7fpgMwENXAiOtwKvbgZPN4bMugRDwpz3AqzuAfSeif8f8IeA//+8krhsHJJnCwWaqEzAZgH9bC9Q1f4mp2afrX5IN/OsVgKFhB3KTgc5nzBl6GGz6g2gIf7hyyDdRz5x6n5w629IMwI1QYwCWsZfBf3BNF/c1ImnqP6Npy9uQFuD0xbCctv31cLXjc6UFI6sli69pYB6TdKW17Ve1JQg8sgEwG4CWQPRfkYrjHd9XABz2Ai9VnL7t7X3A/+w7/fOmQ2fUF+A/NgEN/vClLj1hsOkHkbk1DMYul10goq6dntG3qy8JQYQaj8FgsyLYcuCM26v6v4Fn0Zo94U6aDDZ0joJauJyLrr5WbzvHhcEHM46KIqJBSwItgKJCMVm6rBc88SWMGbkD1KrOSWMdjMn2eDeDaFhjsOkL1RiOwl0tGS8aZxklOlcibSsQ27usFqo9HPflCtISgNuzdmHeV1pg0NfoWaIhhX95+0AxtF3BC3Vy7V4E0toENTFl4BpFpFMh93EYulnBW2tpgJqQ2u0SDP1BVYAZecDvbwIaT1YjWPMFbrsYDDdEccJg00/CI6b4yUZ0roInq2DMzOu6khaEhPxtSzAMHHsC8MhXgSe+ASzfDPxhB/D7HUBGIjD+jDkDDQpwoa0JNrW5030RUWyw83B/0XgpiigWQp4aqBd+rft6bhcM9uzO13CLIVUBrsgNB5omP3Db28Dn9eFtIsBTZeF/jWp4bpL7LgcCchD7677EMnCsJFF/ivlf3lAohIcffhj5+flITEzE+eefj5///OeQM9aoEBEsWbIE2dnZSExMRFFREfbv3x+1n7q6OpSUlMBqtcJut+OOO+5AY+PQWVQy5K2BwZYV72YQDXniawpf/jWYuqzXozM7MaAAuPcy4K3vApUngVveOh1qzqwzNRv4wXTg/suBRj9w76oQqr1BjEnr9yYSDWsxDzZPPPEEXnjhBfzmN7/Bvn378MQTT2D58uV49tlnI3WWL1+OZ555Bi+++CLKy8uRnJyM4uJitLaenrO0pKQEe/bsQWlpKVatWoVNmzZhwYIFsW5u/9FCUOJwvZ9Id0QLr/Sd0HWftVNLK/Q3RQHy7MCyzcDdq8IToZ1iUMITn909Hci1AilmYMtR4MG/hWeIff8LIHtgr5YRDT8SY3PmzJF/+qd/irrtpptukpKSEhER0TRNnE6nPPnkk5HtbrdbLBaLvPnmmyIisnfvXgEgW7dujdRZvXq1KIoiR48e7VE7PB5P2wp6sS+KKUFSv3F3l3USLvyamM+7uN/awMIynErilGIxjZrYdT3VKPZZ/yKqwdDv7RllhahK9G2TsiD3XAa5diwkPRHy4BWQHxZAjGr8Xz8WlqFYPB5Pn3JIzM/YXHHFFVi7di0++yy8IMWOHTuwefNmXHvttQCAgwcPwuVyoaioKHIfm82GgoIClJWVAQDKyspgt9sxbdq0SJ2ioiKoqory8vIOH9fn88Hr9UaVeAp5qmGwOeLaBiK9mCp7MWe8AcYuPrEULYg7UjZhzgCsQ3nEC2gSfZs/BLyyDfjb58APC4D9tcCz5ec+yRoR9U7MOw//5Cc/gdfrxYQJE2AwGBAKhfAf//EfKCkpAQC4XOHpDh2O6D/6Docjss3lciErK7p/itFoRHp6eqTO2ZYuXYrHHnss1k+nQ4o5MTxxWBck6AeM5gFpD5FeKQC+Owl48PLDKP3iKLYmA0cbOq5rVIG85n3IGw1U1gCf1Q5oU6Me7/mtwImm8NdOIhpYMQ82f/rTn/D666/jjTfewIUXXojt27fj/vvvR05ODubPnx/rh4tYvHgxHnjggcjPXq8Xubn9MxNpeC2YroNNW81+eXyi4UJVwgv//fcO4LktGkJdJIWQAP+9E/j0ZPjsSTzVcEUForiJebBZtGgRfvKTn+DWW28FAEyePBmHDh3C0qVLMX/+fDid4Ym2qqurkZ19uqNfdXU1Lr74YgCA0+lETU1N1H6DwSDq6uoi9z+bxWKBxdL1tOsDSWtyw8Cp1YnOSUjCC/mpSvtLP2fTBNh6bGDaRUSDV8z72DQ3N0NVo3drMBigaeELzfn5+XA6nVi7dm1ku9frRXl5OQoLCwEAhYWFcLvdqKg4vUzpunXroGkaCgoKYt3kPur6UzYZLZhgbUZy1yNUiagHugs1REQRfepy3IX58+fLyJEjZdWqVXLw4EF5++23JTMzU3784x9H6ixbtkzsdru8++67snPnTrnhhhskPz9fWlpaInVmz54tU6dOlfLyctm8ebOMGzdO5s6d2+N29OeoqKwRaXLbt6aJqZPRDmYD5N+uVmRJcar8+buQ718MyUiMfw9zFhYWFhaWoVL6Oioq5sHG6/XKfffdJ3l5eZKQkCBjxoyRn/70p+Lz+SJ1NE2Thx9+WBwOh1gsFpk5c6ZUVlZG7ae2tlbmzp0rKSkpYrVa5fbbb5eGhoYet6M/g803L4Ds/yFk0ZXth3wC4WGft18MUQAZlw75w02Qbf8Cue9ySJ4t/r8sLCwsLCwsg730NdgoImdMCawjXq8XNputX/ZtVIFFVwA5qcD6L4GV+8JHoTNmA3DdOGDRlcDxBuCe9wDX0JlEmYiIaMB5PB5YrdZe349rRfVBUAP+fhg4zw5cmQscawA+OtJ5fX8IeOdT4MPDwG1TwkGHiIiIYo+rNPbRrupwh8bHNwKzxwKJPYiINU3ALz8Eqjz93z4iIqLhiJeizsGpIahGlbOLEhERxVJfL0XxjM05ODUElaGGiIhocGCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3eh1sNm0aROuv/565OTkQFEUvPPOO1HbRQRLlixBdnY2EhMTUVRUhP3790fVqaurQ0lJCaxWK+x2O+644w40NjZG1dm5cyeuuuoqJCQkIDc3F8uXL+/9syMiIqJhpdfBpqmpCVOmTMFzzz3X4fbly5fjmWeewYsvvojy8nIkJyejuLgYra2tkTolJSXYs2cPSktLsWrVKmzatAkLFiyIbPd6vZg1axZGjx6NiooKPPnkk3j00Ufx8ssv9+EpEhER0bAh5wCArFy5MvKzpmnidDrlySefjNzmdrvFYrHIm2++KSIie/fuFQCydevWSJ3Vq1eLoihy9OhRERF5/vnnJS0tTXw+X6TOQw89JOPHj+9x2zwejwBgYWFhYWFhGYLF4/H0KZvEtI/NwYMH4XK5UFRUFLnNZrOhoKAAZWVlAICysjLY7XZMmzYtUqeoqAiqqqK8vDxS5+qrr4bZbI7UKS4uRmVlJerr6zt8bJ/PB6/XG1WIiIhoeIlpsHG5XAAAh8MRdbvD4Yhsc7lcyMrKitpuNBqRnp4eVaejfZz5GGdbunQpbDZbpOTm5p77EyIiIqIhRTejohYvXgyPxxMphw8fjneTiIiIaIDFNNg4nU4AQHV1ddTt1dXVkW1OpxM1NTVR24PBIOrq6qLqdLSPMx/jbBaLBVarNaoQERHR8BLTYJOfnw+n04m1a9dGbvN6vSgvL0dhYSEAoLCwEG63GxUVFZE669atg6ZpKCgoiNTZtGkTAoFApE5paSnGjx+PtLS0WDaZiIiI9KS3vY0bGhpk27Ztsm3bNgEgTz31lGzbtk0OHTokIiLLli0Tu90u7777ruzcuVNuuOEGyc/Pl5aWlsg+Zs+eLVOnTpXy8nLZvHmzjBs3TubOnRvZ7na7xeFwyLx582T37t2yYsUKSUpKkpdeeqnH7eSoKBYWFhYWlqFb+joqqtfBZv369R02YP78+SISHvL98MMPi8PhEIvFIjNnzpTKysqofdTW1srcuXMlJSVFrFar3H777dLQ0BBVZ8eOHTJjxgyxWCwycuRIWbZsWa/ayWDDwsLCwsIydEtfg40iIgId8nq9sNls8W4GERER9YHH4+lTf1ndjIoiIiIiYrAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt1gsCEiIiLdYLAhIiIi3WCwISIiIt3odbDZtGkTrr/+euTk5EBRFLzzzjuRbYFAAA899BAmT56M5ORk5OTk4LbbbsOxY8ei9lFXV4eSkhJYrVbY7XbccccdaGxsjKqzc+dOXHXVVUhISEBubi6WL1/et2dIREREw0avg01TUxOmTJmC5557rt225uZmfPLJJ3j44YfxySef4O2330ZlZSW+9a1vRdUrKSnBnj17UFpailWrVmHTpk1YsGBBZLvX68WsWbMwevRoVFRU4Mknn8Sjjz6Kl19+uQ9PkYiIiIYNOQcAZOXKlV3W2bJliwCQQ4cOiYjI3r17BYBs3bo1Umf16tWiKIocPXpURESef/55SUtLE5/PF6nz0EMPyfjx43vcNo/HIwBYWFhYWFhYhmDxeDy9SCSn9XsfG4/HA0VRYLfbAQBlZWWw2+2YNm1apE5RURFUVUV5eXmkztVXXw2z2RypU1xcjMrKStTX1/d3k4mIiGiIMvbnzltbW/HQQw9h7ty5sFqtAACXy4WsrKzoRhiNSE9Ph8vlitTJz8+PquNwOCLb0tLS2j2Wz+eDz+eL/Oz1emP6XIiIiGjw67czNoFAAN/97nchInjhhRf662Eili5dCpvNFim5ubn9/phEREQ0uPRLsDkVag4dOoTS0tLI2RoAcDqdqKmpiaofDAZRV1cHp9MZqVNdXR1V59TPp+qcbfHixfB4PJFy+PDhWD4lIiIiGgJiHmxOhZr9+/fj/fffR0ZGRtT2wsJCuN1uVFRURG5bt24dNE1DQUFBpM6mTZsQCAQidUpLSzF+/PgOL0MBgMVigdVqjSpEREQ0zPS2t3FDQ4Ns27ZNtm3bJgDkqaeekm3btsmhQ4fE7/fLt771LRk1apRs375djh8/HilnjnCaPXu2TJ06VcrLy2Xz5s0ybtw4mTt3bmS72+0Wh8Mh8+bNk927d8uKFSskKSlJXnrppR63k6OiWFhYWFhYhm7p66ioXgeb9evXd9iA+fPny8GDBztt4Pr16yP7qK2tlblz50pKSopYrVa5/fbbpaGhIepxduzYITNmzBCLxSIjR46UZcuW9aqdDDYsLCwsLCxDt/Q12CgiItAhr9cLm80W72YQERFRH3g8nj51K+FaUURERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbvQ42mzZtwvXXX4+cnBwoioJ33nmn07p33XUXFEXB008/HXV7XV0dSkpKYLVaYbfbcccdd6CxsTGqzs6dO3HVVVchISEBubm5WL58eW+bSkRERMNMr4NNU1MTpkyZgueee67LeitXrsRHH32EnJycdttKSkqwZ88elJaWYtWqVdi0aRMWLFgQ2e71ejFr1iyMHj0aFRUVePLJJ/Hoo4/i5Zdf7m1ziYiIaDiRcwBAVq5c2e72I0eOyMiRI2X37t0yevRo+dWvfhXZtnfvXgEgW7dujdy2evVqURRFjh49KiIizz//vKSlpYnP54vUeeihh2T8+PE9bpvH4xEALCwsLCwsLEOweDye3gcTEYl5HxtN0zBv3jwsWrQIF154YbvtZWVlsNvtmDZtWuS2oqIiqKqK8vLySJ2rr74aZrM5Uqe4uBiVlZWor6+PdZOJiIhIJ4yx3uETTzwBo9GIH/7whx1ud7lcyMrKim6E0Yj09HS4XK5Infz8/Kg6Docjsi0tLa3dfn0+H3w+X+Rnr9d7Ts+DiIiIhp6YnrGpqKjAr3/9a7z66qtQFCWWu+7W0qVLYbPZIiU3N3dAH5+IiIjiL6bB5oMPPkBNTQ3y8vJgNBphNBpx6NAhPPjggzjvvPMAAE6nEzU1NVH3CwaDqKurg9PpjNSprq6OqnPq51N1zrZ48WJ4PJ5IOXz4cCyfGhEREQ0BMb0UNW/ePBQVFUXdVlxcjHnz5uH2228HABQWFsLtdqOiogKXXnopAGDdunXQNA0FBQWROj/96U8RCARgMpkAAKWlpRg/fnyHl6EAwGKxwGKxxPLpEBER0VDT297GDQ0Nsm3bNtm2bZsAkKeeekq2bdsmhw4d6rD+2aOiRERmz54tU6dOlfLyctm8ebOMGzdO5s6dG9nudrvF4XDIvHnzZPfu3bJixQpJSkqSl156qcft5KgoFhYWFhaWoVv6Oiqq18Fm/fr1HTZg/vz5HdbvKNjU1tbK3LlzJSUlRaxWq9x+++3S0NAQVWfHjh0yY8YMsVgsMnLkSFm2bFmv2slgw8LCwsLCMnRLX4ONIiICHfJ6vbDZbPFuBhEREfWBx+OB1Wrt9f10u1aUTvMaERHRsNDXv+O6DTa1tbXxbgIRERH1UUNDQ5/uF/MJ+gaL9PR0AEBVVRUvScWJ1+tFbm4uDh8+3KfTiXTueAzij8cgvvj6x19vj4GIoKGhocO1JntCt8FGVcMno2w2G3+Z48xqtfIYxBmPQfzxGMQXX//4680xOJcTErq9FEVERETDD4MNERER6YZug43FYsEjjzzC2YjjiMcg/ngM4o/HIL74+sffQB8D3c5jQ0RERMOPbs/YEBER0fDDYENERES6wWBDREREusFgQ0RERLqhy2Dz3HPP4bzzzkNCQgIKCgqwZcuWeDdJNx599FEoihJVJkyYENne2tqKhQsXIiMjAykpKbj55ptRXV0dtY+qqirMmTMHSUlJyMrKwqJFixAMBgf6qQwZmzZtwvXXX4+cnBwoioJ33nknaruIYMmSJcjOzkZiYiKKioqwf//+qDp1dXUoKSmB1WqF3W7HHXfcgcbGxqg6O3fuxFVXXYWEhATk5uZi+fLl/f3UhozujsH3v//9du+L2bNnR9XhMei7pUuXYvr06UhNTUVWVhZuvPFGVFZWRtWJ1WfPhg0bcMkll8BisWDs2LF49dVX+/vpDQk9OQZf/epX270P7rrrrqg6A3IM+rQm+CC2YsUKMZvN8rvf/U727Nkjd955p9jtdqmuro5303ThkUcekQsvvFCOHz8eKSdOnIhsv+uuuyQ3N1fWrl0rH3/8sVx++eVyxRVXRLYHg0GZNGmSFBUVybZt2+S9996TzMxMWbx4cTyezpDw3nvvyU9/+lN5++23BYCsXLkyavuyZcvEZrPJO++8Izt27JBvfetbkp+fLy0tLZE6s2fPlilTpshHH30kH3zwgYwdO1bmzp0b2e7xeMThcEhJSYns3r1b3nzzTUlMTJSXXnppoJ7moNbdMZg/f77Mnj076n1RV1cXVYfHoO+Ki4vllVdekd27d8v27dvluuuuk7y8PGlsbIzUicVnzxdffCFJSUnywAMPyN69e+XZZ58Vg8Ega9asGdDnOxj15Bhcc801cuedd0a9DzweT2T7QB0D3QWbyy67TBYuXBj5ORQKSU5OjixdujSOrdKPRx55RKZMmdLhNrfbLSaTSd56663Ibfv27RMAUlZWJiLhPxCqqorL5YrUeeGFF8RqtYrP5+vXtuvB2X9UNU0Tp9MpTz75ZOQ2t9stFotF3nzzTRER2bt3rwCQrVu3RuqsXr1aFEWRo0ePiojI888/L2lpaVHH4KGHHpLx48f38zMaejoLNjfccEOn9+ExiK2amhoBIBs3bhSR2H32/PjHP5YLL7ww6rFuueUWKS4u7u+nNOScfQxEwsHmvvvu6/Q+A3UMdHUpyu/3o6KiAkVFRZHbVFVFUVERysrK4tgyfdm/fz9ycnIwZswYlJSUoKqqCgBQUVGBQCAQ9fpPmDABeXl5kde/rKwMkydPhsPhiNQpLi6G1+vFnj17BvaJ6MDBgwfhcrmiXnObzYaCgoKo19xut2PatGmROkVFRVBVFeXl5ZE6V199Ncxmc6ROcXExKisrUV9fP0DPZmjbsGEDsrKyMH78eNx9992ora2NbOMxiC2PxwPg9GLHsfrsKSsri9rHqTr8+9He2cfglNdffx2ZmZmYNGkSFi9ejObm5si2gToGuloE8+TJkwiFQlEvGgA4HA58+umncWqVvhQUFODVV1/F+PHjcfz4cTz22GO46qqrsHv3brhcLpjNZtjt9qj7OBwOuFwuAIDL5erw+JzaRr1z6jXr6DU98zXPysqK2m40GpGenh5VJz8/v90+Tm1LS0vrl/brxezZs3HTTTchPz8fn3/+Of7t3/4N1157LcrKymAwGHgMYkjTNNx///248sorMWnSJACI2WdPZ3W8Xi9aWlqQmJjYH09pyOnoGADA9773PYwePRo5OTnYuXMnHnroIVRWVuLtt98GMHDHQFfBhvrftddeG/n/RRddhIKCAowePRp/+tOf+KanYevWW2+N/H/y5Mm46KKLcP7552PDhg2YOXNmHFumPwsXLsTu3buxefPmeDdl2OrsGCxYsCDy/8mTJyM7OxszZ87E559/jvPPP3/A2qerS1GZmZkwGAztesJXV1fD6XTGqVX6ZrfbccEFF+DAgQNwOp3w+/1wu91Rdc58/Z1OZ4fH59Q26p1Tr1lXv/NOpxM1NTVR24PBIOrq6nhc+smYMWOQmZmJAwcOAOAxiJV77rkHq1atwvr16zFq1KjI7bH67OmsjtVq5Re3Np0dg44UFBQAQNT7YCCOga6CjdlsxqWXXoq1a9dGbtM0DWvXrkVhYWEcW6ZfjY2N+Pzzz5GdnY1LL70UJpMp6vWvrKxEVVVV5PUvLCzErl27oj7kS0tLYbVaMXHixAFv/1CXn58Pp9MZ9Zp7vV6Ul5dHveZutxsVFRWROuvWrYOmaZEPnsLCQmzatAmBQCBSp7S0FOPHj+clkD44cuQIamtrkZ2dDYDH4FyJCO655x6sXLkS69ata3fJLlafPYWFhVH7OFWHfz+6PwYd2b59OwBEvQ8G5Bj0uJvxELFixQqxWCzy6quvyt69e2XBggVit9ujemFT3z344IOyYcMGOXjwoPz973+XoqIiyczMlJqaGhEJD7nMy8uTdevWyccffyyFhYVSWFgYuf+p4X6zZs2S7du3y5o1a2TEiBEc7t2FhoYG2bZtm2zbtk0AyFNPPSXbtm2TQ4cOiUh4uLfdbpd3331Xdu7cKTfccEOHw72nTp0q5eXlsnnzZhk3blzUUGO32y0Oh0PmzZsnu3fvlhUrVkhSUhKHGrfp6hg0NDTIv/7rv0pZWZkcPHhQ3n//fbnkkktk3Lhx0traGtkHj0Hf3X333WKz2WTDhg1RQ4mbm5sjdWLx2XNqqPGiRYtk37598txzz3G4d5vujsGBAwfk8ccfl48//lgOHjwo7777rowZM0auvvrqyD4G6hjoLtiIiDz77LOSl5cnZrNZLrvsMvnoo4/i3STduOWWWyQ7O1vMZrOMHDlSbrnlFjlw4EBke0tLi/zgBz+QtLQ0SUpKkm9/+9ty/PjxqH18+eWXcu2110piYqJkZmbKgw8+KIFAYKCfypCxfv16AdCuzJ8/X0TCQ74ffvhhcTgcYrFYZObMmVJZWRm1j9raWpk7d66kpKSI1WqV22+/XRoaGqLq7NixQ2bMmCEWi0VGjhwpy5YtG6inOOh1dQyam5tl1qxZMmLECDGZTDJ69Gi58847232Z4jHou45eewDyyiuvROrE6rNn/fr1cvHFF4vZbJYxY8ZEPcZw1t0xqKqqkquvvlrS09PFYrHI2LFjZdGiRVHz2IgMzDFQ2hpMRERENOTpqo8NERERDW8MNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkGww2REREpBsMNkRERKQbDDZERESkG/8fgYQn1+7MrcAAAAAASUVORK5CYII=",
       "text/plain": [
        "
" ] @@ -354,7 +355,7 @@ }, { "cell_type": "code", - "execution_count": 323, + "execution_count": 15, "id": "f2096d54", "metadata": {}, "outputs": [], @@ -375,7 +376,7 @@ }, { "cell_type": "code", - "execution_count": 324, + "execution_count": 16, "id": "f6e9abe6", "metadata": {}, "outputs": [], @@ -402,7 +403,7 @@ }, { "cell_type": "code", - "execution_count": 325, + "execution_count": 17, "id": "375fbdb0", "metadata": {}, "outputs": [ @@ -437,21 +438,21 @@ }, { "cell_type": "code", - "execution_count": 326, + "execution_count": 18, "id": "6943c11b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "{'0': [1295, 961],\n", - " '1': [1060, 995],\n", - " '2': [1092, 43],\n", - " '3': [1321, 86],\n", - " '4': [977, 899],\n", - " '5': [753, 922],\n", - " '6': [786, 102],\n", - " '7': [1004, 129]}" + "{'0': [1431, 803],\n", + " '1': [1642, 820],\n", + " '2': [1670, 160],\n", + " '3': [1460, 167],\n", + " '4': [1242, 814],\n", + " '5': [1474, 834],\n", + " '6': [1506, 86],\n", + " '7': [1276, 100]}" ] }, "metadata": {}, @@ -468,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 327, + "execution_count": 19, "id": "fe63d521", "metadata": {}, "outputs": [], @@ -492,25 +493,25 @@ }, { "cell_type": "code", - "execution_count": 328, + "execution_count": 20, "id": "18e09dae", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[[[977, 899], [786, 102], [1004, 129]],\n", - " [[977, 899], [753, 922], [786, 102]],\n", - " [[1092, 43], [753, 922], [786, 102]],\n", - " [[1060, 995], [1092, 43], [753, 922]],\n", - " [[1060, 995], [1092, 43], [1321, 86]],\n", - " [[1295, 961], [1060, 995], [1321, 86]],\n", - " [[1295, 961], [1321, 86], [1004, 129]],\n", - " [[1295, 961], [977, 899], [1004, 129]],\n", - " [[1092, 43], [786, 102], [1004, 129]],\n", - " [[1092, 43], [1321, 86], [1004, 129]],\n", - " [[1295, 961], [977, 899], [753, 922]],\n", - " [[1295, 961], [1060, 995], [753, 922]]]" + "[[[1242, 814], [1506, 86], [1276, 100]],\n", + " [[1242, 814], [1474, 834], [1506, 86]],\n", + " [[1670, 160], [1474, 834], [1506, 86]],\n", + " [[1642, 820], [1670, 160], [1474, 834]],\n", + " [[1642, 820], [1670, 160], [1460, 167]],\n", + " [[1431, 803], [1642, 820], [1460, 167]],\n", + " [[1431, 803], [1460, 167], [1276, 100]],\n", + " [[1431, 803], [1242, 814], [1276, 100]],\n", + " [[1670, 160], [1506, 86], [1276, 100]],\n", + " [[1670, 160], [1460, 167], [1276, 100]],\n", + " [[1431, 803], [1242, 814], [1474, 834]],\n", + " [[1431, 803], [1642, 820], [1474, 834]]]" ] }, "metadata": {}, @@ -532,7 +533,7 @@ }, { "cell_type": "code", - "execution_count": 329, + "execution_count": 21, "id": "e456f46e", "metadata": {}, "outputs": [], @@ -564,14 +565,14 @@ }, { "cell_type": "code", - "execution_count": 330, + "execution_count": 22, "id": "003f8fcb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "483849.0" + "286724.0" ] }, "metadata": {}, @@ -580,10 +581,10 @@ { "data": { "image/svg+xml": [ - "" + "" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -599,7 +600,7 @@ }, { "cell_type": "code", - "execution_count": 331, + "execution_count": 23, "id": "104a250d", "metadata": {}, "outputs": [], @@ -643,13 +644,13 @@ }, { "cell_type": "code", - "execution_count": 332, + "execution_count": 24, "id": "0d1af87c", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHlCAYAAAA+8YdPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYSJJREFUeJzt3XmclXXd//HXObMPw2wsM4CAoAiIiAuKuLVIoJmaWqmRt5m3lmFllprdqdlyY1pWdrtk9/1T7/s2Le9Sy1wiN1JHQGSRRQRBQGDYZ9/nfH9/HDg6ys7MnDPD6/l4fB405/qe63zOdDln3vO9ru8VCSEEJEmSJOkAF012A5IkSZKUCgxHkiRJkoThSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSUCKh6O77rqLgw8+mOzsbMaNG8fMmTOT3ZIkSZKkbiplw9Ef/vAHrrnmGm6++WbeeOMNxowZw6RJk9iwYUOyW5MkSZLUDUVCCCHZTezIuHHjOO644/iP//gPAGKxGAMHDuQb3/gG3/ve95LcnSRJkqTuJj3ZDexIU1MTs2fP5oYbbkg8Fo1GmTBhAmVlZTt8TmNjI42NjYmvY7EYW7ZsoVevXkQikQ7vWZIkSVJqCiFQXV1N//79iUZ3fvJcSoajTZs20draSklJSZvHS0pKeOutt3b4nKlTp3LLLbd0RnuSJEmSuqDVq1dz0EEH7XR7yl5ztLduuOEGKisrE7Vq1apktyRJkiQphfTs2XOX21Ny5qh3796kpaWxfv36No+vX7+e0tLSHT4nKyuLrKyszmhPkiRJUhe0u8ttUnLmKDMzk2OPPZbnnnsu8VgsFuO5555j/PjxSexMkiRJUneVkjNHANdccw2XXHIJY8eO5fjjj+dXv/oVtbW1XHrppcluTZIkSVI3lLLh6IILLmDjxo3cdNNNlJeXc9RRR/HMM898ZJEGSZIkSWoPKXufo/1VVVVFQUFBstuQJEmSlCIqKyvJz8/f6faUvOZIkiRJkjqb4UiSJEmSMBxJkiRJEmA4kiRJkiQghVerkyR1tDQgE4gBjUnuRZKk5DMcSdIBowDoCwwDTt7272igApgNzATWAguBSqA2KV1KkpQshiNJ6naiQG/iQeho4HhgADAGKCYekgAiH3jO8cCVQAA2A+uAt4B/AhuB14FNQDXxmSZJkrofw5EkdWlZQA9gIDCW+GzQCcAhQBGQS9sQtDORD/zbZ1sdCXyBeBiqJT6rtAqYDiwGlgFrgCqgqV3ejSRJyWQ4kqQuIwfoCYwkPgs0AhgP5BOfGcqgY9bZiW573eHb6lNAC9BKfIZpLfFT8mYD7xGfcaoC6jqgF0mSOo7hSJJSToT4bFAxcAzxU+ROJR6KDiI+qxNlz2aEOkr6tjp4W51IfIYpED/9bh2wAHiZ+Gl5bwBbiJ+WFzq9W0mS9kQkhNAtP6WqqqooKCjY/UBJSqrtIWMQcCjxAPRxYDDxU+XyiYegZAah/RG2VRXxGaZ3gZeIB6gZxENUFfGZKEmSOlZlZSX5+fk73e7MkSR1mnTi1wANA4YQv0ZoHPEZoqHErx/KSFp3HWN7sCvcVocDnyY+y9RE/JqltUDZtn9fJ34tUxVQ3+ndSpIObIYjSeoQGcTDQAlwGPHT4g4FRm17LIuuPSO0v6JANvGFIw4BTiE+w9QKbCAelOYTD0pvAnOJLzle0/mtSpIOGIYjSdovEeI3Uy0B+hG/RugE4jNBhxMPAHkfGKudixD/WOq/rcby/ml5FcQD00riQWkJ8UUgNhCfZWrt9G4lSd2P4UiS9liEeNgZsK1OJh6Kjie+KEEB788IqX1sn10r3lZHAGcSPy2vgfhpeZuJX7+0FJgFrCA+w9SAiz9IkvaG4UiSdihCPOz0IP4L+dHEl84+nnggyic+Y2QQSo4o71+/tf3eTjHiM0jlxFfFm0n8fkzziJ+aVwdUYmCSJO2M4UiSiBIPO72B44hfFzQaOIr4L+DFHNjXB3UV0W01cNvXh/P+aXlbiN/Idi7xsLSY+CxTLfFT82Kd3KskKRUZjiQdYDKJzwgNID7jMJL4YgkDiV/nkkvH3EhVybE91PbeVoOBc4iHoTriM0zvEJ9lenvbv1uJ38zW5cUl6UBjOJLUjWUSPy1uJPGV4o4lflpcv22Vtq104IkSXygjj/ixcDLxwNRC/NS7PwHfwIAkSQcWw5GkbiBCPAj1Jn590CHEf9ktBYZvezwDT4vTrkWJH0d9gIuAnxOfVZIkHSgMR5K6mDTiK8INIv5L7LHEb6Q6hPj9hPLofjdSVedLx49ISTrw+JNfUgrbviLZoG11CvGFEoYSD0PpOCMkSZLai+FIUgrJJr7C2MHEb6Z6GPGZod7EZ4RcMU6SJHUcw5GkFBEFfgFcQny2CAxCSi7vhyRJBxrDkaQUUQCcRXx1OSnZlgNrk92EJKmTeTMPSSnEZbWVKuqBhmQ3IUnqZIYjSZIkScJwJCll9MAluCVJUjIZjiSliJFAr2Q3IUmSDmCGI0kpwpXpJElSchmOJEmSJAnDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJ2oGlQCzZTUiSOpnhSFKKOBJXrFPqWI7hSJIOPIYjSSliEIYjSZKUTIYjSZIkScJwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSUkZmshuQJEkHOMORpBSQDYxPdhOSJOkAZziSlAIiQHqym5C2CcDWZDchSUoCw5EkSW20AK8luwlJUhIYjiRJkiQJw5EkSZIkAYYjSZIkSQIMR5IkSZIEdEA4mjp1Kscddxw9e/akb9++fPazn2XJkiVtxjQ0NDBlyhR69epFXl4e559/PuvXr28zZtWqVZx55pnk5ubSt29frr32WlpaWtq7XUkpoTdQlOwmJEnSAa7dw9FLL73ElClTeO2115g2bRrNzc1MnDiR2traxJhvf/vb/PWvf+XRRx/lpZdeYu3atZx33nmJ7a2trZx55pk0NTXx6quv8uCDD/LAAw9w0003tXe7klJCX6BXspuQJEkHutDBNmzYEIDw0ksvhRBCqKioCBkZGeHRRx9NjFm8eHEAQllZWQghhKeeeipEo9FQXl6eGHPPPfeE/Pz80NjYuEevW1lZGYjfrMKyrJSvYwM0BgiWlQLVFGB8SP5/F5ZlWVZ7V2Vl5S4zRIdfc1RZWQlAcXExALNnz6a5uZkJEyYkxowYMYJBgwZRVlYGQFlZGaNHj6akpCQxZtKkSVRVVbFw4cIdvk5jYyNVVVVtSpIkSZL2VIeGo1gsxtVXX81JJ53EEUccAUB5eTmZmZkUFha2GVtSUkJ5eXlizAeD0fbt27ftyNSpUykoKEjUwIED2/ndSJIODI1A7W5HSZK6nw4NR1OmTGHBggU88sgjHfkyANxwww1UVlYmavXq1R3+mpKk7mgdsDzZTUiSkiC9o3Z81VVX8eSTTzJ9+nQOOuigxOOlpaU0NTVRUVHRZvZo/fr1lJaWJsbMnDmzzf62r2a3fcyHZWVlkZWV1c7vQpJ0YArJbkCSlATtPnMUQuCqq67iscce4/nnn2fIkCFtth977LFkZGTw3HPPJR5bsmQJq1atYvz48QCMHz+eN998kw0bNiTGTJs2jfz8fA4//PD2bllS0hUCkWQ3IUmSDnDtPnM0ZcoUfv/73/PEE0/Qs2fPxDVCBQUF5OTkUFBQwGWXXcY111xDcXEx+fn5fOMb32D8+PGccMIJAEycOJHDDz+ciy++mNtuu43y8nJ+8IMfMGXKFGeHpG7peDpwIluSJGnP7OXK3LvFTpbNu//++xNj6uvrw9e//vVQVFQUcnNzw7nnnhvWrVvXZj/vvvtuOOOMM0JOTk7o3bt3+M53vhOam5v3uA+X8rasrlTfDyR9+WbL2l5vB+gRkv/fhWVZltXetbulvCPbAk23U1VVRUFBQbLbkLRHvg/8NNlNSNssBY7GFeskqfuprKwkPz9/p9s7/D5HkiRJktQVGI4kSZIkCcORJEmSJAGGI0mSPqQl2Q1IkpLEcCQpyaLAmGQ3IX3ATKAu2U1IkpLAcCQpySLAgGQ3IX1AI/EVXyVJBxrDkSRJkiRhOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSUmXDmQkuwlJkiTDkaRk6w8cluwmJEmSDEeSki0KpCW7CUmSJMORJEnvC8CcZDchSUoSw5EkSW28l+wGJElJYjiSJEmSJAxHkiRJkgQYjiRJkiQJMBxJSrrBQGaym5AkSTIcSUq2IUBWspuQJEkyHEmSJEkSGI4kSZIkCTAcSZIkSRJgOJIk6QOqgGXJbkKSlCSGI0mSEhqAzcluQpKUJIYjSUmWnuwGJEmSAMORpKT7WLIbkCRJAgxHkpIuN9kNSJIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkKamygN7JbkL6gE3EbwQrSToQGY4kJVE+cGiym5A+YClQnewmJElJYjiSJEmSJAxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCQp6SLJbkCSJAkwHElKqlFAYbKbkCRJAgxHkpIqD8hIdhOSJEmA4UiSpA+oT3YDkqQkMhxJkpTwUrIbkCQlkeFIkqSE5mQ3IElKIsORJEmSJGE4kiRJkiSgE8LRrbfeSiQS4eqrr0481tDQwJQpU+jVqxd5eXmcf/75rF+/vs3zVq1axZlnnklubi59+/bl2muvpaWlpaPbldSpRiS7AUmSpIQODUezZs3it7/9LUceeWSbx7/97W/z17/+lUcffZSXXnqJtWvXct555yW2t7a2cuaZZ9LU1MSrr77Kgw8+yAMPPMBNN93Uke1K6nTD8CawkiQpZYQOUl1dHYYNGxamTZsWPvaxj4VvfetbIYQQKioqQkZGRnj00UcTYxcvXhyAUFZWFkII4amnngrRaDSUl5cnxtxzzz0hPz8/NDY27tHrV1ZWBsCyrJSu3wYIlpVC9ZWQ/P8uLMuyrI6qysrKXWaIDps5mjJlCmeeeSYTJkxo8/js2bNpbm5u8/iIESMYNGgQZWVlAJSVlTF69GhKSkoSYyZNmkRVVRULFy7sqJYlSZIkHcDSO2KnjzzyCG+88QazZs36yLby8nIyMzMpLCxs83hJSQnl5eWJMR8MRtu3b9+2I42NjTQ2Nia+rqqq2p+3IEmSJOkA0+4zR6tXr+Zb3/oWDz30ENnZ2e29+52aOnUqBQUFiRo4cGCnvbYkqTuIAY27HSVJ6r7aPRzNnj2bDRs2cMwxx5Cenk56ejovvfQSd955J+np6ZSUlNDU1ERFRUWb561fv57S0lIASktLP7J63favt4/5sBtuuIHKyspErV69ur3fmiSpW6sFZia7CUlSErV7ODrttNN48803mTt3bqLGjh3L5MmTE/87IyOD5557LvGcJUuWsGrVKsaPHw/A+PHjefPNN9mwYUNizLRp08jPz+fwww/f4etmZWWRn5/fpiSlug45s1faD63JbkCSlETt/ptJz549OeKII9o81qNHD3r16pV4/LLLLuOaa66huLiY/Px8vvGNbzB+/HhOOOEEACZOnMjhhx/OxRdfzG233UZ5eTk/+MEPmDJlCllZWe3dsqSkyAWOT3YTkiRJCUn5s+0vf/lLotEo559/Po2NjUyaNIm77747sT0tLY0nn3ySK6+8kvHjx9OjRw8uueQSfvSjHyWjXUkdIgL4xw5JkpQ6IiGEkOwmOkJVVRUFBQXJbkPSTvUA5hC/EWz3Fom2EGJpeMPbVFcNHAUsT3IfkqSOUllZucvLbzrsPkeSJEgn8MVPPU1RXnWyW5EkSbthOJKkDnQocNFzp1NX07PDXysSiRGJxDr8dSRJ6q5cKkqSOtCniPBYS0bH3D0nEiMzq4FeB61i0BHzGD/yLVrrenLPPVNoafJ6LkmS9pbhSJI6SCZwEvC9dttjID2zibziTRxyzEyGHD2LPoNX0FDTk/cWj2Ju2cn84tpfMGvZEF576hwInhwgSdLeMBxJSpIiIC/ZTXSo47b9+94+7yEQTW+hoPcGDhr5JgePeYO+By+nqSGbTasO5s0XJrF2yUhqK4qJtaaRntbKqrOe5pKrfkVTa5Q3nj3LgLRXuuX6RJKkvWA4kpQkA4HeyW6iQ30GeAZo2YvnRNOayS2opM+gFRw85g0GH/kGWTm1lL8znHfnH82Mxy9g85qBtDZnfuS5La3p/L/Hz+H8jAY+dfl/EEKEOc+ehavk7al3gPJkNyFJSiLDkSR1gDziM0f37nZkICe/kn6HLmHo0bPof9hicnpWUbOlF2+Vncrffn09W8sH0NKUyZ6EnFfmHcnln/0L//zdNznlovtZt2w45e8ctkfPVS10zNVhkqQuwnAkSR3gSGAzsLrNo/HTtrLzqinu9x4DR73J4NFvUFi6jurNvVkxdyzPP/A1Nr83iPrq7fdg2LtQs6UqnzlLhjMsLY1n7r2az373xzx2+02sXz5sr/clSdKBxnAkSR3gdOAhIEYgLaOZwtK1DBy5gBEnvUh+7w001eey9u0RzHj8AtYvH0ZDXY92uj4owkPPfIqb/vUBHv7x93ktv5KLbrmWh2++3YAkSdJuGI4kqZ3lR1s5Nqee549/hbOOep3+w96iuTGbd+cfw6y/nM+GlUPjiyi0pNMRYWXFmgG0xiKMGrqc+c+fTp/BKzj3ult48Nq7qa8uaPfXkySpuzAcSVI7OuPkl/nsgHeJLBlO4dEzWT7vWF7+w79QtbGE1uYMOmPmprk1jb9MP4ULP/UP5r59Jc/ffyUhFuXsa37KEz+/kYbajr8hrSRJXZFrvEpKku55elff/CouqCnk5b7refI/rmP+c59m69rtq8t11nuO8Mq8IzlmxNsU5VfT2pLBCw9+lZamLM69/maye1R3Uh+SJHUthiNJSXIC3XHy+rlpE9g0bwzRzzzGZ6+9hfw+yVkaunxzMXOWHManTywDAq0tGTx779Xk9KzitK/cTSTampS+JElKZYYjSUlSSHeZPYpEWynq9x4QGNucSWTkW1S+NoEQi3LBzd+j//CFdP4NRiM8+o9PctpxrxONxF+7Zmsv/vijn9HroFWc+LnfG5AkSfoQw5Ek7afRaa1cc/A7ZEQCE4Hr3zyCjx35Js/ceT1z/34mk3/ybYaPn040bW9uB7v/5i87hIIetYw4eGXisZqtxTx22w855ownGH++AUmSpA8yHEnSfhrfnElr2ccYFKIMBp5ZX8LWqnzGHb6E1/96Pn+a+mPO+PodfPzi/yQ9o/NuMtrYnMmfXvg4Z570Ku/PXEWo3tybv9zxfU783EMMHz+dzp/VSlXvALFkNyFJSiLDkSTth3RgAvA0gQkEZgI1IcJDz0zk7FNeBmD5G8fz8M0/56CRC7jgh9eRW7C10/r7x8yxnHzUPHr2qPvAoxFWvnk0j/7k3/n4xf/JoCPmYkACWILfB0k6sBmOJHU56WnNDB/0Fsn9RTYQicQoJjCy3wp6HzWdT098mKey6pg47u+s3ZTPKUfNYMTglUCE9cuH8ehPfkpdZSFf+verOWjkm53S//otxbzz3gAmHPf6h7bEA9LTd32Hc77zUwOSJEkYjiR1QWnRVvr1Xkckkqxf5gPHHz6T3//oi9z++d+wpmAz/TKayNjah4XNWYQQobEpnWkzjuLTJ8VXiwOory7giV/cyOKXP8651/2Q0Z98thOu+Ynwv0+fzqdPLCPtI68VYeWCo5j91Dl84cbvUzJ0WQf3IklSajMcSUqCCFC0z89ubM7mxTc+QQid+yNsUOlKRh8yn75FGwAYM2weZ1z6U4bc/C98d9RMZiwfRUOA3Ow6+vVex9NlJ3HBp/5C36L3T6OLtabzz0cu4ck7r2fiFXdy8gX/TWZObYf2vWjFweTn1XLowPc+ujFEKfvTFyn784VM+tov6VG0uUN7kSQplRmOJCVBOnB8spvYa7X1PYjFohx92BzeWHIMf/j7RWS9/klefOF82NSP6lEzyMps5OV5J1Nd25PeBeW89uYYTj1mLm1OWQtRVsw5jvuv+S3Dx0/n3OtuoUfhFjrqtLaGpkyeKRvHFyY8v8PXCLE0Xn30S6x443g+/2/f3xaQPMVOknTgMRxJ0h7aXNmbhStG8eyMSbS0pjN/ydG8/uxkHvzdLSx88lIeeP00GhqzE+P+9ML5/OdfPsfnP/kC6WkfPaVty9qBPHzTz6nZ0ptL77iCvgcvp2NCSYQXZx/DyWPm0TO3bocjQiyNGY9/gab6Hnz+3/6NzJwdj5MkqTszHEnSXokAEbIyG7n83N8y+ss/5efXXckbh8/i06c+QV5uTZtxC98ZSnNrGkce+s4O91Zb0Ytn7r2aN54+h/Ouv5mRJ78AkfZfTvrddaUsX9ufjx87Z6djmhpy+fPPfkhDbR6nfvF+ounN7d6HJEmpzHAkSXss8Knj/05udi0hFqE5u4X/fPXTHBJLY/DZ/8ngfiv59IlP8cHZn9ZYlIefnchXzn6Snc0KtTZn8uqjX+LF//lXPvnlexn32T+SntnQvp2HKI/8fQKnj3+NyC7CV0NNPo/ffhO9Bq7kE/9ynwFJknRAMRxJ0l54e9VhNDVnctqxLzDooW/y7p+/xj9+dQfX3flz5r59FLnZdWS0CRQRXpx9NAP6bmRAn4272HOEt179GA/f9AuO+tTfOOPrd5CTX0F7nmY3a9FIBpWWc3C/dbsc11CTz1O/uZYjPj6NT17yW6JpLe3WgyRJqcxwJEl7LMLK8oNpaU3n3fKDqRwxm7P7rOUPzdlU1OXzt1fO5G+vnElzS0abZ9U2ZPPczLFc/Oln2XXYibBl7UE88N17SMto5uKp36So35rdPGfP1TVk89QrJzLxhJm73Wf15j784Uc/4/BTnmf4Cf9stx5SVyuwPNlNSJKSzHAkSXspI72Zow6dR/QfFzKqojevJrZE2LC1hPj1Rh8U4f+e/wTHj1pEXm79bvYeobEujyd/fT1znjmbS26bwmHjXqZ9wkmEp14dz6QTZpKT1bjbseXLDuOPP57Kx770Xwwb90o79ZCqWoGlyW5CkpRkhiNJSVACDEx2E/usuSWTR577PI+d/DKP5TaxaQ+es35LESvW9Oesk/csZLQ0ZTPryfP4253XcdpX7uFjk/+rXa7/WVVewsathZw0Zv4ejI5Q/s5hPHf/1zj32ls4rNsHJEnSgc5wJCkJegD5yW5ivwSiPPTqqdzamrZHcSGEKPc9fjafO+0FsjL2MOSEKEtnnciff3YLB495g89882f7fZPWEKL879OTOOuUV3a5MMP7IiyddSL/+H9TmPjVX1FYuhYDkiSpuzIcSdI+2rDyEDasGbTH45euGkhVbQ+OHbFkL14lwvrlw/jDj24lr2gLn/+379Nn8DvsT0CZ+/YwRg1dwUF9d7VAxAeEKHOePptXH/0S53/vJgpLdr2ggyRJXZXhSJI6SSxE+O+nTueK854gfS9XgGuoyefRn/yUZa+P55LbrmLIUa8TiX74xrJ7proul+lzxnDeJ15kT0NWCFHeeOZs3nvrCC760XcpLFm7T68tSVIqMxxJUqeJ8Mq8I0mLtnLIQWv2+tnNjTm88seLefLO6zj3uls48XMPEU3b++uQeubWccpR88nvUbt3TwxRnr//a5QvH8bEK+4kPat978UkSVKyGY4kqRM1NWfwyN8n8KUzdres946FWBpvvfJx/vjjqQwfP53zv3cz2XlVe/z83Ox6pk65l/nLDuH2/5nMR1fW27Xmxhye/PX1NNXncvrXftnuN6uVJCmZDEeS1MlemXckx45Ystubse5chPcWH8Eff/Qz0jKauehH36Vk6FJ2F7Zysxv4xdW/Ib9HLf9291dpaMrap1dvbsjlb/9xLQV9yzljyi8MSJKkbsNwJCkJBgDpyW4iaSpq8vi/5z7BF0//O/u+sEKEmq3FPPqTf2f1wiP5/L99P36z1p2sQBeJxLju4v9l1JAV/Ns9V+xzMNquuSGHp+/6LoOPmMvJF/73Tl9XkqSuxHAkKQlGAPv3y3nXFuFPL3yMkQevpLBnzX7tp7Ulg+fuv5Jp/3kVZ1/zU44/+//I+NC1QJFIjC+d8SzjjljE5JtuZvX60v1rf5staw/i9zf9gkPHlnHkac908YDUsK0kSQcyw5EkJUFlTR7vru23VyvG7UyIpbGk7FQevP4ujv3043zmW7duuw4pEInEuPiMZ/nmBY/ytanXsnp9yX52HhIVyYixdUs//nLvDXzs8t8x5ITX9/u9JM8aYEWym5AkJZnhSJKSIsL/++tnOP2EGXt+U9jd7G/DikN46Ae/BAJf/vmVFPd/j08c+wY3XnY//3b3V1lZXsruF2AIEIlXJLuFtMIG0gobyBq+mZyj1tPj5DUUfmEJhRcsoeiLiym+eBGtJzQy7eV/pW5wRju8j2TpqqFOktSeDtyT/iUpyd5dV8rytf05acx8nn/9WPZ25biPilC1sYS//voGTrnwAb7zs6s5LZLLlNu/w99nHL9t/wHSAkQgEg2kFTVAJJDet460/CaIBjIH1BDJaI3/+SwaDw0tG3MIDem01mRSO6MfALHKLGJ16RAiNJ5YQKy+K4cjSZIMR5KUNCFE+cv0k/nGF/6Pf84dQ3NL+4SLlsYsNr1yGqd/+kX+2dTAxoPWkXP4JtIH1hCJBNL61BPNaoUAsaY0CNCyMZdYVRahGWqmH0RoSiPWkB4PPwCtEXYe3gLRHi20bMrdxRhJklKf4UiSkmjmwsNpbM7guMMX8+r8I9tln32LtnL/jVP5v6fP4P7Z4+h5xgoyGyppXFUAMWiZXUqsIQ1ChFhtxgfOKNvHYJMWn3mqLevfLv1LkpQshiNJSeDljtu1tKbz2z9/lrNPfZnX3jyCWNi/701hXjU//9Z/8MT0U/j5Q18k+5PvUfH0WBre7NNOHX9UJD0G0UBo8v9XSVLX5ieZpCQ4OdkNpJR5Sw/liKHLGTZo9X7tpzCvmv+47hcse28Atz74JVozA2kFjTQuKW6nTncsraghfhpendccSZK6NsORpE4WAfKT3URKqWvI5qFnJ3L5Z/9CZB/vFZST1cDd3/s5BXm1/PL3F9Lckk72qM00rSjo8BmdtLxmYjUZLvgmSeryDEeSlHQRnnz5JIb2X0vvgsq9fnZatJWvnvsEudkNfOXH36e6LpdITgtZw7fQsKSYjl4kIb1fLc3re3T460iS1NEMR5KUAmrqcpi1eAQXTPwHezMFkxZtZcrn/8THj32Dy3/6PTZuLQIg+7CtNK/MJ1aV2UEdbxeIZrUQGtI6+HU6WitOfUmSDEeSlBIi/PffzuDTJ5ZRkFezh88JfO38x7jy/Me48beXJ4IRaYGsEVtoWNyLDp/NiUBGv1qa1+R17Ot0uBlAY7KbkKQuJTcbsjNhUCmMPBiGD4LSXpDWhROGq9VJUopYs7EPf5l+CqW9tlBZ03M3owPjRy/g4jOe5dIf/RtvLjsksSVraAWhPp2WTTkd2zAQyWyFaCDW0NU/Tupx5kiS9tyQ/nDr12Hu27DyvQyOPTxQV5NGQ306z82vZ8biQCAw8mBYuhpaWpPd8Z7p6p9mktSNRLjv8XMIsQhDWA7ACobuYFzgxNELuO2bd3H1Hd/itQWjSMwQRQLZI7dQ93ophI6/Biia0xIPR7WuVCdJB5LjR0Y4pE82w3rkU7H2s4zJrqQqq4aVLxzLJ986mXI2sJAFHF60mdsr/8GC6uW0tiS7693rwpNekrqmTKAg2U2krFgsSjb13MZ1fJbHdzgmM72FayY/zP1/PbNtMALS+9ZBWozmdT06pd+0XvW0VmRDzMUYJOlAUr9wNP2fup4+0WLemTOATb+4mcm/3MTn37iLKeEb3Md91EZq6F1Sx8WjJ9CzV9eYk+mQcLRmzRq+9KUv0atXL3Jychg9ejSvv/56YnsIgZtuuol+/fqRk5PDhAkTWLp0aZt9bNmyhcmTJ5Ofn09hYSGXXXYZNTV7eh6+pNRVBByW7CZSWOB0nuFs/kKEAIl6f3tzSxpTfvRt/vHkkYynjKOYEx8TCeSOLafhrV6ddIZYIC2/iVh1RqfMUkmSUkdN8XKuXvI/vLkym+MPHsUV0ct4NfYaG9nEW7zFS7zEf2X/hvsa/pfr/nkfFeu7wLQRHRCOtm7dykknnURGRgZPP/00ixYt4he/+AVFRUWJMbfddht33nkn9957LzNmzKBHjx5MmjSJhoaGxJjJkyezcOFCpk2bxpNPPsn06dO54oor2rtdSUnhL9I7k0Ezl/M7MmmmJ9VM4ln6sxYIZNDEESzgD1zA3+pOZ25sDNP4FBfyCADRHs1EslppXFZIZ32PMw6qpum93V0fJUnqbpoyamgueYfWg+ZSe8lXqRn26kfGFBfAmo0Q60qXdIZ2dv3114eTTz55p9tjsVgoLS0Nt99+e+KxioqKkJWVFR5++OEQQgiLFi0KQJg1a1ZizNNPPx0ikUhYs2bNHvVRWVn5wT+5WpaVMlUaYFOAYO2wYuFH/CAECA9yccinImTSEC7mwVDGuLCMoWEmY0MNuaGFaPgtl4ceVAeIhR4nrQ65Y9eF+MdQ5/Ra+IXFIWNgZQp83/a37gzJ/2/Dsiyr61RJMeFznyT869mEqVcSvnAa4UunE6LR98ccM5xwyEHJ7/WDVVlZucsM0e4zR3/5y18YO3Ysn//85+nbty9HH300v/vd7xLbV6xYQXl5ORMmTEg8VlBQwLhx4ygrKwOgrKyMwsJCxo4dmxgzYcIEotEoM2bM2OHrNjY2UlVV1aYkqeuJ8Ee+wAoOZgnDqSKfQIRvcidNZHI/l5JPFbnU8b98iWu4g1ryiOS0kDm0kobFHX/T10SnmTEimbFOWRVPkpRaNldCz1z42nlw+olwy+WQmQ4hxLdnZsSX9d5ckdQ291q7Xxm1fPly7rnnHq655hq+//3vM2vWLL75zW+SmZnJJZdcQnl5OQAlJSVtnldSUpLYVl5eTt++fds2mp5OcXFxYsyHTZ06lVtuuaW9344kdboFHMHXuJd19AMixIgyjzGcz584gddIo5VXOImb+BG15AGBrCGVNC4t6tRV4yLpMaLZLdDqaZKSdKBpaYXZb8EPfgtZGfElvVetj4ejIf3h48fAP2ZCRRdbMqDdZ45isRjHHHMM//7v/87RRx/NFVdcweWXX869997b3i/Vxg033EBlZWWiVq9e3aGvJ0kdJ8LfmcSbHAlAK+n8km/TQDaNZHE3X+dM/sYqBsVHZ8TIOWpDp15rBPGV8VorsgjNaZ32mh0jAF3jQmFJSiVrNgIBlqyE8i1Q1BPGjYLCnvDsa7B6Q7I73HvtHo769evH4Ycf3uaxkSNHsmrVKgBKS0sBWL9+fZsx69evT2wrLS1lw4a2382Wlha2bNmSGPNhWVlZ5OfntylJ6i4WM5IJ/IP7uILv8nOqKGB7EMoatpXWimxaN3fu6W2R7Jb4zV+7/Ep1AZie7CYkqcvZXAmvvwVHHgoTjoOjD4OqWli0HNZuSnZ3+6bdw9FJJ53EkiVL2jz29ttvM3jwYACGDBlCaWkpzz33XGJ7VVUVM2bMYPz48QCMHz+eiooKZs+enRjz/PPPE4vFGDduXHu3LKlTjQRc3WxvxUhjIaP4Pv9OE5nvb4gGsg7bSt3skk4PKVlDKml6t7v8Iaou2Q1IUpe0qQL+9AI8XQbPvQ6L34XG5mR3tR/2aOm3vTBz5syQnp4efvrTn4alS5eGhx56KOTm5ob//d//TYy59dZbQ2FhYXjiiSfC/PnzwznnnBOGDBkS6uvrE2NOP/30cPTRR4cZM2aEl19+OQwbNixcdNFFe9yHq9VZVqrW+aHzVlPr/pUxoCoUfmFxIK21c187EgsF574dMg/ZkvTvwf5Xa4CJIfn/bViWZVkdXbtbrY69jz+799e//jUcccQRISsrK4wYMSLcd999bbbHYrFw4403hpKSkpCVlRVOO+20sGTJkjZjNm/eHC666KKQl5cX8vPzw6WXXhqqq6v3uAfDkWWlahmO2q9ioeDspSHz0C2d/j2NZLSEXpfNC9G8xhT4PuxvGY4sy7IOlNpdOIqEEALdUFVVFQUFBcluQ9JHnA88ijeC3X/RggYKzljB1v87DFo6d1GESHYLhZ97m4pHDyM0tvvCp50sBpwB/D3ZjUiSOlhlZeUu1yZo92uOJEmdIZB79AYalxVBS+f/KE8vroeWCKGxq69UJ0nS+wxHktQFRXJayBhQQ/3CXiRjFi7aY9tKdZIkdSN+sklSlxPIPmwrjUuLCPXJ+TGeMaCa5jV5SXltSVLni0bgKxeU0DgiShPte1VO35DGjD9VMnNB8u8YaziS1MkOwF+oo61wzBswbww0Z+5+/G5EslrJHr2JqqeGkJxrtwJp+U00r81L0utLkjpbn6IMLjm3L9+5fyVbt7TjjbMjcMFFfbjmX/rzxe+9TSzWfrveF4YjSZ3s1GQ30PmGL4GnPg1ffgCeOnO/d5dxUDUt5bm0bsne/972RTSQVtxASyffdFaSlDzDBmWTU5jG0rl1bC1v33C0cXIrBx2SzfBBOSx+t7799r0PvOZIUidL44Cbbciph4JK6Fm9//uKxsgZs5H6+X1I1vcxmhv/UIzVdZe/r1UC7ya7CUlKaScdmc/6jJZ2PqEOcnpGCWnwP3/awGdOLmrnve89w5EkdRmBzIHVRCLQsil5szaRrFYIdKOV6uqAjcluQpJSVjQCpxybz5rQ3O77zs1PI8QCT724hY8fW0B+j+R+thiOJKkLyRmzkbrXSyCWvB/faYUNNK/Lg9gBNgMoSQeoPkUZFOSlsaK8sd33PWBEFutXNLF6bROLV9TxsWN2fg+izmA4kqQuIq24gWheM01JXiUuvaiB0BzlgDs9UpIOUIcPyWH1+iaqalvbfd89e6VTvTm+36fLKvjcab1IS2JCMRxJUpcQyD12PQ0LeyXlpq8f7CO9Xy3N63oksQdJUmc6blRP3lhSQ2tre19xBAMPz2b1ogYAXplXRZ/CDA4blLxTxw1HktTRelZDaxrU7PuMTzS3hfTe9TS8VUyyZ2zS8pqJVe//kuSSpNSXFoXjDs/jtTfbYVGhD8nMiZDfJ52NK5sAaGgKPP3qViYcX9Dur7WnDEeSOlE2cEiym+h8J7wG9Tnx+xztk0D24ZtpXtcj6YsgRHJaiOS00JKsZcQlSZ2qZ480SooyOmSJ7fTMCK3Ngfrq90/X+8v0rZx2fCF5OcmJKYYjSZ0oEzgo2U10vsi20xD2cRGFSE4LWSM3UzenL8meNYpkxO/OF5J6ap8kqbMMHZDN8jUNVFa1UlvZSl5R+/2RrmRIFjVbWmmqf/90vVXrG1m5rpExhyXn9G0/3SQppQUyB9TQvCqfWGVWspsho18trZtyoNmPD0k6EBw7Io+V5Y20tAQ2v9dM3yHt91nUZ1AGFeVtlwcPAZ4p28qln+mblD8H+ukmSaksLZBzzHoaFvUi2bNGAJG0GLHajJToRZLUsaIRGDcqj7IOuN4IoO+QLNYt++jy4GVvVtO/TyaD+3X+HwUNR5KUwjIHVhOa0mjZnLyVez4o8+Aqmlb3THYb7Wwz0P43NpSkri43O8qwQdnMW1rb7vuOpkNhSTprlnw0HFVUtzJjYQ2Txhe2++vutq9Of0VJ0p6JBLIO20LdrNIUueFqIJLd0g2vN1oM1CS7CUlKOYcOzKa6tpUNW9r/D0gZWVHyitJoqo/tcPtDT2/kY0fnk5neuZ9/3e0TTpK6jfTe9aT3aqB5fW6yWwEgkhkjvbiBlhTpR5LUsU48Mp8ZC2to3XF+2S/F/TNoagjUbN3xjWXfXddIU0vo9IUZDEeSOlE6/tjZU4Hs0Rupn9cnyTd9fV8kq4XQEumGM0eSpA+LROL3N5qxoGOuNyoZmsmGFY2EnQSvltbAYy9u4YJP9SLSiZNHfsJJ6kQjgNJkN9ElRHs0k96rgcalRaTK4gdpRY3E6jOSfq8lSVLH65mbxkF9M1m0ov3vbwTx640qNrTscsxzsyoY2j+bXgXpHdLDjhiOJHWidMBfrHcvkHPkRprX9iCk0JLZ6cX1tHrzV0k6IPQpyqC+Mcb6ze1/vVEkAgOGZ/Pe4oadbu9dkM4nji2gd2EGJ43Jb/cedqbzYpgkaY9EclrIPLSCyseGkSqzRhC/BqplUw6p1JMkqWOMHdmDN5fV0dwadj94L6VnRcjNj1K1se31Rr0K0jlhdE/OOqWI4YNyeHtVA7f9zxr+MbOi3XvYaW+d9kqSpD0QyDy4iua1ecRqMpLdzPuigbReDTS81SvZnUiSOkFxfgaNTXu+EkMm0AqMBvoBbwKbgB3NDeUVpZGWHqF6Uwu9CtIZd0RPzjixkIP6ZrJuUzN/e3krP5i/ik2Vuz7triMYjiSpI0ViMGQFrC+B2j1YcSc9Ru5RG6h+fhApNUMTCURzm7fdAFaS1N2dcnRP7nts/W7HRYiHoSOAFcBg4DPAvwNvAD8A1n1gfFoUDhuawymleXzyR8NIj0Z4c1kdDz29kfnL6qhr6ICl8faC4UiSOlI0BiMXw+qBULX7c6YzB1bTWpVJy4bUWi47mtsCIUKs3mvGJOlAkJEWoaVl96fU9Qf+DrwI1AIBeAd4FvgX4EngKmBBTpTPTejNGScWMnRYDgtW1fGb/12XEoHogwxHkjpRCs2EpKJIIPvwzdTNLoGQWt+raHYLxCKExu74sbFu90Mk6QCSlxulKD+dVesbdzt2I/A2cCnx0+jmAL2AE4AmIAv4G3BvSRaNpVn88vfrGPnFnrz8eAVvL6jrsPewr7rjp5yklHUcLpK5cxn9aonmNdOyMbVmjQDS+9XQXJ4b/5NgtzM72Q1IUkrJzoiSm5XG1qod36D1g5qBciAbOGhbQfzPoZnAcuCPwN3v1rPmd6uJRGFYNI/6mtSZLfogw5GkTtQHZ492JpA1cjP1c/pCa6p9jwJpec3E6jLw/z9J6v6i0QixEAh78BexADwCHEX8boY9ic8Y/YN4KPobUMH7f1vLyYuSV5zOxpVN7d94OzAcSVIqiEDmgGrq56VmgMw4qJra1/onuw1JUicYfWguy9c0UFu/Z7M7LwGnAgOAscRPtSsjHpI+rKh/BjVbWmhOoeuMPshwJEmpIvUyUVw0EMlsJTS4GIMkHQiyMqM0NQfCXpxK3Qy8u612pWdxOlUbW2nt/FW694gn/0uSdinao4VoViutW7OT3YokqRMMG5jN0tU7ukPR/hs8Opvlc1JvIYbtDEeSpF0KjWnEGtOJ9mhOdiuSpE4wfHAOS1bWf+Tx1pZA2n6cdxaJQmFpBrWVu1/oIVkMR5KkXQpNURqXFpI1bCvddLk6SdI2kQhkpkdobP7oNUHL59Qz9Kicfd53emaEXgMy2LAiNRdjAMORpE4TAfKS3YT2SYSGt3qRObQS0g1HktSd5WRFOWxwDvPe/uipb61NgfTMfY8PPQrSqNrcQl1Vai7GAIYjSZ0mg/gt4dQVxaoyCY1pZA6qSnYrkqQOFAHSotAaa/8/hhX0TScSgdbm1P1Dm+FIUifyR06XFSI0Likm67DudmpdDNj9HeAl6UBRkJdGQ1Ogoan9Z3cOHpPDu/M+ei1TKvE3FUnqSH03wNDlMGMchFRdq3vPNC4vIL24vpstzFANzE52E5KUMgaWZlFV20JlTTsvmhCBXgdlsOm91P4MMRxJUkfKboCe1bAxNW/uujdCYxotm3PIPKQy2a20o0D87hySJIC0aITWDlhMLhqFXgdlsmll6i7GAIYjSdIei1A/ty85R2yEtNS9mFaStO9OHtOTV+a1//WluQVpRICaitRdxhtgP1YqlyQdaFo25RBao6T3qqdlQ49ktyNJamer1jextaql3febV5RGS1OMxtrU/uOa4UiStOdaIzS+VUz2yC3UbMilq58qKElq67lpm9iyk20BCJF0IhlZhNYWiO35LNDAUdmsWdK4N09JCsORpE5Ssq3UtUVofLeAws8uJfJaP0KjHyOS1F30BP47wDeBpTvYvrW2HwsiV1P85UxaK8qJ1bU9/a557VvEqjcnvg4h0LLxXUJzPT169aB6S2qvVAeGI0mdpgAoTHYTKSuS2QoRCE1pyW5lt2KVmbRszCXrkAoaFvXC2SNJ6h6OBj4GnMyOw1FdUz6r36yl8q8/JJKZS0bJUIi8/xkQze9L9sFHtXlONCuPaH4v1h8UYfX9U4GKDuu/PRiOJCkFRHs0QyQQq8lIdit7IELDol7kHLlxWziSJHUHZwM5QOYuxoSWJmI1W4AttG55b/c7Tcsgkp5B7PybaGzObZ9GO5Cr1UmS9lrTe3lEezSTVtSQ7FYkSe2gEPgUsLi9d9zaTGis26vrk5LJcCRJ2nstUZrX5pE1rCLZnUiS2sFpwABgXrIbSTLDkSRpH0Son9+HzMFVXfyeR8uATcluQpKSbgKwGXiW+E/GA5XhSJK0T1orsgjNUTL61Sa7lf1QDTQmuwlJSroZwEDgYAxHktQJMjkgVzXLbIJIgKZdXd7aRQVoWNyLnNEb4+9RktRlvQO0At8DRuxkTLRH8bbFGLqvdg9Hra2t3HjjjQwZMoScnBwOOeQQfvzjHxPC+x+cIQRuuukm+vXrR05ODhMmTGDp0rYLBm7ZsoXJkyeTn59PYWEhl112GTU1Ne3drqROcyKQlaTXDvRjLX1ZTxotROjE08COnwlprfDaCZ33mp0mQvPqnqT3rSOa0/53U5ckdZ5XgKuBJqD/TsZk9B9O89olndZTMrT7Ut4/+9nPuOeee3jwwQcZNWoUr7/+OpdeeikFBQV885vfBOC2227jzjvv5MEHH2TIkCHceOONTJo0iUWLFpGdnQ3A5MmTWbduHdOmTaO5uZlLL72UK664gt///vft3bKkTpFBsmaOBrCGvzORHtRSTinzOZL3OIgyxlNJASsZTBX5NJBNaO+/GaW3dN+ZIyBWl07TqnwyBlfRuLiYA3J2UJK6gRhwP7ABeDPJvSRTu4ejV199lXPOOYczzzwTgIMPPpiHH36YmTNnAvFZo1/96lf84Ac/4JxzzgHgv//7vykpKeHxxx/nwgsvZPHixTzzzDPMmjWLsWPHAvCb3/yGT3/60/z85z+nf/+d5VlJ+qhySvket3IK/2QUCzmFf9KbTXyXn5NNA+spoYY8ZnI8m+jNS3yMBrJ5k9HUkUslBR/Ym7/8txWhYXExeSetpfGtYvDsOknqsmLAX5PdRJK1ezg68cQTue+++3j77bc57LDDmDdvHi+//DJ33HEHACtWrKC8vJwJEyYknlNQUMC4ceMoKyvjwgsvpKysjMLCwkQwApgwYQLRaJQZM2Zw7rnntnfbkrqxVtL5K2fzV84CIJ8qsmlgEKsYyGqOYxYDWMOxzKYHtXyV35JJExUUUkMe8zmSenJ4gU+wid7M4Wiq6ckWiglECEQ4kENTy4ZcSI+RXlJLS3lestuRJGmftXs4+t73vkdVVRUjRowgLS2N1tZWfvrTnzJ58mQAysvLASgpKWnzvJKSksS28vJy+vbt27bR9HSKi4sTYz6ssbGRxsb3Vxyqqqpqt/ckqbuIB5gqCqiigA2U8DrH8RjnAYFc6kijlUN4h0IqOIV/0oeNjKeMTJr4DE8SJUYraWyhmFUMYjO9mME4VjKYxYxkHf2opIAW0mkhI7lvt7PEojQtLyD7sK3UlPfgQA6KkqSurd3D0R//+Eceeughfv/73zNq1Cjmzp3L1VdfTf/+/bnkkkva++USpk6dyi233NJh+5fU3UWoowcAczkagBf5BBDIoJl0WhjEKorYyvHMpAe1nMp0+rGO67iNDJrJpIn1lFBFPssZyjscwuvrNvH6W9C9L1+Nr1pX8Jl3iGTGCE1pyW5HkqR90u7h6Nprr+V73/seF154IQCjR49m5cqVTJ06lUsuuYTS0lIA1q9fT79+/RLPW79+PUcddRQApaWlbNiwoc1+W1pa2LJlS+L5H3bDDTdwzTXXJL6uqqpi4MCB7fnWJB2QIjSTSTOZLNm2uOlrjAcCt/I9MmmiF5sZwBqGspx+rOM4ZjGYlRzNHC5/ZisL3ihhUl1PKpP7RjpUrCaDWGMaGQOraHqnKNntSJK0T9o9HNXV1RGNtl3tKS0tjVgsvnTukCFDKC0t5bnnnkuEoaqqKmbMmMGVV14JwPjx46moqGD27Nkce+yxADz//PPEYjHGjRu3w9fNysoiKytZywRL2r0hyW6gncWvNWokm7UMYC0DmMXxia1ZNJBNA4fwDrUbelDJQUnstTNEqJ/Xl5wxG2haXgihq5xatwJXkZCkjhdCgEjqfza0ezg666yz+OlPf8qgQYMYNWoUc+bM4Y477uArX/kKAJFIhKuvvpqf/OQnDBs2LLGUd//+/fnsZz8LwMiRIzn99NO5/PLLuffee2lubuaqq67iwgsvdKU6qUuKAIcnu4lO1Ug2jWTzBscmu5VO07wmjx4nrSGa30Sssqv8sWoRhiNJ6njNqxeQOfAImlcvSHYru9Tu4eg3v/kNN954I1//+tfZsGED/fv356tf/So33XRTYsx1111HbW0tV1xxBRUVFZx88sk888wziXscATz00ENcddVVnHbaaUSjUc4//3zuvPPO9m5XktROQmMaTcsKyTqkgvo3+uLCDJKk7WKNdaTl90l2G7sVCSF0yz+ZVVVVUVBQsPuBkjpBBJgGnJbsRlJWWnE9BecsY8uDoyDWzjei7UTpfWvpOXElWx8eAa1d4X18F/hFspuQpC6h56eupGXDCurnPbPXz8059mzS8vtQ88J/dUBne66yspL8/Pydbu8Kn1ySpC6iZVMOoT6dzIHVyW5FkqS9ZjiSJLWfWJSGJUVkDduK1/JIkroaw5EkqV01LisivU8dkdyWZLciSWpPEejuf/gyHEnqBBH8cXPgCA1ptFZkkzWkO9/ZSZIOMNF00vsMobl8WbI76VD+tiKpE/QFRia7CXWaCPVz+5J1SAVEuvdfGCXpgBGJEMnKJTTUJLuTDmU4ktQJ0oHs3Y5S99G8IYdoj2bSiuuT3YokSXvMcCRJan8tURreKiZ7xBZS9/z0FmBlspuQJKUQw5EkqQNEaFpRQNahFUQyY8luZidagLeT3YQkKYUYjiRJHaK1MouWTTmkl9SSurNHkiS9z3AkSeoYIULDW8XkjNmY7E4kSdojhiNJUodpXpVPWn4jaQWNyW5FkqTdMhxJ6gS9iK9Yp52J5rYQq8uAEEl2K+0qNEdpLu9B1rCKZLciSdJuGY4kdYLDgR7JbiKlpZfU0rIxpxtemhOhfl5fMg+uhGiqLswgSdqdSFo6hECItSa7lQ5lOJLUCbrXbEjH6n7fq9atWUQyYmSU1iW7FUnSPkorKIXWJmI1W5LdSocyHEmSOlYsQsOiXmSP2kQ3nBqTpANDJLLtR/i+/Rxv3bya9OIBEEnt+JHa3UmSuoEIjcsKyRhQQySnJdnNSJKSoLVqA9GeveIhK4UZjiRJHS5Wm0Hzez3JPKia1Jk9atxWkiTFGY4kSZ0gQuPSQnKO2phCl1Wt3FaSJMUZjiR1gqxkN6AU0Lw2j0hGjPQ+qbIwQyB1ZrEkKbWllwyleeMKCN3756bhSFIn+DgpNF2gJAnNaTSuKCDrsK3JbkWStJfSevbav5XqWuPXnEbSMtqpo45hOJLUCVL7B6E6T8OCXvGFGTK6930yJElttVZvghCI5vdJdiu7ZDiSJHWaWE0mtETJOKg62a1IkpIitc8kMRxJkjpPgPr5fcgaVoHX+0iSUo3hSJLUiSI0re5Jet9aoj2bkt2MJGkPpRX1p3XLmmS30eEMR5KkThUa0mh6t4C8oZtx9kiSuoBIhLSi/rQcAOEoPdkNSNKBLRCNxCjOqKA5EqGGQKqfj73vAunRFo4qnct5pX9g69FZPL3uQhZsOILu+54lSQDEYrRsfJeM0qG0bl6V7G52ynAkqYNlAwOT3USKCGREm8nLqmFwwUqO7TebYb2WcvyAmWzsmc+S6mHclnkzNU09k91oOwvkZdYw6ZBn+dyo/wPgwbmXMHzNW/z4kzdy+V9+x6a6ZKxeFEvCa0rSgSoQq6sg2qMo2Y3skuFIUgfLAQ5OdhNJkR5tJi+zhsN6vc2QwhWMO2gGY/u/zoD8NfTvuZat9UWUrR7P/5vzFV5dfSJTjr+L2ydey3ee/QV1zT2S3f5+i0ZaKc0r56LRD/PpYU+xcMMofjL9ByzZNJyWWAbT3vkUw4qWcf85l3LpE/cnISC9BnjdkyTpfYYjSdpv8VPjeuduol/eOg7vu4iTBr7CgPw19MtbR3VjT3rlbqY4ZwtNrZm8uvpEnl02iRdWfIJ1Nf2IhSgQ4dZ/fo9Hv/B5Lj/md9w545uELnlZaCArrZERvd/ia8fdyxF9F/DY4nP58mMPsKZ6ALGQlhjZGtL5wfM/4bdnfZUfnPoTvvv3n9MS68x7YtXiNU+StHuR9Cwi0XRCY12yW+lwhiNJ2g8jei/my0c9wJEl8+mRWUtVQz7Lth7K4o0jqd52elx6tIUX3/04Ty39NK+vHUtFQyE7usZmY11fLn38fv7yxbNZUz2A/1v0uR2OS02B4pwtjD+ojK8fdzeRSODBuZdw8wu3sKG2Lzt7HxUNRXz1r7/l/s9eyvdOvpWp/7yB1uBHkySlkkhOPpGMzPiNXLs5P4EkdbB6YBlwULIb6RBpkVYWbhzFw29eRF1zLmMHvM7EQ/7O+Yf/iQUbjuCeWVcya81xVDQU7tFM0IqKIVzz7B3ceOqPeXvzYcxffySpHZACvXI2c8ERf+DiMf/DW5tGcN/sK5i2/FPUNeeyJ71XNBRx0/M/4oqx95GZ1kR9ix9NktQdxeqriWan9nW1fgJJ6mANwFXABcB44EigF/E7CaTyL/17ZuHGI1i48QgKs7dy95lfZ1Ndb34//4vMWnvcTmeIdi3CtHc+xaCCVVx69P1c88wdhJT8PsVnii484hHOHv4XZrw3jil/u4t55WP2aebnzQ2j+eZTd6boe5UktYfm9xaTd+rFyW5jlwxHkjrBQuAm4j9yegGjgVHAicBY4rNKGXTlsFTRUMi//uU/93i2ZNciPDDny6RHW1L2uqO0SCv/esx/AnDZX/6LNVUD2L/3HTEYSVK3F1L+o95wJKkTtQDrt9U/gP8A8oDhwMnAKcRXtjsUyKVr3ac60q4rzLWGdFpbU/dHdGtI5+evfjexmIQkqfuKRKOEWAxC91/EJnU/eSUdAFqBSmDmtvoVkEX8vkgnAB8HjgGGANvPUfYX8VTxwZXnJEndV0a/4bRsWAGtzclupcMZjiSlkBjxBRze3lb/DfQgHpZGAicB44DD6E7XLUmSlMoiGZnQ0thee2un/XQMw5GkFFcLvLWtHiM+s9QXOAL4GPFT8foD/YBMUv2HrlJFID5zKUnaleIcOKN/ObHCdP4vCs2xfd9X69a1RLJ6EMnJJ9RXtV+T7chwJKmLaQRWb6unif8YKwSGEV/g4RPEV8Tri2FJOxcDXk52E5KUsopz4IJR8PXj4a0ti0lLf5uCY+C+2RDbx0uPQnMjkbR0ImnpKXsLbsORpC6uBdi0rcqAO4ifcjcSOAT4JHA88RXx2mMlOXUfNcluQJJSTlE2fG4UXDkWDusFt78Cv3qthR6ZLTx2ASzaCNNX7tu+IwR6UkslMfZjAqpDGY4kdTOBeFD657Z6gPiKeIcAxxK/buk4YACQjz8GJUmKzxR97nA4dTAMLICcDPjm0/DgXGgNUNkIk/8M66r3/TUOL2rkv3reygUZlbzbXo23M38rkHQAqAHmbav7iZ9uNwAYQ/xUvJOAEcRnlrKS1KMkSclRmge3fALmroOqRsiIwr8+Aa+sbjtu2Zb9e53TD4Wj8jZxVAm8u3X/9tVRDEeSDjCB+HVLy7fVY8RvQFtCfBW8ccQXeTgK6AOk4al4kqTubEMt/Po1uO1TsLUBzvsDlLfzmcf5WfCJg+GZZZCTwgkkhVuTpM7SDLy3rZ4HbgOKgNHEg9Iw4tctDSI+69SVbk6rtgLx69QWE18uXpIUC1DdCE8siZ9G19QBi3ke3Q8218Nji2HSofDwgvZ/jfZgOJKkj2glft3SC9sqSvx+S4cSPwXvJOIzSwOBHAxLqaiV+D2zGoFlQAMwfdtjrxIPRxuS1p0kpZrVVfC72R23/zMOhf+ZB5EIZKVwAknh1iQpVcSAamDOtrqL+GIOfYgv7nAKMJb4DFPBtud4Kl7H+eACsDXEg88aYNW2f98AKoj/f9UErMP7GklS8hTnwIjecOvLkJsBQwohLxNqmpLd2UcZjiRprwWgclstAx4mPoPUDzia+L2WhgOHE7+WKYphaV8E4sF0+wqEtcA7wEpgBvGZn+XAeuIzQrXJaVOStEuDC+D5FVDRALVN8JsZ0NCS7K52LBJCSNV7MO2XqqoqCgoKdj9QkjpEBtCbeED6GPHZpRHEb1ibhWHpg2LET39rIR5+Gomf+lZDPARtIT4rVEF8Jqg5KV1KkvZNhPjpdPt689j2VFlZSX5+/k63O3MkSR2imfjpXOuA54j/uC0BSokvH/4J4tctlQLZdO+wtP3TsIH4DM9m4jM+m4DXeD8ENQOriZ/+lqJ/UpQk7bUAdJXpGGeOJClpiohfp3Qc8SXEjyK+Il5PuuYiD9tPgaskfo3Wm8RnfeYRPxXuvW3/1m8bI0lS59rdzJHhSJJSRi5wMPHrlk4mPsM0lPhpeBnJa6uNQPzUthjw7rb/PQvYSnwBhLXbaj1QhzNAkqRUsrtwtNd/mpw+fTpnnXUW/fv3JxKJ8Pjjj7fZHkLgpptuol+/fuTk5DBhwgSWLl3aZsyWLVuYPHky+fn5FBYWctlll1FT0/ZOU/Pnz+eUU04hOzubgQMHctttt+1tq5LUxdQBi4CHgK8Tn006Dvgs8FPiS1FvpnMCRxPx2Z33iC9n/hfgOuCbwHjiq/Mdv62u2LbtYeAlYClQ1Ul9SpLUfvb6mqPa2lrGjBnDV77yFc4777yPbL/tttu48847efDBBxkyZAg33ngjkyZNYtGiRWRnZwMwefJk1q1bx7Rp02hububSSy/liiuu4Pe//z0Qn/WZOHEiEyZM4N577+XNN9/kK1/5CoWFhVxxxRX7+ZYlqSsIxK/ReWtbPcX71y0dQ/x0vFOBY4G+xGeW9vS6pfCBf7cSXwBhKfHZnre3vd76bf82Eg9kgbZLaEuS1A2F/QCExx57LPF1LBYLpaWl4fbbb088VlFREbKyssLDDz8cQghh0aJFAQizZs1KjHn66adDJBIJa9asCSGEcPfdd4eioqLQ2NiYGHP99deH4cOH73FvlZWV2z/JLcuyumlFAxQFODnAdQEeD/BWgNoArSG+LlBTgMYAywMsCvBIgF8GOD/AhACDAxQGyEyB92NZlmVZHVuVlZW7zBDtulrdihUrKC8vZ8KECYnHCgoKGDduHGVlZVx44YWUlZVRWFjI2LFjE2MmTJhANBplxowZnHvuuZSVlXHqqaeSmZmZGDNp0iR+9rOfsXXrVoqKij7y2o2NjTQ2Nia+rqqqas+3JkkpKEZ85uflbZVGfOW7ocAJQDHwCvH7/6wkftre9uuFJEnSh7VrOCovLwegpKSkzeMlJSWJbeXl5fTt27dtE+npFBcXtxkzZMiQj+xj+7YdhaOpU6dyyy23tM8bkaQuqZV4EHpzW0mSpL3RFdeK3aEbbriBysrKRK1evTrZLUmSJEnqQto1HJWWlgKwfv36No+vX78+sa20tJQNGza02d7S0sKWLVvajNnRPj74Gh+WlZVFfn5+m5IkSZKkPdWu4WjIkCGUlpby3HPPJR6rqqpixowZjB8/HoDx48dTUVHB7NmzE2Oef/55YrEY48aNS4yZPn06zc3NiTHTpk1j+PDhOzylTpIkSZL22x4v/7ZNdXV1mDNnTpgzZ04Awh133BHmzJkTVq5cGUII4dZbbw2FhYXhiSeeCPPnzw/nnHNOGDJkSKivr0/s4/TTTw9HH310mDFjRnj55ZfDsGHDwkUXXZTYXlFREUpKSsLFF18cFixYEB555JGQm5sbfvvb3+5xn65WZ1mWZVmWZVnWB2t3q9XtdTh64YUXdvhCl1xySQghvpz3jTfeGEpKSkJWVlY47bTTwpIlS9rsY/PmzeGiiy4KeXl5IT8/P1x66aWhurq6zZh58+aFk08+OWRlZYUBAwaEW2+9da/6NBxZlmVZlmVZlvXB2l04ioQQAt1QVVUVBQUFyW5DkiRJUoqorKzc5doE3Wa1OkmSJEnaH4YjSZIkScJwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSsA/haPr06Zx11ln079+fSCTC448/ntjW3NzM9ddfz+jRo+nRowf9+/fnX/7lX1i7dm2bfWzZsoXJkyeTn59PYWEhl112GTU1NW3GzJ8/n1NOOYXs7GwGDhzIbbfdtm/vUJIkSZL2wF6Ho9raWsaMGcNdd931kW11dXW88cYb3Hjjjbzxxhv8+c9/ZsmSJZx99tltxk2ePJmFCxcybdo0nnzySaZPn84VV1yR2F5VVcXEiRMZPHgws2fP5vbbb+eHP/wh99133z68RUmSJEnaA2E/AOGxxx7b5ZiZM2cGIKxcuTKEEMKiRYsCEGbNmpUY8/TTT4dIJBLWrFkTQgjh7rvvDkVFRaGxsTEx5vrrrw/Dhw/f494qKysDYFmWZVmWZVmWFYBQWVm5ywzR4dccVVZWEolEKCwsBKCsrIzCwkLGjh2bGDNhwgSi0SgzZsxIjDn11FPJzMxMjJk0aRJLlixh69atHd2yJEmSpANQekfuvKGhgeuvv56LLrqI/Px8AMrLy+nbt2/bJtLTKS4upry8PDFmyJAhbcaUlJQkthUVFX3ktRobG2lsbEx8XVVV1a7vRZIkSVL31mEzR83NzXzhC18ghMA999zTUS+TMHXqVAoKChI1cODADn9NSZIkSd1Hh4Sj7cFo5cqVTJs2LTFrBFBaWsqGDRvajG9paWHLli2UlpYmxqxfv77NmO1fbx/zYTfccAOVlZWJWr16dXu+JUmSJEndXLuHo+3BaOnSpfzjH/+gV69ebbaPHz+eiooKZs+enXjs+eefJxaLMW7cuMSY6dOn09zcnBgzbdo0hg8fvsNT6gCysrLIz89vU5IkSZK0p/Y6HNXU1DB37lzmzp0LwIoVK5g7dy6rVq2iubmZz33uc7z++us89NBDtLa2Ul5eTnl5OU1NTQCMHDmS008/ncsvv5yZM2fyyiuvcNVVV3HhhRfSv39/AL74xS+SmZnJZZddxsKFC/nDH/7Ar3/9a6655pr2e+eSJEmS9EF7vDb2Ni+88MIOl8W75JJLwooVK3a6bN4LL7yQ2MfmzZvDRRddFPLy8kJ+fn649NJLQ3V1dZvXmTdvXjj55JNDVlZWGDBgQLj11lv3qk+X8rYsy7Isy7Is64O1u6W8IyGEQDdUVVVFQUFBstuQJEmSlCIqKyt3eflNh9/nSJIkSZK6AsORJEmSJGE4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJErAP4Wj69OmcddZZ9O/fn0gkwuOPP77TsV/72teIRCL86le/avP4li1bmDx5Mvn5+RQWFnLZZZdRU1PTZsz8+fM55ZRTyM7OZuDAgdx2221726okSZIk7bG9Dke1tbWMGTOGu+66a5fjHnvsMV577TX69+//kW2TJ09m4cKFTJs2jSeffJLp06dzxRVXJLZXVVUxceJEBg8ezOzZs7n99tv54Q9/yH333be37UqSJEnSngn7AQiPPfbYRx5/7733woABA8KCBQvC4MGDwy9/+cvEtkWLFgUgzJo1K/HY008/HSKRSFizZk0IIYS77747FBUVhcbGxsSY66+/PgwfPnyPe6usrAyAZVmWZVmWZVlWAEJlZeUuM0S7X3MUi8W4+OKLufbaaxk1atRHtpeVlVFYWMjYsWMTj02YMIFoNMqMGTMSY0499VQyMzMTYyZNmsSSJUvYunXrDl+3sbGRqqqqNiVJkiRJe6rdw9HPfvYz0tPT+eY3v7nD7eXl5fTt27fNY+np6RQXF1NeXp4YU1JS0mbM9q+3j/mwqVOnUlBQkKiBAwfu71uRJEmSdABp13A0e/Zsfv3rX/PAAw8QiUTac9e7dcMNN1BZWZmo1atXd+rrS5IkSera2jUc/fOf/2TDhg0MGjSI9PR00tPTWblyJd/5znc4+OCDASgtLWXDhg1tntfS0sKWLVsoLS1NjFm/fn2bMdu/3j7mw7KyssjPz29TkiRJkrSn2jUcXXzxxcyfP5+5c+cmqn///lx77bU8++yzAIwfP56Kigpmz56deN7zzz9PLBZj3LhxiTHTp0+nubk5MWbatGkMHz6coqKi9mxZkiRJkgBI39sn1NTUsGzZssTXK1asYO7cuRQXFzNo0CB69erVZnxGRgalpaUMHz4cgJEjR3L66adz+eWXc++999Lc3MxVV13FhRdemFj2+4tf/CK33HILl112Gddffz0LFizg17/+Nb/85S/3571KkiRJ0s7t8drY27zwwgs7XBbvkksu2eH4Dy/lHUIImzdvDhdddFHIy8sL+fn54dJLLw3V1dVtxsybNy+cfPLJISsrKwwYMCDceuute9WnS3lblmVZlmVZlvXB2t1S3pEQQqAbqqqqoqCgINltSJIkSUoRlZWVu1yboN2X8pYkSZKkrshwJEmSJEkYjiRJkiQJMBxJkiRJEtCNw1E3XWdCkiRJ0j7aXUbotuFo8+bNyW5BkiRJUgqprq7e5fa9vglsV1FcXAzAqlWrXNJb7aqqqoqBAweyevXqXS4FKe0Ljy91FI8tdRSPLXWk9jq+QghUV1fTv3//XY7rtuEoGo1PihUUFPgfqjpEfn6+x5Y6jMeXOorHljqKx5Y6UnscX3syYdJtT6uTJEmSpL1hOJIkSZIkunE4ysrK4uabbyYrKyvZraib8dhSR/L4Ukfx2FJH8dhSR+rs4ysSXPNakiRJkrrvzJEkSZIk7Q3DkSRJkiRhOJIkSZIkwHAkSZIkSUA3DUd33XUXBx98MNnZ2YwbN46ZM2cmuyWluB/+8IdEIpE2NWLEiMT2hoYGpkyZQq9evcjLy+P8889n/fr1bfaxatUqzjzzTHJzc+nbty/XXnstLS0tnf1WlAKmT5/OWWedRf/+/YlEIjz++ONttocQuOmmm+jXrx85OTlMmDCBpUuXthmzZcsWJk+eTH5+PoWFhVx22WXU1NS0GTN//nxOOeUUsrOzGThwILfddltHvzUl2e6OrS9/+csf+Vl2+umntxnjsaUdmTp1Kscddxw9e/akb9++fPazn2XJkiVtxrTXZ+GLL77IMcccQ1ZWFoceeigPPPBAR789JdGeHFsf//jHP/Kz62tf+1qbMZ11bHW7cPSHP/yBa665hptvvpk33niDMWPGMGnSJDZs2JDs1pTiRo0axbp16xL18ssvJ7Z9+9vf5q9//SuPPvooL730EmvXruW8885LbG9tbeXMM8+kqamJV199lQcffJAHHniAm266KRlvRUlWW1vLmDFjuOuuu3a4/bbbbuPOO+/k3nvvZcaMGfTo0YNJkybR0NCQGDN58mQWLlzItGnTePLJJ5k+fTpXXHFFYntVVRUTJ05k8ODBzJ49m9tvv50f/vCH3HfffR3+/pQ8uzu2AE4//fQ2P8sefvjhNts9trQjL730ElOmTOG1115j2rRpNDc3M3HiRGpraxNj2uOzcMWKFZx55pl84hOfYO7cuVx99dX867/+K88++2ynvl91nj05tgAuv/zyNj+7PvhHmU49tkI3c/zxx4cpU6Ykvm5tbQ39+/cPU6dOTWJXSnU333xzGDNmzA63VVRUhIyMjPDoo48mHlu8eHEAQllZWQghhKeeeipEo9FQXl6eGHPPPfeE/Pz80NjY2KG9K7UB4bHHHkt8HYvFQmlpabj99tsTj1VUVISsrKzw8MMPhxBCWLRoUQDCrFmzEmOefvrpEIlEwpo1a0IIIdx9992hqKiozfF1/fXXh+HDh3fwO1Kq+PCxFUIIl1xySTjnnHN2+hyPLe2pDRs2BCC89NJLIYT2+yy87rrrwqhRo9q81gUXXBAmTZrU0W9JKeLDx1YIIXzsYx8L3/rWt3b6nM48trrVzFFTUxOzZ89mwoQJicei0SgTJkygrKwsiZ2pK1i6dCn9+/dn6NChTJ48mVWrVgEwe/Zsmpub2xxXI0aMYNCgQYnjqqysjNGjR1NSUpIYM2nSJKqqqli4cGHnvhGltBUrVlBeXt7meCooKGDcuHFtjqfCwkLGjh2bGDNhwgSi0SgzZsxIjDn11FPJzMxMjJk0aRJLlixh69atnfRulIpefPFF+vbty/Dhw7nyyivZvHlzYpvHlvZUZWUlAMXFxUD7fRaWlZW12cf2Mf6eduD48LG13UMPPUTv3r054ogjuOGGG6irq0ts68xjK32vRqe4TZs20dra2uYbB1BSUsJbb72VpK7UFYwbN44HHniA4cOHs27dOm655RZOOeUUFixYQHl5OZmZmRQWFrZ5TklJCeXl5QCUl5fv8Ljbvk3abvvxsKPj5YPHU9++fdtsT09Pp7i4uM2YIUOGfGQf27cVFRV1SP9KbaeffjrnnXceQ4YM4Z133uH73/8+Z5xxBmVlZaSlpXlsaY/EYjGuvvpqTjrpJI444giAdvss3NmYqqoq6uvrycnJ6Yi3pBSxo2ML4Itf/CKDBw+mf//+zJ8/n+uvv54lS5bw5z//GejcY6tbhSNpX51xxhmJ/33kkUcybtw4Bg8ezB//+Ed/UEvqMi688MLE/x49ejRHHnkkhxxyCC+++CKnnXZaEjtTVzJlyhQWLFjQ5tpbqT3s7Nj64HWPo0ePpl+/fpx22mm88847HHLIIZ3aY7c6ra53796kpaV9ZOWU9evXU1pamqSu1BUVFhZy2GGHsWzZMkpLS2lqaqKioqLNmA8eV6WlpTs87rZvk7bbfjzs6udUaWnpRxaRaWlpYcuWLR5z2itDhw6ld+/eLFu2DPDY0u5dddVVPPnkk7zwwgscdNBBicfb67NwZ2Py8/P9Y2Q3t7Nja0fGjRsH0OZnV2cdW90qHGVmZnLsscfy3HPPJR6LxWI899xzjB8/PomdqaupqanhnXfeoV+/fhx77LFkZGS0Oa6WLFnCqlWrEsfV+PHjefPNN9v80jFt2jTy8/M5/PDDO71/pa4hQ4ZQWlra5niqqqpixowZbY6niooKZs+enRjz/PPPE4vFEh8Y48ePZ/r06TQ3NyfGTJs2jeHDh3vakxLee+89Nm/eTL9+/QCPLe1cCIGrrrqKxx57jOeff/4jp1a212fh+PHj2+xj+xh/T+u+dnds7cjcuXMB2vzs6rRja6+Wb+gCHnnkkZCVlRUeeOCBsGjRonDFFVeEwsLCNqtbSB/2ne98J7z44othxYoV4ZVXXgkTJkwIvXv3Dhs2bAghhPC1r30tDBo0KDz//PPh9ddfD+PHjw/jx49PPL+lpSUcccQRYeLEiWHu3LnhmWeeCX369Ak33HBDst6Skqi6ujrMmTMnzJkzJwDhjjvuCHPmzAkrV64MIYRw6623hsLCwvDEE0+E+fPnh3POOScMGTIk1NfXJ/Zx+umnh6OPPjrMmDEjvPzyy2HYsGHhoosuSmyvqKgIJSUl4eKLLw4LFiwIjzzySMjNzQ2//e1vO/39qvPs6tiqrq4O3/3ud0NZWVlYsWJF+Mc//hGOOeaYMGzYsNDQ0JDYh8eWduTKK68MBQUF4cUXXwzr1q1LVF1dXWJMe3wWLl++POTm5oZrr702LF68ONx1110hLS0tPPPMM536ftV5dndsLVu2LPzoRz8Kr7/+elixYkV44oknwtChQ8Opp56a2EdnHlvdLhyFEMJvfvObMGjQoJCZmRmOP/748NprryW7JaW4Cy64IPTr1y9kZmaGAQMGhAsuuCAsW7Yssb2+vj58/etfD0VFRSE3Nzece+65Yd26dW328e6774Yzzjgj5OTkhN69e4fvfOc7obm5ubPfilLACy+8EICP1CWXXBJCiC/nfeONN4aSkpKQlZUVTjvttLBkyZI2+9i8eXO46KKLQl5eXsjPzw+XXnppqK6ubjNm3rx54eSTTw5ZWVlhwIAB4dZbb+2st6gk2dWxVVdXFyZOnBj69OkTMjIywuDBg8Pll1/+kT8OemxpR3Z0XAHh/vvvT4xpr8/CF154IRx11FEhMzMzDB06tM1rqPvZ3bG1atWqcOqpp4bi4uKQlZUVDj300HDttdeGysrKNvvprGMrsq1pSZIkSTqgdatrjiRJkiRpXxmOJEmSJAnDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAuD/AwYm2cDyMz18AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHlCAYAAAA+8YdPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbiVJREFUeJzt3Xl4VNXhxvHvnTXrZCUJgbCKIIu4Ica1Vgq4VautS6m11mpVbN1qlVatWiuKXdTWtf212rrV3WpFi6DggogssopssicBkkz2Wc/vj4GBQAJJmGQyw/t5nvOYzD33zhm8mTvvnOVaxhiDiIiIiIjIQc4W7waIiIiIiIh0BwpHIiIiIiIiKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAnTzcPTII4/Qr18/UlJSGD16NJ999lm8myQiIiIiIkmq24ajf//739x444385je/Yf78+YwcOZJx48ZRUVER76aJiIiIiEgSsowxJt6NaMno0aMZNWoUf/nLXwAIh8OUlJTws5/9jFtvvTXOrRMRERERkWTjiHcDWuL3+5k3bx6TJk2KPmaz2RgzZgyzZ89ucR+fz4fP54v+Hg6HqaysJC8vD8uyOr3NIiIiIiLSPRljqK2tpbi4GJut9cFz3TIcbdu2jVAoRGFhYbPHCwsL+fLLL1vcZ/Lkydx1111d0TwREREREUlAGzZsoHfv3q1u77Zzjtpr0qRJeL3eaFm/fn28myQiIiIiIt1IZmbmPrd3y56j/Px87HY75eXlzR4vLy+nqKioxX3cbjdut7srmiciIiIiIglof9NtumXPkcvl4uijj2b69OnRx8LhMNOnT6e0tDSOLRMRERERkWTVLXuOAG688UYuvfRSjjnmGI499lgefPBB6uvrueyyy+LdNBERERERSULdNhxdeOGFbN26lTvuuIOysjKOOOII3nnnnb0WaRAREREREYmFbnufowNVU1NDVlZWvJshIiIiIiLdhNfrxePxtLq9W845EhERERER6WoKRyIiIiIiIigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIAI54N0BERES6goNdl/3gjiIiIrtTOBIREUkYTiB9j8fSgcGAtdtjvYAj96h3CNB/x8+rgL8CHwHe2DdTRCRBKRyJiIh0KmuP351Ajz0e6wEctsdjOcAJNB8B3wMY0sLx8lt4zj2fd3dDgbOAxcDDwH+Bin3UFxE5OCgciYiI7JNF5HK5e9iwA31pHlw8wLF7PNYTOHqP46URCTi7H8+54/F9BZpYsoi8hiOI9CBtBv654+f1gOmidoiIdC+WMSYp3wFramrIysqKdzNERKRbsIgMP9s9fKQCh+7xmBs4GXDt9lgmcBzNQ4+DyBA1+x7P4aLrAk6sGWAL8ArwHPA5mpckIsnG6/Xi8Xha3a5wJCIiSaoXcB1QQKRnZhTNQ49zx7Y9w4ythccOJgaoJzLU7kFgEdAQzwaJiMTM/sKRhtWJiEiSug74BQd30OkIC8gALgDOBr4gEpLeBuri1ywRkS6g+xyJiEiSaqlXSNrOIjIPqhR4BvgE+BVQHM9GiYh0KoUjERER2Q8nMAK4B/gY+PWO3/UxQkSSi97VREQkCTmBong3IglZQD/gt8CHRFa3OxpIiWObRERiR+FIRESSUCqRG6NK57CALOAyYBaR+UhnE/l3FxFJXApHIiIi0kE75yWdCrxEZIW7iex9U1oRkcSgcCQiIiIx4CYSkh4mMi/p50SWU9eiGCKSOBSOREREJIZsRG6u+ydgHvAQMITmN8wVEemeFI5ERESkE9iAQuBaIos3vAqcRvMb8YqIdC8KRyIikoScqKeiu7CIzEE6G3iLSEg6D8iOY5tERFqmcCQiIkloCFrKu7uxiCz5fQbwIjAT+AmRkKR5SSLSPSgciYhIErKjS1x3ZRH5/3M48DgwB7gX6I9CkojEm64cIiIiEid2Ios33EJkhbsngOMBRzwbJSIHMYUjERERiTML6ElkmN3/gOeAE4GMeDZKRA5CCkciIiLSTVhAOvA9YBrwHnAxkBXPRonIQUThSERERLqhFGA08E/gU+A2IjeVFRHpPApHIiKShI5Cl7hk4SCy+uDdROYl3QUcgf7/ikhn0DuLiIgkoZ5o5bNkYwF9gTuAD4C/AwPj2SARSUJaDkZEREQSTBbwQyBEZBEHE9/miEjSUM+RiIiIJCCLSM+ReghFJHYUjkRERERERFA4EhERkYQVincDRCTJKByJiEiSsQEF8W6EdIkPgXC8GyEiSUThSEREkoyDyFLPkvwa4t0AEUkyCkciIiIiIiIoHImIiIiIiAAKRyIiIiIiIkAnhKPJkyczatQoMjMzKSgo4Nxzz2XFihXN6jQ1NTFx4kTy8vLIyMjg/PPPp7y8vFmd9evXc+aZZ5KWlkZBQQE333wzwWAw1s0VEREREREBOiEczZw5k4kTJ/Lpp58ybdo0AoEAY8eOpb6+Plrnhhtu4M033+Sll15i5syZbN68mfPOOy+6PRQKceaZZ+L3+/nkk094+umneeqpp7jjjjti3VwREUk6djQwQkREOsR0soqKCgOYmTNnGmOMqa6uNk6n07z00kvROsuXLzeAmT17tjHGmLffftvYbDZTVlYWrfPYY48Zj8djfD5fm57X6/UaQEVFRUXloCtDDNQYMCpJXfwGTm/h/7+KiopK68Xr9e4zQ3T6V2terxeA3NxcAObNm0cgEGDMmDHROkOGDKFPnz7Mnj0bgNmzZzNixAgKCwujdcaNG0dNTQ1Lly5t8Xl8Ph81NTXNioiIHIwcO4oktzCwJd6NEJEk06nhKBwOc/3113PCCScwfPhwAMrKynC5XGRnZzerW1hYSFlZWbTO7sFo5/ad21oyefJksrKyoqWkpCTGr0ZERERERJJZp4ajiRMnsmTJEl544YXOfBoAJk2ahNfrjZYNGzZ0+nOKiIiIiEjy6LRxB9deey1vvfUWs2bNonfv3tHHi4qK8Pv9VFdXN+s9Ki8vp6ioKFrns88+a3a8navZ7ayzJ7fbjdvtjvGrEBERERGRg0XMe46MMVx77bW89tprzJgxg/79+zfbfvTRR+N0Opk+fXr0sRUrVrB+/XpKS0sBKC0tZfHixVRUVETrTJs2DY/Hw9ChQ2PdZBERERERkdj3HE2cOJHnnnuON954g8zMzOgcoaysLFJTU8nKyuLyyy/nxhtvJDc3F4/Hw89+9jNKS0s57rjjABg7dixDhw7lkksuYcqUKZSVlXHbbbcxceJE9Q6JiMh+DAWc8W6EiIgkonauzL1ftLJs3j/+8Y9oncbGRnPNNdeYnJwck5aWZr7zne+YLVu2NDvO119/bU4//XSTmppq8vPzzU033WQCgUCb26GlvFVUVFQO1nKDIe7LTKt0flljIL+F//8qKioqrZf9LeVt7Qg0SaempoasrKx4N0NERLrcDcAf490I6XSLgWOBpng3REQSiNfrxePxtLpdtxAXERERERFB4UhERERERARQOBIREREREQEUjkREJOnkxbsBIiKSoBSOREQkiVjAcfFuhIiIJCiFIxEREUlAG4BgvBshIklG4UhEREQS0AoUjkQk1hSOREREREREUDgSEREREREBFI5ERCSpWOjSJiIiHaUriIiIJJEC4LB4N0JERBKUwpGIiCQRB5AS70aIiEiCUjgSERGRBGOAmng3QkSSkMKRiIiIJBgDfBTvRohIElI4EhERkQRk4t0AEUlCCkciIiIiIiIoHImISFLphxZkEBGRjlI4EhGRJNIHcMe7ESIikqAUjkRERERERFA4EhERkYTjB+rj3QgRSUIKRyIiIpJgtgIr4t0IEUlCCkciIiKSgLSUt4jEnsKRiIgkEU+8GyAiIglM4UhERJLISYAV70aIiEiCUjgSEZEkomAkIiIdp3AkIiIiIiKCwpGIiIgknBBakEFEOoPCkYiIiCSYeUBtvBshIklI4UhERJKI5hwdHJqAcLwbISJJSOFIRESSRCYwMt6NEBGRBKZwJCIiScJBJCCJiIh0jMKRiIiIiIgICkciIiIiIiKAwpGIiIgknEC8GyAiSUrhSERERBKIAWbGuxEikqQUjkREJEkUAunxboR0iaZ4N0BEkpTCkYiIJIneQFa8GyEiIglM4UhERERERASFIxEREREREUDhSEREREREBFA4EhERERERARSOREQkaaTFuwHSJeqBZfFuhIgkKYUjERFJEicDVrwbIZ0uAGyPdyNEJEkpHImISJJwoHAkIiIHQuFIREREREQEhSMRERERERFA4UhERERERARQOBIREREREQEUjkREJCm4gCPj3QjpEivRanUi0lk6PRzdd999WJbF9ddfH32sqamJiRMnkpeXR0ZGBueffz7l5eXN9lu/fj1nnnkmaWlpFBQUcPPNNxMMBju7uSIikpBsQF68GyFdogbwxbsRIpKkOjUczZ07lyeeeILDDz+82eM33HADb775Ji+99BIzZ85k8+bNnHfeedHtoVCIM888E7/fzyeffMLTTz/NU089xR133NGZzRURERERkYOZ6SS1tbVm0KBBZtq0aeaUU04x1113nTHGmOrqauN0Os1LL70Urbt8+XIDmNmzZxtjjHn77beNzWYzZWVl0TqPPfaY8Xg8xufzten5vV6vAVRUVFRUDoqSYmCJAaOS9GWaAcvE/5xTUVFJxOL1eveZITqt52jixImceeaZjBkzptnj8+bNIxAINHt8yJAh9OnTh9mzZwMwe/ZsRowYQWFhYbTOuHHjqKmpYenSpZ3VZBEREREROYg5OuOgL7zwAvPnz2fu3Ll7bSsrK8PlcpGdnd3s8cLCQsrKyqJ1dg9GO7fv3NYSn8+Hz7drDHJNTc2BvAQRERERETnIxLznaMOGDVx33XU8++yzpKSkxPrwrZo8eTJZWVnRUlJS0mXPLSIi8ZYNZMa7ESIikuBiHo7mzZtHRUUFRx11FA6HA4fDwcyZM3n44YdxOBwUFhbi9/uprq5utl95eTlFRUUAFBUV7bV63c7fd9bZ06RJk/B6vdGyYcOGWL80ERHptoqBwv3WkmSwmsjUARGR2It5ODrttNNYvHgxCxcujJZjjjmGCRMmRH92Op1Mnz49us+KFStYv349paWlAJSWlrJ48WIqKiqidaZNm4bH42Ho0KEtPq/b7cbj8TQrIiIikmyWx7sBIpLEYj7nKDMzk+HDhzd7LD09nby8vOjjl19+OTfeeCO5ubl4PB5+9rOfUVpaynHHHQfA2LFjGTp0KJdccglTpkyhrKyM2267jYkTJ+J2u2PdZBERERERkc5ZkGF//vSnP2Gz2Tj//PPx+XyMGzeORx99NLrdbrfz1ltvcfXVV1NaWkp6ejqXXnopd999dzyaKyIiIiIiBwHLGJOUA3dramrIysqKdzNERKRLHAV8Amh0QfK7Hngo3o0QkQTl9Xr3Of0mLj1HIiIiseUCrHg3ootFvtt0pTbiSmmgR9+1pOdUcvgR8ymp7skTL51PdV0GB9+/i4hIxykciYhIEjgBcMa7EZ3EYLOFcLh9ZOZtw5XaQMnQRXh6VNBr8LJoOKra0puGmiw2Lz+ca6/4B2ef+AmT/nwNH31xOJ14z3cRkaSicCQiIknASeL3kBgcLh+WzZBTtJnUzBr6Hj6f9Kwqeh+2BMseBqC6rCeVm3tTtz2fGf+4irqqPOqq8gj6XZiwHTDcYODXk37HX++8mxenns6Dz19AZU0yDDUPA7rJu4h0Hs05EhGRJHArMDnejWgjg80RJCWtjsz8rWQXbaHXocvILtxCfp912OwB6qrysNnCfL3oKOqrc9iwdCS+hjRqt/fAhG377QmyO/1cdOcvycXGSfZUemR5uf3xK/hk8XDCYXsXvc7O0AgcCyyJd0NEJEHtb86RwpGIiCSBxAhHlhVm4oUv4R79Pj7Pduq9OdRV5rFpxVC85T3ZsvpQfPUZNHizdgtAHekRM+T1Xs8P75/IOw9PorSwkusvepHXPjiFPz1/IdW1iToXqREYBSyNd0NEJEFpQQYREZFuwhiLnPR6vlVcxQW/nMLWzb0IBVyd8EwW2zf24cPnL+OUHz3GP2/9Mx8uHMk9Vz3J6w/cwm2P/ZRPFo0grLlIIiLN6F1RRESky1g8/O/vYdVmc9st95KeVdWpz7Xw3bOo2d6DEy98mlUbe3HJb+7gn2+fzuOTHuDOK/+PrIzaTnx+EZHEo3AkIiIJzgYcGe9G7GBwuJvYucz2ntvA4K3L4NaHJ/LtQ7/mmrtvwZNf3kr9AxcMuJn+92s4Yux/KRywEn/Ayd//cxbn/mIyh/ZZz5t//CVD+6/B6qTnFxFJNApHIiKS4CygZ7wbAUCuI8i1Y97GZQ/ute0YR4Affutt7LYwnywawT9evJBLjlzGd2/+LQ6Xv9PaVL52IJ+9cQHjr/oTTncTYLFqYwk/uus2pn5cykuTb+ea775KistHZ4U0EZFEoXAkIiISIxcHHaS9fS7+0K57LtmBH1gh/hiyUzfnhMhqc1j86fkL2b7kSL5z/Kd86yd/we7spIBkbHzy8vdxuPwc++2XiSyHDU1+N/f98wdcetdtnHPKLF6cfDvDBqylewekBiKLMoiIdA6FIxERkRhIBU7D4q3dFjmwA1cBU0Z+zF8Pm8erNVmEd6wSV12bwa8euYaBW/txyqnvMfbKh7E7fZ3SNn9jGlMfvYnjznueooGroo8bY+Pz5UM4/5Z7+fiLEfz73ju49nuvkJbS2tDAeFsPbIx3I0QkiSkciYiIxMARQJBdi0x7gD8DY4Gzlo4ma+gc0lPqd9vD4pMvRvDi1NMZ7c9lxInvc9plj2NZ4U5oncWmL4cx7+1zGXfVn3ClNm9HbUM6U/41gcvu/hVnn/QRz93zG4YPXEP3C0jdrT0ikmwUjkRERA6QBfzQ4ecFh5+c7K0c3mcF/zz7/+jfYxNXAvMDblZvGkhhXnmz/cLGxkP//h7Gm4t99lgGHDmXoSfNoHNCgMUnr0zA6W5i1FmvsnN43U7G2Ji7bCgXTLqHTxcP59m77+Ka775KeoqGsYnIwUP3ORIRkQSXSqSfJn6KUuoZe8tVHJZXxmRvPpbDkDtgIWevGUb51l4ArNk0gMP6LWfNpoHN9q2q8XDb41fwxKQpXPXoFZx8yeMALJ11GrG+Uau/IY13HruB7/36NtYsGMWWVYP3eg5vfQb3P/0Dps89mnuveYKxoz/j14/9lGVr+mMS8saxIiJtp54jERFJcD2A/nFtwaEl67BSDEf0Xkna1EuY/+aPOOd3f2PO8lHROmNGvcd2b16L+3+6ZDgvzziV68/4H5/++4ecdd19HDr6Y2Lfg2SxcflwVsw+iW/88Els9lCLtQwWc5cdxvm33MvW6mz+9+frGTZwTYzbIiLS/SgciYiIHKDPVw3hvXse4YuH/0BV71X8a8ko/EEX4XDkMmtZYdZsHsDiVSNa3D8ctvHQ8xfQI6eaozP8TH3kJk699Anyeq8n9gHJxsxnLyev1wZGnPq/Vo+f6vZxwZjpjBq6nCdfO4f1ZUUxboeISPejcCQiInKA6o2NX9Rn4ft6OJ7xzzPxth9z/qmvcM7Jb+B0+Bk2YCmp7kaa/CmtHqO6LoNfP/pTrr/4JZpWD+WTl7/Pebf+htxeG2Lf3uoc3n3iek790eNkF23eY6vh0D7reeo39/CD09/l2ik3cff/XUZNfXrM29F+e98/SkQklixjTFIu/VJTU0NWVla8myEiIp2uP7CQeM87AihOaaBwwHJK8jZy38RbCQSdPP7qVazZPIDPlh5LVW3uPve3rDC/+cnfOaz/1/zo7l9TetFTDD15Bs/d/gcqN/WJaVstK8yZP7+f1MwaXr3/LkIBJ25ngB+c/i43fP8FXp5+Kn96/kK8dRnEeu5Tx/0JuDHejRCRBOb1evF4Wr9eKByJiEiC6z7haCebLUSP7K3kZFbR5E+hqjYHb112m/bNyqjljd/fyj/fHs+/3v0W46/+I5l523j5d/fgb0qLaTvTc7Zz2e+v5sMXLqVxxQh+d/UTFORWMemRq5i9eATGdJdQtNN9wKR4N0JEEpjCUQJJdUPvAvAHIBiCbV4Y2AvCYVi7BXyddPN0EZHEdggwH8iMd0NixHDiyEU8dNODnHH979lel864nz6EK7WRtx7+JYGYBiTDiBPf55fXPcSRoQxeeu+bPPjCBd2st2h3CkcicmD2F4405yjOUt3QtwgyrDR+851C7viRnZsnwPlH5zC8RxaTLrHxy0vg6vO652VKRCT+RgHdYT5MrFh8vGgEH8w/kuMPX0LQ7+bdJ67DldrA2ddPxpnSEKPnMQzuu547zprOUMvFs+vzufefP8Bbl4muOCJysFI4iqPeh6Ty1KhfMb34bzxjnuOb0x9nZFEeFx5bwo+DP+VfZ4zljD6H8M2eAzg1rZSMDF2sROTgNfIQOOkIGHss5GTAUYc46J9ZgM2eQrJdzoyx8fy73+LbJ3+Ewx4i6E/hncduoKDfGk794V+xrPD+D7IPqe4mLv/2W7x47+0sWT2A82+5F3+fr+g7ch6dcwNaEZHEoJvAxlHFRh/v5D/H61Ue3mMLdVtryb3Vxm2uq+hbcyQZgz7my9uu5g+Bv/DTMy0y8+zU1mmlHhE5OKS6oWc+9CmEdWXwvdMgxQ3jXd/g0xWnMz6nkGl9F3HT8joq91xwLQksXdOf4vyt9Ou5hVUbS/BW9OT5O37P+ZNu56gzXmf+2+diTHtDYaS36O6f/o2CnEqumXITsxeNIGwspv/9Gsb99EE2fzWEBu++F44QEUlWCkdx5G8K8+6qrzluOGxdG3lsUy3caLuPPw+5hpMGOZjkuI9FNeW8snY1W9bFt70iIl3p6CGRIcWeQD5ffz6AE8uPIr2vl+cXfsFs7/u8WbuY9VVbqNx8abyb2ikafW5eff8bjDn2c1ZtLAHAW1HEq/fdzQ/vvxaAeW+fC20KSAa3y88Pxv+P6y/+N6/M+AY/nfxLqmt3zS1aNGM8g4+fxTcu+RtTH70RE+5uHxEM4It3I0QkySXXOIQEVFEFbhc4d7sGWU4/taf9mZqsmeT0Kyc7E7ZUaqCDiBxc+vqGcKz9KE4tOIQLDx1M742n8vhDPbnzvWW8wzvMLt/EIX3DJO+7o8V7nx3DyUcuxOUIRB+rLu/J1Edv4rTLHuPw095h/6/fMKhkA/+667dceubb/HTyL7nrr5dTXdt8blE46OB/T1zHocd9xMCj5rbhuF0tDHwY70aISJJTOIqzYCgSjHrmRX7vWwS3Xgr5eSH6FIcZ0jeyrdIb33aKiHSlvgV5nH/kqbzyRg7f+YWDT2f0ZnHJy6w55q84nZE6ybnWanPryopwuwIccejK3R61WPnZ8bw25U5OuOBf9Bz0JfsKMuef+gGvPTCJpWv6c/ZND/DJohGYFhdcsKja0ouZ//oJ37ryYdKzK2P9cg6QAbRsq4h0LoWjbuCVGTCwN3jSYdNW2FQBRXmwsQKafJHlvbdWx7uVIiJdZ8P27Vz11r+Y6ZjOJ/aPeCzjPvyj/8uAQbUM7ReZj2S3QXoKwIg4t7bzBEN2Xp7xDcaVfkrzABQJSO/9bSLf+eVd9DxkBa0FpFUbe/Oju27jt3+7rA1LdFssmj6eys29OeUHf8eyhWL3YkREEoDCUTdQ3wRfb4GxoyE7E554Hc79JXzj6si9juYsBW9dvFspItJ1wiGoqK1j7Rbo3xMcDkN+UQMTxsPDN0FOZuT98uUZAP3i3NrOZPHeZ6M4bsRS8rL2HEJgsXLu8Sz78FQuuutm8ktanpj6xcpBfL78MMItzk0ykWIZbJk+7PkNOIdW89Gci3AdXklaYXfrPRIR6VzdbbblQWvt5sjNX886AZaugYw0SEuBhqZIb5KIyMFo81a456fwzqewZRuUVcKUf0Xma/74bHjsVahrjHcrO9fWqmx+/8z38QVce22zmzCpz/Wmyj6csVc+xGtT7qSxtrUboBuwG2wpQWwZARw9GrBn+3D2rMeWGgRHGII2AuVpeBsKmDPvOzTWJNbN1EVEDpRlTHKO2q6pqSErK/He1G0WDB0A5ZVQWw++wMExrl5EpDX52fDtE2HmAthQAS4HnHcqvPURVNWCMa8A58W7mZ3EcChfcRTz+TcXAmAnxHd5GR9uzucVSpnNDx1P475kCQX9VvP6A3fQ5EvHshsc+Y3YUoK4+nmxpQVx9GjAhC1M0EZoWyqhajeBzRmEG5yEqt2YkAVhC2evOtJP3ET1S4dCuLsMMgkC30SLMojIgfB6vXg8nla3KxyJiEi3l50J3zgK8rMi843+OXX34cbJG45y2c67jCOAk1OYyTeZwVm8xRm8TT++Zhv5XMrTvMN47I4A5/7qbtY2DeXrzSOxUoOEal0YnwP/Wg/hBieBsnRMwIZp3DlwpOX5R2nHbsGWFqDugz5d92L3S+FIRA7c/sKRhtWJiEi3V10Lr88Ehx0sCwIHyf2wJ/IIRzGfv3IFdkL8gt/zTWZgYdhKj2gwAotQ0MW0N67COdhL9X8HYUI2jM++Y52GfS3CsAfL4CyppXFBQSe9qo6qAFbHuxEikuS6S1+5iIjIfgVDewYjB5AZp9Z0vu1E7vMwkNVkUktPtvA3fsJmipsFo51CHmj8OpdwvQvT5ABj0a5gBFiuEI7sJoJl6TF8JbHQBNTGuxEikuQUjkREJIFlAcNb2RZZic3mCJCeUUv3u6np/r3OuWwjn3kcTQNpeMnim8zgHm7bKxhhGRx5jfg3HFhYdOQ3Eq53Em7U4BIROfjona+TWUB+gZPwbosM2ewWfYan4HDu+9u8wv4ucno6o7/nWXZW/bee/3ygpVVFRCJ27xkx2OwhMnK34cnfSq/By+g9dDE5BWWM8QS47hd/pLwyL56NbbcmUgjioD9rCeLga/oxlGXM5BT26hGyGexZvshQugPgLKnFvzEzEbOkiMgBUzjqZMMGpvGH+/rz+jYv4R0XmnDIsHG5j2Bg31eerxc3suB/u4YQHDsqk5t+WMy7H1fh28++IiLJzmYHpztEXslyevT5nD7Dv6DnISuwLENjXSZbVg5h2czTqPdmc+Jdt3PJGe/w+2e+T3uHmcVTDR4mM4lvMY0svGyhJ1M5nREsZjlDm9W1Z/rBZgh53R1/QsvgLK7bMd8ocf6dRERiReGok33jKA+1oTBP37KZpvpw9PFwB246PuCwFPJ6O+lV4GLNJl8MWyki0r1ZFqRk2MgucpJb7GTAUal48h2kZqbga/gXG5eNZt3iI5n98gRqtvcg0JSCCdsAC1dqPav98O0x7/HM1PGUbU+c3qMgTv7CtTzG1YSwcwd3Y7AItzAq3pHfSKgqBcIdDzWWO4Td4ye4Ne1Ami0ikrAUjjqR3QanHptFZX6YtGw7DTXh/e+0D0XDUqhoCDJ8YJrCkYgkNZsNehS7KB7upuchbvJLnGTmOaivDlGzNcjqeQ1s/NJHgzeHxtrfAUXsq6ejsi6d6V8czYTx7/KHZy/eZ93uxyK043LdQGuLJBhsHj/hWteORRg6xp7ThPHbCNc7919ZRCQJKRx1ovxsJ4W5Tj7ZEJvVdYwx/PejKo4dmsl/ZlXF5JgiIt3R8YdncuOtvfm/j7eyZbWfJe/XUbHOT6ApTKjZanWGyNpC+w4EBnjmnbH85WeP8ew74xKq96itXL1raVqRcwBHMLhKavGtze6m8402AP54N0KkS1iAC0gFGtCZ35W0Wl0nOuawDJataWT9yibyS1z736ENFq2uZ9SwDNJT9b9ORJLXmSfk4CXMtL9tZ/7bNaxf2kRT3Z7BCCIr1eW26Zjl23N577NjmTD+Xbrpp/+OsxlsGf4Dm28EuEpq8H/toXv2rK0BNGpCDg7nAXNs8Knb4oJCOz0O5HsPaRd9wu5Epx+fzTufVFFVESC78MA66WwOSEm3sWpVE8YY+hQd2AVQRKS7soBcjwOTDmlZ+1t5LZW2DoIwWDwzdSxHD1lBWkpyfci2pYSwpQUJVaZ0+BhWahArNURoe8ePISKxcYHLYsS3Uhj4uIM/P5rB67/O5cLMcbid+3+/c6VYTPi2jb/8An5y+FBG9cki3+3pnt95dEMKR50kLcXGoX1SWbiiHhMG6wD/pV1uG5l5DsrX+fhwQS3HDUvemx6KyMEtxW1jSL80Fq9poGhgbL8IKq/M5dMlwxh33JyYHjfeHD0aCHndmEDHl/F29aojXOc8oGOISMtcKTZOPXQQubYs7Pv5TFjogIH5DtaUZFJfVYqtsjdWbQ4n9O/LsOOz9vtcIzMO4eGfFnDi4RZHhI/ile+X8usx55ORrb/ttlA46iSH9UuloSnM+nIf6xc30Xd4akyOa4D353k5+SgPlr4BEJEkVJTnxOcPs+DjOvqNPPD3zsy8bfgb0vE3pgIWL884lYvGTiMtpfHAG9tNWKlBwk32A1qMwdm7lsCmjAM6hoi07LDCdP59ZQkff+9i/voryM9oPahcEoR+mwOsdG5lc9FHbMlcxpeh1dy17kkWzNq+3+faYLbwVW0tBsMzPMPLje/wq3f/RV1VB5ZKPggpHHWS0cMzmfdlHcEQNDWEcafF7p/6y68bGdg7hZxMrachIsknP9tJdV2QNcsa6VHixHaAX3am51Tib0ol0BQJWmXb8qiozGV86RySZe6Rq18N/q/3/41yq2xhnEX1kXAkIjHXRC2vbvyEt1Nf5NIz4OlfHEKGs+Uvf94ElgN/+RRCJoy33rBiHVTVgGnDW1bZ9jruerAemw1++QN4cTo0BveasCmtUDjqBA67xbeOzWLqJ5EV5UIBg83OAV3g03Ps+BrCBP0Gb12QDeU+hg6ITW+UiEiX6wtcDbSwYvTRQ9L5aGEt2zb4sTstHK7Y9mSEjY0nXjuHH54xlfSUppgeOy5sYeweH6Gqjg9BtKUGsdKCBLfruiLSGbZ7oai4ibPOqKQmkMLieX2oD7bce73SggnA1AXwo9/CHX+FPzwH4R3B6BKg536e78Mv4Ip74dZH4NMlsXwlyU/hqBPkZzvITLdH70W0bYOf1Ew7aZ6Op6OsAgcN3hCBJkMoDO/OruZYzTsSkUT1HeAeIrcn2sOAXilU1gRprA1jWZDXa1/33BncoadftqY/68sLGZcEvUeW3WDP9EduANtBjoIGwl43xtdd5yQYYEW8GyHSJn1K3GTk2pt9sbOtGu76GzzwDIy9OcTvP5/VYi+Q22lx7QU9KXdaGGDel/DupxDcMSLOAr4L9N5PG+ob4bNl8NWG2Lymg4nGZXWCE0ZmsmxtI1W1kS5MY4iczTH88nP+inomT+zDIy9uwRdI7Au7iByEbLR4eyKHHY44NJ2/v1mBCcOG5U30PTyVLatau8vHoXsfpA3CxsaTr53DPVc9yTuzj6OhKXFXaLN5/IRqXYQbOnrjVoOrfw2+rz0xbVfsfRXvBojsV2aajWd+N4jX/TXUNoWpWOtj9bxGKjcHWPq1nwVfGSDQ6v4nH+VhSL/UVj/buXYU6TwKR53g2KGZzF1WF/1GIByChpoQGbl26ipjMxluXZmPVLeNglwnG8p1azARSTCt5JmMNDv1jSHKtkXe17ZvCFA8uHNuXbBsTX9Wb+rF8AFr+GzZYa03qpuze3wQtjreAWYzOIvqaVqWS6L+G4h0F4f0TiUtx86rt1ZQ6w3Ra7CbQcemcUivFIo32rjhga9b3ffwIWnc9ONevLKsimPO2vVlRflaP3WVQRzAXd4wpzSEOd9p8UUY/CF9QR5rCkcxlplm56gh6Tzy8pboY6GAwVseJL+3i7JWv/3ct/zeTrZv2vVNQ219iI3lfob2T1M4EpHEYgGlRDoCKppvKshx7ghIYQA2ftnE4adlYtnAhGPbjLCxMfXjUn545tQd4SgxufrU4l/f8V4fW3oAyxUiVJ24vWci3UVulgN3nh1Xpo3tS5vYvjHAoul1HD08nd9d3RenwyIQ3DvQpKfa+OutAylvCrLJHyC/ZFdP8GEnpJOeY8cCKjcEqHpiGzcemsmqXBd/e6tir2M57Ba9+rkI7PYpv7E2RO225l/Qm2BkqoY0p3AUY32KXPgDhrLtrXeZdkSPvi62rGp+08LZi2spHZHJu59Wx/S5REQ6lQXkAPXAHt/tjBqawcKv6gns+Da0qiyIK9UiI8dO7fbYL0M7uO96tmzPi/lxu4xlsOc34p9fQEd7fRz5jYRrXZim7jrfSCRxnDgyk822vT8DVoZC9OnnJi/L0eJnxBED0xjUL5Vbbl3BB596m22zbLvul2kBxSH4UXWQc88p5P/+W7HX3KVjDkvnt3f347mvK6OPhfyG9BxH9Dgeu43U+WHu/MuGBJ91GXudsiDDpk2b+MEPfkBeXh6pqamMGDGCzz//PLrdGMMdd9xBz549SU1NZcyYMaxcubLZMSorK5kwYQIej4fs7Gwuv/xy6urqOqO5MTV2dDYfzPfi32Os6KYvm+gV46Ehhw9K54uV9TE9pohIPB1SksrqjbtWkAsFDN6KYMxvBrtTv+ItrNtcRMIOJ7MM9rTAAfT6GJwltTStzIlps0QOVmmpdlYsbqTX4L3/Jvd1f8qzTsylLsXgGLz3lxQmDOFgpISC8AcDtRsaOSLHSV7W3v0cKW4bW5f5+MeNm6PlmV9v4ZlfbeaZSZHy5uPbGHtyTov7H+xiHo6qqqo44YQTcDqdTJ06lWXLlvGHP/yBnJxdb7xTpkzh4Ycf5vHHH2fOnDmkp6czbtw4mpp2XRAnTJjA0qVLmTZtGm+99RazZs3iyiuvjHVzY8pmi9zf6JNFtXttq9kWwpMf2xOwZ56Tsu0aUiciyWPkIWnNvvQxYajaEiS3xRXrLCC9w89lt4UoytvOxoqCDh8j3myZAUzYIlTTwSnaFriK6whsSidhA6JIN+F0WAzuk8qMD6vx5DcPOWGg3m7ISNn7o3d6io1vjc7ipXnbsZz7/ztc64C1gTB5m5sYPiCtxTpZPRzNVssLh6B2e4iabZGSUeTAXWzn2GG6t9meYh6O7r//fkpKSvjHP/7BscceS//+/Rk7diwDBw4EIr1GDz74ILfddhvnnHMOhx9+OP/85z/ZvHkzr7/+OgDLly/nnXfe4W9/+xujR4/mxBNP5M9//jMvvPACmzdvjnWTYyYzzU5JoYvla/det76pPhxdn769bHbILmw+58jpsHA6LeoaNVhURJJDRqqNjDQ7W7Y1H3KyZkED/Q5v6f47qcCoDj+fwx6iT1E5qzcVd/gY8WbP9GNCVmRBhg6wefzgCBPydvf5RgGgJt6NENknh90iO9OOzxfGZmv+NxnCEG7w8w+3jSP22G/EIWnU1Id4++OqNj1PRqET19AUKmdXM3p4y7d1ySl24kxp/X0hxWNjyaYGjhuh28LsKebh6D//+Q/HHHMM3/ve9ygoKODII4/kr3/9a3T72rVrKSsrY8yYMdHHsrKyGD16NLNnzwZg9uzZZGdnc8wxx0TrjBkzBpvNxpw5c1p8Xp/PR01NTbPS1RqawlRUBejbc+/hHxVf+8nv7cSV2v4LmGWzyMy3462ILA0+DPidDYZ+WMX2FoKYiEgiSkuxk55qY2t183BUtsZPmsfWyoW+45cxhz2EMRbhcKLe8s/g7FlHsCy9wyvVuUpqCG1PhWB37zWqAZbGuxEi+9Svp5smX5j5s+vo0d+11w2srVfLOH5NI4fvsd8hJSk88lIZ5ZsDpGfb99uJaxzwzPeyuWlVPacc5cG9x/O4nTbq2f+X5/OW13P4Iek4Hd39779rxfyKsGbNGh577DEGDRrEu+++y9VXX83Pf/5znn76aQDKysoAKCwsbLZfYWFhdFtZWRkFBc2HOTgcDnJzc6N19jR58mSysrKipaSkJNYvbb8CQUNtfaiV8ZsGh8vC2teA0zbIBR4FrvcbXNO2EdYSjiKSaPKBQ4DPoA3Xb3wNYWx2i+yC2A5N7le8hUafm/LK3Jgetys5i+sIbM6gY0PiDK6+NTtWukuED0e63kn3lpVhp64xTMhvyEi1M7hvKiMGpnHFuYVcOaaQASPywILvnJrLCSN39dg8/+42/jOrkrLVPgr6ubDt59N58aEpfLbax2IDg/qk0DOv+bDak4/yUGHtewEbV6qNZSsbyPHYyde8o2ZiHo7C4TBHHXUU9957L0ceeSRXXnklV1xxBY8//nisn6qZSZMm4fV6o2XDhvjcEnjF+iYG99l7+EegydBUHyYz78BWAyoAthJZ5GlZXYjtB3Q0EZE4cAMeIm9mbRD0GWorg+QWd/Qmpy1zOQMEQ7bE7TmywJYeJFzXwX8XRxhHbhOBso7P2xKRXUYNzSA/28HzdwzimoH5PD5pAFN+3pfeBS5saRafD3PQ8JPeVOS5WLP7wjNhdk29aMP3FGlZNkwYqutCGAPD9ph35HJYWBatfiFv2aBkaApLPqvn680+RhzS8rylg1XMo2LPnj0ZOnRos8cOO+wwXnnlFQCKiooAKC8vp2fPntE65eXlHHHEEdE6FRXN120PBoNUVlZG99+T2+3G7e6c1YzaY9WGRkpbGL8Z8Bl89WEy8xxs29C+Zb4z8+yEAobGmjAh4AggBZjFvu6xLCKSPNYuaKT/kams+LQhZscsHbGEz5YOI2wSoddkb7bUILaUIMHKluZj7Z89MwA2Q7ijizmISDOvvl+Jty7EvC/rGH9jD15+tIKNXzYRCkPvw9xU9Cvg/gW1zJzvbf3+Qm3oIC0a4GblZw1sqvBz88Pr8AX2Plh6tp2iAS7WLGh5+oVlg3DI8N5nXk4+Mov/zfG2WO9gFPOvy0444QRWrFjR7LGvvvqKvn37AtC/f3+KioqYPn16dHtNTQ1z5syhtLQUgNLSUqqrq5k3b160zowZMwiHw4wePTrWTY6pRl8Yl9PWYvA3hg6NXEhJtxEKgb8xzErgW8CFwAMH1FIRkcSxYXkTnvxd9+iIOJBQY0hLaaKhKeUAjxM/No+fcJMdE+jYpdxRVE9we2qH9xeR5jZt9fPPt7eydE0j2xqDhEzzm6zW1IWY8Xnrwai2MjIULiN3330XWT0cVJdHvh5/Y2Yl7322d7Cx2a295jy15MOFNQwbmIZL846iYv6OeMMNN/Dpp59y7733smrVKp577jmefPJJJk6cCES6+K6//nruuece/vOf/7B48WJ++MMfUlxczLnnngtEeprGjx/PFVdcwWeffcbHH3/Mtddey0UXXURxcfdeVWjBinqG9k/da3IcwPoljfQdfuArAq0F/sNe904UEUladdtD5BY7SUnf/bLVH+jZ2i5RKem1NNU179G3LMPRQ1Ywd9lhsW1oF3LkNRLyuiHUkUu5wd3fi39tFokaDkW6sw3LmigZ1r7PfIGmSGpy7WOVObsjEnyC/o7PwUtJt2GzWzTWhHC7bKS6bXob2E3Mw9GoUaN47bXXeP755xk+fDi//e1vefDBB5kwYUK0zi9/+Ut+9rOfceWVVzJq1Cjq6up45513SEnZdRI9++yzDBkyhNNOO40zzjiDE088kSeffDLWzY25YNBgsyzs9r3PssbaMKmZugO5iEh71VeH8DWGyem5+/yaNCKDjPet74iFrFtyRLPHLCAro47q2sS9x4erbw3+r7M6trPD4Cho2LGYQyLwoq8EJZE01YVJzYj9Z760LDspGbZmt3dpr5QMG3Y71HvDjByUxoqvG/AHtODJTp2yPMVZZ53FWWed1ep2y7K4++67ufvuu1utk5uby3PPPdcZzetUFdUBahtCDOyVwqJVzcfGB/0Gextu7rWnnoPclK3yRYbliYgkuqGAC1jU9l2MgS0rfRQf6mbzV752PZ1lGTAWu381mpbahMMeoqY+URcjMFipQcKNHbuM27N8ELII1cZ2kYvOswJo2z1gRLqDoC+MI6f94SjoN/sdDhf0m/1+Jtz0ZRO9hqTw1Zx9z9NMT7HT4NM9M3engcYxFg5DKGxwtRCCNixroniQG3s7r2WZuQ7qqva9JKOISMLoQeTqU96+3TYsbYrZinW5nhrcrgBbtuXF5HhdzXKFcWQ3ESzv2CpTzh3zjQgmyscAfTsoiWXdkiZKhqbsMU9y38Ih2PhlE332MQWjaKCb8rU+gr59/03UbAviyW85nFmWtSNcGU4+ysPM+brB8u4S5V0xYRgDny6pbfGOw+GwwbKjcZ0iIh1QsS5AybAUbDEYqZKdUUdNfXrirlTn8RH22wn7OvKPYXAW19H0VQ66IIl0jnCIyGe+9u4XNthsrf9dpqTb9nnPTMuCzHQ71XWtf6nea4ibstU+wsHIst8trXZ3MFM46gR1DWEy0/b+iwg0GUwY3Kn6ZxcRaa/q8gAOp4Un/0BHhBuO7beYhSsOIRBMzJsf2tMDhOudHev5sSI3jw1Vx//2FyLJyt8YxrIsXDH+zFd8qJtNXzW1ut3lsDisXyqLV9W3XifFRsBnyEyzU1LkZumalpf7PljpU3onWLCijpGD0tkz+NdXhwgHDZntubBbUDzYzaYvW/9DEBE5GAT9htrtQbKLdg6t60t7L2M2QpzAx/zi41/z0QuHkKg9J85edfjXeeLdDBFpRW1liG2NA8k9+RzSRn8Xx2FnsLW+z373q9oSJLtn68OHswoc1FQE93MUC3/TjrlL+3iLs9vAbrPwq+eoGYWjTrDdGyTH42AfvZ5tZgFpHjsNXs05EpGDmwnDphU+Cvru/OAwFGj7uBUbIS7jH/yXMzm0cTmjvJ90Sjs7n8Ge00S4wUmihjuRZBcO2/noq+9Rb4qxudOoCh7CpyvP3u9+FV/76dE/DcuViuVKBceumzRbNnC4bfga9x9mNn/lo6Cfq8XFHVI9NhpqQgzpl8rmrX5q6/UZc3eJOZ6gm6tvDGOzIDXFRl3DrhPYhKFinZ/C/i7K12hJUhE5SBUCdTtKO61f0sSob3v47D87JxBHJiVbKSEse+T91tGjESsl8s2qq3ctVUXZNKzJ4x5u4wJeJJNaLKAHW3fsn2ABwx5Zhrv+417xbkkX0jVTEk8oGKZ+zmuEqjaTfvxFBLdv3O8+1Q0FLPT/ktwfOcGAaaoj5C0Hy4bTFWZ72la2rHl2P0cxhEMWteG+pBzaj0AAwnVVhKo2AVByeA5zXipn2NYQ//3f1lZvSnuwUjjqBFu2+XHYLXpkO6lraL7kbM22IJ4e7RtWB1qnR0SSyChgM7Cp/btu2xgkmDWUrBOOhYKB2FK+BMBKDe4IRxahSjdhf6RHKbAxk6++OJ7B9Ws5iQ/5kiEMYA0Ax/MJLvz4SbC5N2GLcL0TW6afUPWB31g8MXwQ7waItI8JE66rxObJJ1S1GcuVQrjBu9/dmvwZbFzeiPfVX0e+urHZcRQOxLI78DlTmJf/Q/zBV2jtC4NA0PDYc1vYXJFK5aqrsA9Ygi0cxpbmwe4pAGB+wMGo2vt5uOwrHihr360RDgYKR50gbKCuMYQnfe/hHiYM1j5WIdlTerYdp9uiumx/40tFRJJfXY2Dj9ZeQjh9Lv7FTYSbegMQqnJjdgQiE7TtuK9RRHB7Kt8a/BheshjMCioowEHkPTWfbWwmwXpgjEWoMgVHXiOBDQfLvCP1HEmCMWGClZtw5PUhsH4JzqJB1H34TNv2DQWiQcoA/rpKACx3OunHX7jPXcMGSmZWcnJmPh9V1+L974MQ9IHNjmXfMST5O7/i6lAGBcApwJ8ADazbReGoEwRDhnnL6xk+MI0vVja/+da6RU0cf3EhtrTQXjfwsnt6YPfkN3ssNRfqgwECvg58xSoikkBqG0K88vZW/P599ZVbhHx+6j56DtNQAOx924S9GPgifQQj2MSbnM0o5pJBHdvIJ9SOOUvdSbjBiS09QEIOCxQ52FgWljudsK/1FeRixQGcTOSd4aPdN4RDmHAkAjWtXcDKwgGcsnY+6URmbioc7aJw1EmeeKWMVP/egzgrKvNZEJxEzg/22GAMwe0b2DMxBV1u3vsyn7C5Hgh0WntFROLN5Qtz1qvlrAL+s9/aFtC2IWWhajdppp7DHEtZHRxIDR6GsowZfJNyCg+s0XES2JRB2ugt8W6GiLSBLT0HLIvwjh6gfXH2HERgy8oOP5cdKAEuBV4CtrdQx/gbqXOnsQD4M+qX3ZPCUSc5pDLAo8ANwPvsSuT+UArlX9VR9eIdewUhE2iKjLvbjS2rkJzz79irl0lEJNkcCZwADAPCwFst1jJgDJblxHBim45rfA6+yhlAhbOAbwZnEMLOQo5gAUeSqL0uoTonljsEjjAEE7P3S+RgYTkj8xqNf/+3ZbFl5LYpRLXGDzwPXAu0tiC4seCerEJ+BegOR3tTOOoEFnAxkQv8S8DPgJ2jTC2bAxP0Y3wNtGWZBVtKRqQbVulIRJKBA8gGKokkoN2U7tg8H/g1sAx2LJ2wiwk0EaragqNgAP61bbuEmTDU+LO4NeVeejWWs4jD2UJP/Lj2v3M3Fa51YUsJYbnCGIUjkW4puPVr7J4e2FI9kZXqTOcPXjPAY8ByoKaVOuHGOgIp6TRioSW/9qb7HHWCFOD4HT/PBq4Ejtvxu6vPCPwbltDWk9FROJDgtnUQ1oIMIpIEMoHhwDyajRR2EHmftBFZxO5tYBIt9OsYgwn5o9/EtknQxrbaQpYUDOI/nMPX9MdHCiaBL4EmbGF8dmypB8O1IQxoRS1JPKGqMpy9huIoGkS4vrLLvuiuIdLz3loUC5avwtGjL9jVR9KSxL0ydGNDgQFALZBGpPfolzs3OlyYUNvnDiXmgA8RkfbJBo4gMiRkBPA0cAiQ3/ou7WBFxpEk0xtq0E6oxoUj92AYFNMIzIl3I0Q6xgKbOxXjP/C/VVt6dmTkUTAWs4SS6Q0xthSOOsGZRPqFPgeKATdwMHy3JyLSUcVADlC24/dU4FnatBZdm/jXZ+Lq29ogk8QUbnQcJD1HoKuoJC4LZ8kI/OsXH/CR7J4ehJtqI3PUpdMoHMWYRWRC8c6fVwC9gb/GrUUiIt3fcuB/QCGRj8EFRIYl943R8Y3Pgc2dXIvVBjZk4iypjXczRGQfLMvCstuhHaOGOlu4sQZCQWwZufFuSrekcNQJDLtmFO2cb9zh0dKWpcUYRCTpBYDbiCw7ewhwF5GVlma1ukch7YlO4TonVmoQbHvfYiFRhWpdYNv9iiMi3Um40YvNU4DdU0Bw24Y27GFhy8wjVLutU9tl/E0QDmFzp3Xq8yQqhaMYM8AfgH8SGQ5SBfQCPgbAwp7dk1Bl22/o6iwZvmMBBxGRJGAn0q3ewiipL4ncm+MVoCcwhdaXoo3M6Gz7oLtQVQr2TD+WI3mCRKgqBWdBI5YzeQKfSDIJ12zFlpqJ5UqBcBt6rm02HHm9CW5b3/mNk1ZpmYpOMA34EBjCrl6kEIBl4cjpSUPV5jYfy5aSiWmq64xmioh0vaFAHnvcun2X94DpQA8iGaqlkfUm1P75JyYUWd0t0tOSHEzQwoTBcocwAS3nLdJd+TcuxwS604qLBhMOarW6VqjnqJM0AQuBL4BF8W2KiEj3kUKk96i+9SoGqADKW9nuX7sAZ/GQdj2t8dkJ++w48pJndTfT5MA0ObBndacPXZ0heQKtHGTsTrDZMY01dKvz2BgCG5fhKhkR75Z0SwpHIiKSUEwo0PGJxI7kGoIW9tmxkmyhib2tBdo+4kKku3AWD8GemY/v6wXxbspeTCiApZ6jFikciYjIQcG/3oOrT3Kt7hbYmImrJLmWKN9bAy0PsBTp3tz9j4zcuLoh2f9Gk4vCUVey2TABH2FfQ5uqW65UbOnZhKq2dHLDREQSTSHtmzZrYfw2LFcy9bJYmIANy6kV60S6HZsdV7+RhJtqCW5d16ZdLFcqxtdAuL6qkxsHwbLVOAoHdvrzJCKFoy5kz8jHcqcRrtvexh0cWK6UyHr0IiLJwEbz+x102DAiE5jaLlTjxp7pByt5gkRgYybO4rr2X82NhWV1SpNEhMgNW+15fQhu/ZpwGxfWsqXnYLnTMf4YzI20LPb1Zhuq275jeLLeCPakcNSVLAss/ZOLyEHsRGArkXW7u1hoewr2nKakCkdhf2QFPqs9c6kMBLak4+yVXEMMRboTR+FATIOXcL0Xwu1fYfNAOYsOiSwJHuw+N59NFPqkLiIiXcdD5B5H8Vg0zuz4hjSJlvMO10buBGXL8LdjLwvjt2O5k2txCpHuxNnrMHC48K9bGJfnt5ypO5YPb/n9zvgasGx2LKe7axuWABSOREQksRizYyRI+0JOqNYFYQt7VnuCRHe3c96Rgo5It2Gz4+w1hHB9NaHKTW3ezXK6CXkrIu9xnSxUuw3L6cZK9XT6cyUahaOuZLOBafsFzJ7Zg3BDDSaYTBdyEZEDE6xYgyO3rP3LcocjPUdWEvUcEd4xRK53Mg+RWwko/EnisGXkYkvJAExkaFsbOXsNJVS9pdXPiva8EoLbNsSoldIahaMu5CweQrBsFbTx7u62zPzIYgwhjRcVEdnJ+BuxnP72LyhgILgtFUd+8twIFixM0LZjzlEShb5mVqNwJInE2fPQyJfb/sZ2Lapl7edNzZHbm1DlxgNtnuyHwlEXspxu9QKJiMTtM7xFuNaFzeOLVwM6RWCdB1dfrWoq0l24+h5OqHIjxt+IaePtW7pcKEBw+0YcBf3i3ZJuR+FIRES6hhs4BvgCaNvKtjEX9tmxuUMkUy9LuCnZ73KfPP+v5CBgd+Lo0Q/sTgKbv2zXdAosG6apPibNsFLS972EuDGEm+qwpWbF5PmSicKRiIh0DRuQBXiBA7kXqzFggh1adS6wMTPp5ueEqlKwpQWx0rp+uWARac6WnoPlSsUVqIW23tdyB1ef4fg3LolJO1x9DiewfnFMjnWwSfavmxKa5XTtWIZRRKRz9KC9t1KN8ABH0M7bB4YgOBXedfaniiOA+TSfS1IF7Pmt6d4BKNzgJdy4HEfe8QQ2Z7SnBYQbHVgOA84wBOzt2re7MgawDJYzrD4WkTjzFBaTV7WEcX0rGJT5Cc9tgUUV0Lif6eN2G/RM9bMqVivVWRZmP8cK12zF7ukRm+dLIgpHXcieU0ywakub67v6HRG39fFFJPkNBP4LFHVgXxvgau9OfgjebOOaHj/mn9wYeaBZvFoPbNvt941ExuDtVAd8CiZMYFM+lrv9PSWhGheWM4QtJUg4ScIRARuh7ak4i+rxeZPxniXtXXlDJD4G5cI133RweOZ0fOVreWdDmL+cAfUBeGEJvLYcyvf4/sduwdHFcN1xkF70No9nb+CdVtZc6GFVc2RhOW/YINjKaD23HfpmQ0FKGZvdtazZR3sd5UvJOuJbe30ldbBTOOpCjvy++FfPbXN9y+aA0IGMPRERad0G4B6gsAP7eoHPaP9skJCBVRX/Al4GRgOZu209HCjZ7feRwLd3+90iEsks6mY56NDI8KCNwJYMHAUN+GuTJUhYmJC1Y8W6ZBMCvox3I0T2K8sNfz8H5q2bx/oUwzmDod4Hd8+EftlwzSi4sRR++Bp8uiP8OG1w7xi48mjY3gATX19MQXrknW7P99ZMF/yx8DVO6B3icD88OBuqmiLbHDYo7Q3nDIFv9oc0J7xS8R4Dj9zGxLWwvYUFOnNT4XejyvBmz+GP6VChhBSlcCQicpDyA890+bOGga92/PzFHtv27CFIA3J2+z0dOArIwZZ+N6lHNlD/UW8w7elZsKid0QcTTK7eCP/XWbj6eWlamh/vpsRYGFgb70aI7FedH341Az7baAgZmHs03HoiHJoHn26Am/8H/XPg24Ph882Rnp+wgWmrYXQv+MX/4LN93C/WF4Jfv9PEr06CU/vB0gp4cWlkW14q/PO8SK/R01/Ak5/Dxpqv+fMZcGp/eHlZ82P1zICHToczBmzlq8qtbBwGf/ms0/5pEo7CkYiIdBN7fldaz95zkFYAhViOSbgHeqmfXQzB9g2Ps1whnL0a8a/OIlmGbJmADcu5815HyfGaRBJJyMCH63b9/uhcWFIR6TF6/HMozIAnPo/08uwcEhcy8L/Vkf0a9zNK2B+CpVvhhnfBF4yEsZ0ag3DLtEi4Wle9653051MhtEeH8sAcePlCeH8tzN0E1/x3Vw+URCgcdWMmHAKbFhQUEdlTqCYy48nu8ROqTG33/hknb6BqQybGnxzzjoIVadiP3xxZlCFZ5lKJJLhZ6+CTDc3nBwVaGP26v2C0u5aGv9X4dvUi7c7fwsyM6ia4ZyZMXwuD82D5tr3rHOz0ybsb869biKvfEfFuhohI9xO2CG5LxdGj/TdYNE0OMBZW6n6Wj0ogYZ8dyx4Gu9arE+lOWls4IV62N8IryyMhac4+hvEdzBSOujHj92E5O7LIrohI8gtVuXHkNdHeZSGM30a4zokjN3nGkpgmB6F6J4789odFERHZReFIREQSkn+9B2dJx27o6t+QiauD+3ZLBgjZIvdwEhGRDlM4EhGRBJMNuAh53dhSglju9t7ywCKwKQObxw9W8oSJjE0hevVfS/sXWO/OGonc30pEpGtoQYYuYrnSsKV52nUTWEIBLJudlle8FxE5WA0FPJjGMJYzUoyvfUcIed048hojc3QSfFlvt72J7w59mQtGPkvIaePWRX/kq+2Hkhyr1pUBX8e7ESJyEFHPUVdxOLGcbkxT278BC1aswZ5dhOVO68SGiYgkJhO0EaxMwVHQ/nk24ToXxm/H7mlnqupWDANyVvO3c37C5DGTePy9n/H2R+fyh3E3UZy5Od6NExFJSOo56saMCYOVDN/8iYh0AmMRqnZjz+nAwgom0nvk7FnfoaXA481l9/HdoS/z22/eztb6Hkx45Vk+XH8SNiuMZRn+75zLufyN/2Nzba94N1VEJKGo50hERBJWYOPOhRXaO/TYIrg9JTK0LqGGLRv6Za/l7+f8mL99+yd8UTaSC156kQ/XnwRYhI2dpxdeyrrqvpw+aGqL+2e4ajk+aw6ptH+lPxGRZKeeIxERSVjBranYs3zgCEOwfTc/9a/3kPnN9QkzrdNp83PBsBf57Tdvp5dnE49/fhW3TLufpmDzni9/yM3P3v4zptmcI0OGq46zD32Tnx/3MM60Jj53juLauY8SDDu79oWIiHRj6jnqzkIhTNCP5Uq8IR8iIp1n1/d64QYn2Ay2lPauWBeZd2Q5wx1Y7a6rReYW/ePcy/jbOT8hJ7WKn775RIvBaKdA2BUNPRmuWi4c/m/+/b0Leeo7P2KDt4Sz//42KSE/A3LWdOULERHp9hSOujHjbyBcV4kjvyTeTRER6UZOif5kfHbC9U7sHbiha7ghErJsaYGYtSz2DOcPfYW3vn8WF494no01vbniP3/l6YWXthqMdu6X7qzjwmEv8MiZEzk07ytyUqr4z5ff5so3n2RLXTEvL/sul458Gotwl72a9tsKBOPdCBE5iMQ8HIVCIW6//Xb69+9PamoqAwcO5Le//S3G7BqzYIzhjjvuoGfPnqSmpjJmzBhWrlzZ7DiVlZVMmDABj8dDdnY2l19+OXV1B+G9Dgwkx3KsIiKxksbu74uBTRnYszuw6lzIIliehrO4e19b0p31eH1ZzN00irOfe5OXl30X0+rlOzKn6MJh/+aRMyeSm1rJQ59ex8jCL5i7eRRXvPlXqptyAJi17mQO67Gc3NTKrnsx7bYYSOQVBUUk0cQ8HN1///089thj/OUvf2H58uXcf//9TJkyhT//+c/ROlOmTOHhhx/m8ccfZ86cOaSnpzNu3DiamnZ98zdhwgSWLl3KtGnTeOutt5g1axZXXnllrJsrIiIJzSJc78JZWE9HFmUIVKTh6NG9F2UYlLeSL7cO4fRnpvLltiG0/IXZrlD0lzOuJSe1il/87/fM33IUT3/nUj5afyI3vvPHaDACqPF5uPfDXxEMa/qxiEiUibEzzzzT/PjHP2722HnnnWcmTJhgjDEmHA6boqIi88ADD0S3V1dXG7fbbZ5//nljjDHLli0zgJk7d260ztSpU41lWWbTpk1taofX6zVErnbdolhpWSbviseN5Upr137Z373TuPofFff2q6ioqHSf8ncDJlocPepNziVLDLZQs8fbUpx9q032BcsNhNu9b9eUsPG4q02as67V7emuWnPhsOfN09+5xFx9zCMmL3WrgbAZ1WuOWXjV4eaG0j8YuxXoBq+lI+WxTjh/VFRUDubi9Xr3mSFi3nN0/PHHM336dL766isAvvjiCz766CNOP/10ANauXUtZWRljxoyJ7pOVlcXo0aOZPXs2ALNnzyY7O5tjjjkmWmfMmDHYbDbmzJkT6yZ3a6GaCuyeHvFuhohItxVucOCx1+FKaf/wq3BFKsNylzGocEUntCwWLGp8WTQE0lvZavjxEX8nN7WSG9/5I499fjVVTTmcO+R1fj/2F1z/zoM89Ol1hIx6h0RE2iLm75a33norNTU1DBkyBLvdTigU4ne/+x0TJkwAoKysDIDCwsJm+xUWFka3lZWVUVBQ0LyhDge5ubnROnvy+Xz4fLsujDU1NTF7TfEULFuFo+cg+OLdeDdFRKQbMnyr5wzOKnieihP7M2X6rfhCKW3eu3/qOp7I/BVrvjmIH7z6DDW+rE5sa+wZbDw69xpCxs7O4XbDCpZy5zfu5Nq3/8JH609E81ZFRNou5j1HL774Is8++yzPPfcc8+fP5+mnn+b3v/89Tz/9dKyfqpnJkyeTlZUVLSUl3WuFN5s7HeNvwpjuvmSsiEh35gYOASL3/blw2L/5v29fzmHlGxnXexrHFH/erqNlub2sWD+Udd6+/OWMa0lz1ndCmztXpFdoVwBavvUwxj/zjoKRiEgHxDwc3Xzzzdx6661cdNFFjBgxgksuuYQbbriByZMnA1BUVARAeXl5s/3Ky8uj24qKiqioqGi2PRgMUllZGa2zp0mTJuH1eqNlw4YNsX5pB8SR34eQtwwCWnVHRKTjXEAvAL479GV+dfK9rKwcxF/mXMvpz0zl043HtetoKY4mtjfkcc/M2/hq+6HYrO68rHXbBMNOyup6kvjByACN8W6EiBxkYj6srqGhAZuteeay2+2Ew5ELTv/+/SkqKmL69OkcccQRQGQI3Jw5c7j66qsBKC0tpbq6mnnz5nH00UcDMGPGDMLhMKNHj27xed1uN263O9YvR0REuql3V49jYdkRXDzief63emyr83L2Ze7mUaysHERFfQH3zLq9E1opB2ZmvBsgIgeZmIejs88+m9/97nf06dOHYcOGsWDBAv74xz/y4x//GADLsrj++uu55557GDRoEP379+f222+nuLiYc889F4DDDjuM8ePHc8UVV/D4448TCAS49tprueiiiyguLo51k7u1YNUW3ENOAJsdwhqSJyIHuxDgBaCyMY/Kxlzu/OBOwsbeoaP5Q24q6gv3X1HipDvfoFdEklKb1sVuh5qaGnPdddeZPn36mJSUFDNgwADz61//2vh8vmidcDhsbr/9dlNYWGjcbrc57bTTzIoVK5odZ/v27ebiiy82GRkZxuPxmMsuu8zU1ta2uR3dbSlv96DjTNa5t7Z7P1tWocn78SMGuzPur0FFRUWle5RvGnjOwDsGNhvYsqPUmciS3LuXeC9FrdLxEjZwRgv//1VUVFQ6Xva3lLdljDEkoZqaGrKysuLdjCj3oONIGfYNvK/f16798vNzOPT8a/jqufvZVhvspNaJiCQiB+DZ7fe+wM5eICdwCpC64/fDgJ0jD+xA7x3/3fl7zKfgygGrBU4F5sW7ISKSRLxeLx6Pp9XtuvFBF7FhONS1jXlW5LuwtnDZ4f6Taklxvc6IS4L8Yz48txi2NrT9GCIiySsIVO72e+Ue29/c7Wcnuy55diIr3u38fSS7gpMbOHHHfwGyiQQpiASoVBJ/oYN4M0DDjv8CVAMbd9s2F9gGzAe+6OrGichBTj1HXeSaE9O54sRsfvnSJqat3n99lx1uPwX6ZcON78CYgXD7yZDugrdWwF8+gy+37bq0iIhIrOw+fykDyN/xsxs4lkjQAugHjNjxc8qOn3fumwrsuUBEsoUqs8fP1UTmhEFkXtjy3bYvYFcA8gNz2DWfqI5IGNpJ82tFpPPsr+dI4agLuOzw7PlwfEnk0njJqzB97b736ZMFj50JP58Kq6sij+WnwaST4KdHQ1MQXlgCryyDjzeAX9cSEZE4sgM57ApAxUTCEzseO5FILxQ7Hu+/27YiIkuU7/w9nkP8wuwKPQYoB3begqKOyBC3ncudLwdW7fg5BCxi19LbfnYunCEi0p0oHHUThelwYykc2xvcdrjgJdhYs+99XPa9Q4/NglP6wq9PhuEFUNUEi8vh/o9h3ubOa7+IiMSKk13D9ixgEJGeJ4DBwMAdP9uB49nVA5UO9GFXAHPTtiAVIhJWdtpAZD4PRMLMx0SGKAJ8DSzb8bMBVhMZArfzOLrvkIgkNs056ibK6+GTDZCVAnM3wf+dA5e/se+A1FJvUNjA+1/DvC1w9Sj4yVFgWeBIttEaIiJJK0DzJarn7/bzJ3vUdbArDKWya26UAziOXQtOFAKjdjv+TKBpx+/lRHp1dioD6nf8bNgVjERERD1HXaggHZ7/LvzgFfjNNyDVAT99KzJErqMG5sDd34RPN8CfP4tZU0VEJOHsDFFJeVkXEYmJ/fUcae3SLrStAaqbIvOJbnoXGoNw96mR4XMdtboKLn0NHvs8du0UEZFEtPM2HiIi0lEKR10obOCxueC0Q30A7vwAUp2QcoCDG4PhSBERERERkY7TsLo4s9D3fCIiIiIiXUHD6ro5BSMRERERke5B4UhERERERASFIxEREREREUDhSEREREREBFA4EhERERERARSOREREREREAIUjERERERERQOFIREREREQEUDgSEREREREBFI5EREREREQAhSMRERERERFA4UhERERERARQOBIREREREQEUjkRERERERACFIxEREREREUDhSEREREREBFA4EhERERERARSOREREREREAIUjERERERERQOFIREREREQEUDgSEREREREBFI5EREREREQAhSMRERERERFA4UhERERERARQOBIREREREQEUjkRERERERACFIxEREREREUDhSEREREREBFA4EhERERERARSOREREREREAIUjERERERERQOFIREREREQEUDgSEREREREBFI5EREREREQAhSMRERERERFA4UhERERERARQOBIREREREQEUjkRERERERACFIxEREREREUDhSEREREREBFA4EhERERERAToQjmbNmsXZZ59NcXExlmXx+uuvN9tujOGOO+6gZ8+epKamMmbMGFauXNmsTmVlJRMmTMDj8ZCdnc3ll19OXV1dszqLFi3ipJNOIiUlhZKSEqZMmdL+VyciIiIiItJG7Q5H9fX1jBw5kkceeaTF7VOmTOHhhx/m8ccfZ86cOaSnpzNu3DiampqidSZMmMDSpUuZNm0ab731FrNmzeLKK6+Mbq+pqWHs2LH07duXefPm8cADD3DnnXfy5JNPduAlioiIiIiItIE5AIB57bXXor+Hw2FTVFRkHnjggehj1dXVxu12m+eff94YY8yyZcsMYObOnRutM3XqVGNZltm0aZMxxphHH33U5OTkGJ/PF61zyy23mMGDB7e5bV6v1wAqKioqKioqKioqKioGMF6vd58ZIqZzjtauXUtZWRljxoyJPpaVlcXo0aOZPXs2ALNnzyY7O5tjjjkmWmfMmDHYbDbmzJkTrXPyySfjcrmidcaNG8eKFSuoqqpq8bl9Ph81NTXNioiIiIiISFvFNByVlZUBUFhY2OzxwsLC6LaysjIKCgqabXc4HOTm5jar09Ixdn+OPU2ePJmsrKxoKSkpOfAXJCIiIiIiB42kWa1u0qRJeL3eaNmwYUO8myQiIiIiIgkkpuGoqKgIgPLy8maPl5eXR7cVFRVRUVHRbHswGKSysrJZnZaOsftz7MntduPxeJoVERERERGRtoppOOrfvz9FRUVMnz49+lhNTQ1z5syhtLQUgNLSUqqrq5k3b160zowZMwiHw4wePTpaZ9asWQQCgWidadOmMXjwYHJycmLZZBERERERkYg2L/+2Q21trVmwYIFZsGCBAcwf//hHs2DBArNu3TpjjDH33Xefyc7ONm+88YZZtGiROeecc0z//v1NY2Nj9Bjjx483Rx55pJkzZ4756KOPzKBBg8zFF18c3V5dXW0KCwvNJZdcYpYsWWJeeOEFk5aWZp544ok2t1Or1amoqKioqKioqKio7F72t1pdu8PR+++/3+ITXXrppcaYyHLet99+uyksLDRut9ucdtppZsWKFc2OsX37dnPxxRebjIwM4/F4zGWXXWZqa2ub1fniiy/MiSeeaNxut+nVq5e577772tVOhSMVFRUVFRUVFRUVld3L/sKRZYwxJKGamhqysrLi3QwREREREekmvF7vPtcmSJrV6kRERERERA6EwpGIiIiIiAgKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgJ0IBzNmjWLs88+m+LiYizL4vXXX49uCwQC3HLLLYwYMYL09HSKi4v54Q9/yObNm5sdo7KykgkTJuDxeMjOzubyyy+nrq6uWZ1FixZx0kknkZKSQklJCVOmTOnYKxQREREREWmDdoej+vp6Ro4cySOPPLLXtoaGBubPn8/tt9/O/PnzefXVV1mxYgXf/va3m9WbMGECS5cuZdq0abz11lvMmjWLK6+8Mrq9pqaGsWPH0rdvX+bNm8cDDzzAnXfeyZNPPtmBlygiIiIiItIG5gAA5rXXXttnnc8++8wAZt26dcYYY5YtW2YAM3fu3GidqVOnGsuyzKZNm4wxxjz66KMmJyfH+Hy+aJ1bbrnFDB48uM1t83q9BlBRUVFRUVFRUVFRUTGA8Xq9+8wQnT7nyOv1YlkW2dnZAMyePZvs7GyOOeaYaJ0xY8Zgs9mYM2dOtM7JJ5+My+WK1hk3bhwrVqygqqqqs5ssIiIiIiIHIUdnHrypqYlbbrmFiy++GI/HA0BZWRkFBQXNG+FwkJubS1lZWbRO//79m9UpLCyMbsvJydnruXw+Hz6fL/p7TU1NTF+LiIiIiIgkt07rOQoEAlxwwQUYY3jsscc662miJk+eTFZWVrSUlJR0+nOKiIiIiEjy6JRwtDMYrVu3jmnTpkV7jQCKioqoqKhoVj8YDFJZWUlRUVG0Tnl5ebM6O3/fWWdPkyZNwuv1RsuGDRti+ZJERERERCTJxTwc7QxGK1eu5L333iMvL6/Z9tLSUqqrq5k3b170sRkzZhAOhxk9enS0zqxZswgEAtE606ZNY/DgwS0OqQNwu914PJ5mRUREREREpK3aHY7q6upYuHAhCxcuBGDt2rUsXLiQ9evXEwgE+O53v8vnn3/Os88+SygUoqysjLKyMvx+PwCHHXYY48eP54orruCzzz7j448/5tprr+Wiiy6iuLgYgO9///u4XC4uv/xyli5dyr///W8eeughbrzxxti9chERERERkd21eW3sHd5///0Wl8W79NJLzdq1a1tdNu/999+PHmP79u3m4osvNhkZGcbj8ZjLLrvM1NbWNnueL774wpx44onG7XabXr16mfvuu69d7dRS3ioqKioqKioqKioqu5f9LeVtGWMMSaimpoasrKx4N0NERERERLoJr9e7z+k3nX6fIxERERERkUSgcCQiIiIiIoLCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIoDCkYiIiIiICKBwJCIiIiIiAigciYiIiIiIAApHIiIiIiIigMKRiIiIiIgIoHAkIiIiIiICKByJiIiIiIgACkciIiIiIiKAwpGIiIiIiAigcCQiIiIiIgIoHImIiIiIiAAKRyIiIiIiIkAHwtGsWbM4++yzKS4uxrIsXn/99VbrXnXVVViWxYMPPtjs8crKSiZMmIDH4yE7O5vLL7+curq6ZnUWLVrESSedREpKCiUlJUyZMqW9TRUREREREWmzdoej+vp6Ro4cySOPPLLPeq+99hqffvopxcXFe22bMGECS5cuZdq0abz11lvMmjWLK6+8Mrq9pqaGsWPH0rdvX+bNm8cDDzzAnXfeyZNPPtne5oqIiIiIiLSNOQCAee211/Z6fOPGjaZXr15myZIlpm/fvuZPf/pTdNuyZcsMYObOnRt9bOrUqcayLLNp0yZjjDGPPvqoycnJMT6fL1rnlltuMYMHD25z27xerwFUVFRUVFRUVFRUVFQMYLxe7z4zRMznHIXDYS655BJuvvlmhg0bttf22bNnk52dzTHHHBN9bMyYMdhsNubMmROtc/LJJ+NyuaJ1xo0bx4oVK6iqqmrxeX0+HzU1Nc2KiIiIiIhIW8U8HN1///04HA5+/vOft7i9rKyMgoKCZo85HA5yc3MpKyuL1iksLGxWZ+fvO+vsafLkyWRlZUVLSUnJgb4UERERERE5iMQ0HM2bN4+HHnqIp556CsuyYnno/Zo0aRJerzdaNmzY0KXPLyIiIiIiiS2m4ejDDz+koqKCPn364HA4cDgcrFu3jptuuol+/foBUFRUREVFRbP9gsEglZWVFBUVReuUl5c3q7Pz95119uR2u/F4PM2KiIiIiIhIW8U0HF1yySUsWrSIhQsXRktxcTE333wz7777LgClpaVUV1czb9686H4zZswgHA4zevToaJ1Zs2YRCASidaZNm8bgwYPJycmJZZNFREREREQAcLR3h7q6OlatWhX9fe3atSxcuJDc3Fz69OlDXl5es/pOp5OioiIGDx4MwGGHHcb48eO54oorePzxxwkEAlx77bVcdNFF0WW/v//973PXXXdx+eWXc8stt7BkyRIeeugh/vSnPx3IaxUREREREWldm9fG3uH9999vcVm8Sy+9tMX6ey7lbYwx27dvNxdffLHJyMgwHo/HXHbZZaa2trZZnS+++MKceOKJxu12m169epn77ruvXe3UUt4qKioqKioqKioqKruX/S3lbRljDEmopqaGrKyseDdDRERERES6Ca/Xu8+1CWK+lLeIiIiIiEgiUjgSERERERFB4UhERERERARQOBIREREREQGSOBwl6ToTIiIiIiLSQfvLCEkbjrZv3x7vJoiIiIiISDdSW1u7z+3tvglsosjNzQVg/fr1WtJbYqqmpoaSkhI2bNiwz6UgRTpC55d0Fp1b0ll0bklnitX5ZYyhtraW4uLifdZL2nBks0U6xbKysvSHKp3C4/Ho3JJOo/NLOovOLeksOrekM8Xi/GpLh0nSDqsTERERERFpD4UjERERERERkjgcud1ufvOb3+B2u+PdFEkyOrekM+n8ks6ic0s6i84t6UxdfX5ZRmtei4iIiIiIJG/PkYiIiIiISHsoHImIiIiIiKBwJCIiIiIiAigciYiIiIiIAEkajh555BH69etHSkoKo0eP5rPPPot3k6Sbu/POO7Esq1kZMmRIdHtTUxMTJ04kLy+PjIwMzj//fMrLy5sdY/369Zx55pmkpaVRUFDAzTffTDAY7OqXIt3ArFmzOPvssykuLsayLF5//fVm240x3HHHHfTs2ZPU1FTGjBnDypUrm9WprKxkwoQJeDwesrOzufzyy6mrq2tWZ9GiRZx00kmkpKRQUlLClClTOvulSZzt79z60Y9+tNd72fjx45vV0bklLZk8eTKjRo0iMzOTgoICzj33XFasWNGsTqyuhR988AFHHXUUbrebQw45hKeeeqqzX57EUVvOrW984xt7vXddddVVzep01bmVdOHo3//+NzfeeCO/+c1vmD9/PiNHjmTcuHFUVFTEu2nSzQ0bNowtW7ZEy0cffRTddsMNN/Dmm2/y0ksvMXPmTDZv3sx5550X3R4KhTjzzDPx+/188sknPP300zz11FPccccd8XgpEmf19fWMHDmSRx55pMXtU6ZM4eGHH+bxxx9nzpw5pKenM27cOJqamqJ1JkyYwNKlS5k2bRpvvfUWs2bN4sorr4xur6mpYezYsfTt25d58+bxwAMPcOedd/Lkk092+uuT+NnfuQUwfvz4Zu9lzz//fLPtOrekJTNnzmTixIl8+umnTJs2jUAgwNixY6mvr4/WicW1cO3atZx55pmceuqpLFy4kOuvv56f/OQnvPvuu136eqXrtOXcArjiiiuavXft/qVMl55bJskce+yxZuLEidHfQ6GQKS4uNpMnT45jq6S7+81vfmNGjhzZ4rbq6mrjdDrNSy+9FH1s+fLlBjCzZ882xhjz9ttvG5vNZsrKyqJ1HnvsMePxeIzP5+vUtkv3BpjXXnst+ns4HDZFRUXmgQceiD5WXV1t3G63ef75540xxixbtswAZu7cudE6U6dONZZlmU2bNhljjHn00UdNTk5Os/PrlltuMYMHD+7kVyTdxZ7nljHGXHrppeacc85pdR+dW9JWFRUVBjAzZ840xsTuWvjLX/7SDBs2rNlzXXjhhWbcuHGd/ZKkm9jz3DLGmFNOOcVcd911re7TledWUvUc+f1+5s2bx5gxY6KP2Ww2xowZw+zZs+PYMkkEK1eupLi4mAEDBjBhwgTWr18PwLx58wgEAs3OqyFDhtCnT5/oeTV79mxGjBhBYWFhtM64ceOoqalh6dKlXftCpFtbu3YtZWVlzc6nrKwsRo8e3ex8ys7O5phjjonWGTNmDDabjTlz5kTrnHzyybhcrmidcePGsWLFCqqqqrro1Uh39MEHH1BQUMDgwYO5+uqr2b59e3Sbzi1pK6/XC0Bubi4Qu2vh7Nmzmx1jZx19Tjt47Hlu7fTss8+Sn5/P8OHDmTRpEg0NDdFtXXluOdpVu5vbtm0boVCo2T8cQGFhIV9++WWcWiWJYPTo0Tz11FMMHjyYLVu2cNddd3HSSSexZMkSysrKcLlcZGdnN9unsLCQsrIyAMrKylo873ZuE9lp5/nQ0vmy+/lUUFDQbLvD4SA3N7dZnf79++91jJ3bcnJyOqX90r2NHz+e8847j/79+7N69Wp+9atfcfrppzN79mzsdrvOLWmTcDjM9ddfzwknnMDw4cMBYnYtbK1OTU0NjY2NpKamdsZLkm6ipXML4Pvf/z59+/aluLiYRYsWccstt7BixQpeffVVoGvPraQKRyIddfrpp0d/Pvzwwxk9ejR9+/blxRdf1Bu1iCSMiy66KPrziBEjOPzwwxk4cCAffPABp512WhxbJolk4sSJLFmypNncW5FYaO3c2n3e44gRI+jZsyennXYaq1evZuDAgV3axqQaVpefn4/dbt9r5ZTy8nKKiori1CpJRNnZ2Rx66KGsWrWKoqIi/H4/1dXVzersfl4VFRW1eN7t3Cay087zYV/vU0VFRXstIhMMBqmsrNQ5J+0yYMAA8vPzWbVqFaBzS/bv2muv5a233uL999+nd+/e0cdjdS1srY7H49GXkUmutXOrJaNHjwZo9t7VVedWUoUjl8vF0UcfzfTp06OPhcNhpk+fTmlpaRxbJommrq6O1atX07NnT44++micTmez82rFihWsX78+el6VlpayePHiZh86pk2bhsfjYejQoV3efum++vfvT1FRUbPzqaamhjlz5jQ7n6qrq5k3b160zowZMwiHw9ELRmlpKbNmzSIQCETrTJs2jcGDB2vYk0Rt3LiR7du307NnT0DnlrTOGMO1117La6+9xowZM/YaWhmra2FpaWmzY+yso89pyWt/51ZLFi5cCNDsvavLzq12Ld+QAF544QXjdrvNU089ZZYtW2auvPJKk52d3Wx1C5E93XTTTeaDDz4wa9euNR9//LEZM2aMyc/PNxUVFcYYY6666irTp08fM2PGDPP555+b0tJSU1paGt0/GAya4cOHm7Fjx5qFCxead955x/To0cNMmjQpXi9J4qi2ttYsWLDALFiwwADmj3/8o1mwYIFZt26dMcaY++67z2RnZ5s33njDLFq0yJxzzjmmf//+prGxMXqM8ePHmyOPPNLMmTPHfPTRR2bQoEHm4osvjm6vrq42hYWF5pJLLjFLliwxL7zwgklLSzNPPPFEl79e6Tr7Ordqa2vNL37xCzN79myzdu1a895775mjjjrKDBo0yDQ1NUWPoXNLWnL11VebrKws88EHH5gtW7ZES0NDQ7ROLK6Fa9asMWlpaebmm282y5cvN4888oix2+3mnXfe6dLXK11nf+fWqlWrzN13320+//xzs3btWvPGG2+YAQMGmJNPPjl6jK48t5IuHBljzJ///GfTp08f43K5zLHHHms+/fTTeDdJurkLL7zQ9OzZ07hcLtOrVy9z4YUXmlWrVkW3NzY2mmuuucbk5OSYtLQ0853vfMds2bKl2TG+/vprc/rpp5vU1FSTn59vbrrpJhMIBLr6pUg38P777xtgr3LppZcaYyLLed9+++2msLDQuN1uc9ppp5kVK1Y0O8b27dvNxRdfbDIyMozH4zGXXXaZqa2tbVbniy++MCeeeKJxu92mV69e5r777uuqlyhxsq9zq6GhwYwdO9b06NHDOJ1O07dvX3PFFVfs9eWgzi1pSUvnFWD+8Y9/ROvE6lr4/vvvmyOOOMK4XC4zYMCAZs8hyWd/59b69evNySefbHJzc43b7TaHHHKIufnmm43X6212nK46t6wdjRYRERERETmoJdWcIxERERERkY5SOBIREREREUHhSEREREREBFA4EhERERERARSOREREREREAIUjERERERERQOFIREREREQEUDgSEREREREBFI5EREREREQAhSMRERERERFA4UhERERERARQOBIREREREQHg/wGyfjPCeDFZZAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -665,7 +666,7 @@ }, { "cell_type": "code", - "execution_count": 333, + "execution_count": 25, "id": "d51c5b86", "metadata": {}, "outputs": [], @@ -707,7 +708,7 @@ }, { "cell_type": "code", - "execution_count": 334, + "execution_count": 26, "id": "a55035af", "metadata": {}, "outputs": [], @@ -725,7 +726,7 @@ }, { "cell_type": "code", - "execution_count": 335, + "execution_count": 27, "id": "a5590507", "metadata": {}, "outputs": [], @@ -736,7 +737,7 @@ }, { "cell_type": "code", - "execution_count": 336, + "execution_count": 28, "id": "6c8f700b", "metadata": {}, "outputs": [], @@ -770,13 +771,13 @@ }, { "cell_type": "code", - "execution_count": 337, + "execution_count": 29, "id": "b4bf2fc4", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHlCAYAAAA+8YdPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVk1JREFUeJzt3Xt8lOWd///XTA6ThJCEgCSAgKgICIgHFOOp7UoB63puq5S6LnV1tdjWatXarlrtulhtbeuux93vV/3+1mrrbtVqPZSKStWIiBwUFEEREAgokAOHHOf6/TEwGuWoSe5JeD0fj88DM/c1c38m3mTy5rrv646FEAKSJEmStJeLR92AJEmSJGUCw5EkSZIkYTiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSkOHh6Pbbb2e//fYjLy+PMWPG8Oqrr0bdkiRJkqQuKmPD0e9//3suu+wyrrvuOl5//XVGjRrF+PHjWbt2bdStSZIkSeqCYiGEEHUT2zNmzBiOPPJI/uM//gOAZDJJ//79+d73vsePf/zjiLuTJEmS1NVkR93A9jQ2NjJ79myuvvrq9GPxeJyxY8dSWVm53ec0NDTQ0NCQ/jqZTLJ+/Xp69uxJLBZr954lSZIkZaYQAnV1dfTt25d4fMcnz2VkOProo49oaWmhrKys1eNlZWW8/fbb233O1KlTuf766zuiPUmSJEmd0IoVK9h33313uD1jrznaU1dffTU1NTXpWr58edQtSZIkScog3bt33+n2jJw56tWrF1lZWaxZs6bV42vWrKG8vHy7z0kkEiQSiY5oT5IkSVIntKvLbTJy5ig3N5cjjjiCZ599Nv1YMpnk2WefpaKiIsLOJEmSJHVVGTlzBHDZZZdx3nnnMXr0aI466ih+85vfsGnTJiZPnhx1a5IkSZK6oIwNR2effTYffvgh1157LVVVVRx66KE8/fTTn1mkQZIkSZLaQsbe5+iLqq2tpbi4OOo2JEmSJGWImpoaioqKdrg9I685kiRJkqSOZjiSJEmSJAxHkiRJkgQYjiRJkiQJyODV6iRJ7S0LyAWSQEPEvUiSFD3DkSTtNYqB3sBg4Litf44EqoHZwKvAKmABUANsiqRLSZKiYjiSpC4nDvQiFYQOA44C+gGjgFJSIQkg9onnHAVcDARgHbAaeBv4G/Ah8BrwEVBHaqZJkqSux3AkSZ1aAugG9AdGk5oNOho4AOgBFNA6BO1I7BN/7rO1DgG+SSoMbSI1q7QcmAG8BSwBVgK1QGObvBtJkqJkOJKkTiMf6A4MIzULNBSoAIpIzQzl0D7r7MS37nfI1voq0Ay0kJphWkXqlLzZwAekZpxqgc3t0IskSe3HcCRJGSdGajaoFDic1ClyJ5AKRfuSmtWJs3szQu0le2vtt7WOITXDFEidfrcaeBN4kdRpea8D60mdlhc6vFtJknZHLITQJT+lamtrKS4u3vVASYrUtpAxADiQVAD6MjCQ1KlyRaRCUJRB6IsIW6uW1AzT+8ALpALUTFIhqpbUTJQkSe2rpqaGoqKiHW535kiSOkw2qWuABgODSF0jNIbUDNH+pK4fyomsu/axLdiVbK2Dga+RmmVqJHXN0iqgcuufr5G6lqkW2NLh3UqS9m6GI0lqFzmkwkAZcBCp0+IOBIZvfSxB554R+qLiQB6phSMOAI4nNcPUAqwlFZTmkwpKbwBzSS05vrHjW5Uk7TUMR5L0hcRI3Uy1DOhD6hqho0nNBB1MKgAUfmKsdixG6mOp79Yazcen5VWTCkzLSAWlRaQWgVhLapappcO7lSR1PYYjSdptMVJhp9/WOo5UKDqK1KIExXw8I6S2sW12rXRrjQBOJnVaXj2p0/LWkbp+aTEwC1hKaoapHhd/kCTtCcORJG1XjFTY6UbqF/LDSC2dfRSpQFREasbIIBSNOB9fv7Xt3k5JUjNIVaRWxXuV1P2Y5pE6NW8zUIOBSZK0I4YjSSJOKuz0Ao4kdV3QSOBQUr+Al7J3Xx/UWcS3Vv+tXx/Mx6flrSd1I9u5pMLSW6RmmTaROjUv2cG9SpIykeFI0l4ml9SMUD9SMw7DSC2W0J/UdS4FtM+NVBWNbaG219YaCJxGKgxtJjXD9C6pWaZ3tv65gdTNbF1eXJL2NoYjSV1YLqnT4oaRWinuCFKnxfXZWllbS3ufOKmFMgpJHQvHkQpMzaROvftf4HsYkCRp72I4ktQFxEgFoV6krg86gNQvu+XAkK2P5+Bpcdq5OKnjaB9gIvBLUrNKkqS9heFIUieTRWpFuAGkfok9gtSNVAeRup9QIV3vRqrqeNn4ESlJex9/8kvKYNtWJBuwtY4ntVDC/qTCUDbOCEmSpLZiOJKUQfJIrTC2H6mbqR5EamaoF6kZIVeMkyRJ7cdwJClDxIFfAeeRmi0Cg5Ci5f2QJGlvYziSlCGKgVNIrS4nRe09YFXUTUiSOpg385CUQVxWW5liC1AfdROSpA5mOJIkSZIkDEeSMkY3XIJbkiRFyXAkKUMMA3pG3YQkSdqLGY4kZQhXppMkSdEyHEmSJEkShiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkrQdi4Fk1E1IkjqY4UhShjgEV6xT5ngPw5Ek7X0MR5IyxAAMR5IkKUqGI0mSJEnCcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkjJGbtQNSJKkvZzhSFIGyAMqom5CkiTt5QxHkjJADMiOuglpqwBsiLoJSVIEDEeSJLXSDLwSdROSpAgYjiRJkiQJw5EkSZIkAYYjSZIkSQIMR5IkSZIEtEM4mjp1KkceeSTdu3end+/enH766SxatKjVmPr6eqZMmULPnj0pLCzkrLPOYs2aNa3GLF++nJNPPpmCggJ69+7NFVdcQXNzc1u3Kykj9AJ6RN2EJEnay7V5OHrhhReYMmUKr7zyCtOmTaOpqYlx48axadOm9Jgf/vCHPP744zz88MO88MILrFq1ijPPPDO9vaWlhZNPPpnGxkZefvll7r//fu677z6uvfbatm5XUkboDfSMuglJkrS3C+1s7dq1AQgvvPBCCCGE6urqkJOTEx5++OH0mLfeeisAobKyMoQQwpNPPhni8XioqqpKj7nzzjtDUVFRaGho2K391tTUBFI3q7AsK+PriAANAYJlZUA1BqgI0f+9sCzLstq6ampqdpoh2v2ao5qaGgBKS0sBmD17Nk1NTYwdOzY9ZujQoQwYMIDKykoAKisrGTlyJGVlZekx48ePp7a2lgULFmx3Pw0NDdTW1rYqSZIkSdpd7RqOkskkl156KcceeywjRowAoKqqitzcXEpKSlqNLSsro6qqKj3mk8Fo2/Zt27Zn6tSpFBcXp6t///5t/G4kSXuHBmDTLkdJkrqedg1HU6ZM4c033+Shhx5qz90AcPXVV1NTU5OuFStWtPs+JUld0WrgvaibkCRFILu9XviSSy7hiSeeYMaMGey7777px8vLy2lsbKS6urrV7NGaNWsoLy9Pj3n11Vdbvd621ey2jfm0RCJBIpFo43chSdo7hagbkCRFoM1njkIIXHLJJTzyyCNMnz6dQYMGtdp+xBFHkJOTw7PPPpt+bNGiRSxfvpyKigoAKioqeOONN1i7dm16zLRp0ygqKuLggw9u65YlRa4EiEXdhCRJ2su1+czRlClT+N3vfsdjjz1G9+7d09cIFRcXk5+fT3FxMeeffz6XXXYZpaWlFBUV8b3vfY+KigqOPvpoAMaNG8fBBx/Mueeey80330xVVRX/8i//wpQpU5wdkrqko2jHiWxJkqTds4crc+8SO1g27957702P2bJlS/jud78bevToEQoKCsIZZ5wRVq9e3ep13n///XDSSSeF/Pz80KtXr3D55ZeHpqam3e7DpbwtqzPVTwKRL99sWdvqnQDdQvR/LyzLsqy2rl0t5R3bGmi6nNraWoqLi6NuQ9Ju+QlwY9RNSFstBg7DFeskqeupqamhqKhoh9vb/T5HkiRJktQZGI4kSZIkCcORJEmSJAGGI0mSPqU56gYkSRExHEmKWBwYFXUT0ie8CmyOuglJUgQMR5IiFgP6Rd2E9AkNpFZ8lSTtbQxHkiRJkoThSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kRS4byIm6CUmSJMORpKj1BQ6KuglJkiTDkaSoxYGsqJuQJEkyHEmS9LEAzIm6CUlSRAxHkiS18kHUDUiSImI4kiRJkiQMR5IkSZIEGI4kSZIkCTAcSYrcQCA36iYkSZIMR5KiNghIRN2EJEmS4UiSJEmSwHAkSZIkSYDhSJIkSZIAw5EkSZ9QCyyJuglJUkQMR5IkpdUD66JuQpIUEcORpIhlR92AJEkSYDiSFLkvRd2AJEkSYDiSFLmCqBuQJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UhSpBJAr6ibkD7hI1I3gpUk7Y0MR5IiVAQcGHUT0icsBuqibkKSFBHDkSRJkiRhOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZGLRd2AJEkSYDiSFKnhQEnUTUiSJAGGI0mRKgRyom5CkiQJMBxJkvQJW6JuQJIUIcORJElpL0TdgCQpQoYjSZLSmqJuQJIUIcORJEmSJGE4kiRJkiSgA8LRTTfdRCwW49JLL00/Vl9fz5QpU+jZsyeFhYWcddZZrFmzptXzli9fzsknn0xBQQG9e/fmiiuuoLm5ub3bldShhkbdgCRJUlq7hqNZs2Zx9913c8ghh7R6/Ic//CGPP/44Dz/8MC+88AKrVq3izDPPTG9vaWnh5JNPprGxkZdffpn777+f++67j2uvvbY925XU4QbjTWAlSVLGCO2krq4uDB48OEybNi186UtfCj/4wQ9CCCFUV1eHnJyc8PDDD6fHvvXWWwEIlZWVIYQQnnzyyRCPx0NVVVV6zJ133hmKiopCQ0PDbu2/pqYmAJZlZXTdHSBYVgbVd0L0fy8sy7Ks9qqampqdZoh2mzmaMmUKJ598MmPHjm31+OzZs2lqamr1+NChQxkwYACVlZUAVFZWMnLkSMrKytJjxo8fT21tLQsWLGivliVJkiTtxbLb40UfeughXn/9dWbNmvWZbVVVVeTm5lJSUtLq8bKyMqqqqtJjPhmMtm3ftm17GhoaaGhoSH9dW1v7Rd6CJEmSpL1Mm88crVixgh/84Ac88MAD5OXltfXL79DUqVMpLi5OV//+/Tts35KkriAJNOxylCSp62rzcDR79mzWrl3L4YcfTnZ2NtnZ2bzwwgvcdtttZGdnU1ZWRmNjI9XV1a2et2bNGsrLywEoLy//zOp1277eNubTrr76ampqatK1YsWKtn5rkqQubRPwatRNSJIi1Obh6MQTT+SNN95g7ty56Ro9ejSTJk1K/3dOTg7PPvts+jmLFi1i+fLlVFRUAFBRUcEbb7zB2rVr02OmTZtGUVERBx988Hb3m0gkKCoqalWSMl27nNkrfQEtUTcgSYpQm/9m0r17d0aMGNHqsW7dutGzZ8/04+effz6XXXYZpaWlFBUV8b3vfY+KigqOPvpoAMaNG8fBBx/Mueeey80330xVVRX/8i//wpQpU0gkEm3dsqRIFABHRd2EJElSWiT/bPvrX/+aeDzOWWedRUNDA+PHj+eOO+5Ib8/KyuKJJ57g4osvpqKigm7dunHeeedxww03RNGupHYRA/zHDkmSlDliIYQQdRPtoba2luLi4qjbkLRD3YA5pG4E27XF4s2EZBbe8DbT1QGHAu9F3Ickqb3U1NTs9PKbdrvPkSQJsgl866tP0aOwLupWJEnSLhiOJKkdHQhMfHYCmzd2b/d9xWJJYrFku+9HkqSuyqWiJKkdfZUYjzTntM/dc2JJchP19Nx3OQNGzKNi2Nu0bO7OnXdOobnR67kkSdpThiNJaie5wLHAj9vsFQPZuY0Uln7EAYe/yqDDZrHPwKXUb+zOB28NZ27lcfzqil8xa8kgXnnyNAieHCBJ0p4wHEmKSA+gMOom2tWRW//84HO/QiCe3Uxxr7XsO+wN9hv1Or33e4/G+jw+Wr4fbzw3nlWLhrGpupRkSxbZWS0sP+UpzrvkNzS2xHn9mVMMSHukS65PJEnaA4YjSRHpD/SKuol29ffA00DzHjwnntVEQXEN+wxYyn6jXmfgIa+TyN9E1btDeH/+Ycx89GzWrexPS1PuZ57b3JLN/330NM7KqeerF/wHIcSY88wpuEre7noXqIq6CUlShAxHktQOCknNHN21y5GB/KIa+hy4iP0Pm0Xfg94iv3stG9f35O3KE/jzb69iQ1U/mhtz2Z2Q89K8Q7jg9D/xt//8PsdPvJfVS4ZQ9e5Bu/VcbYL2uTpMktRJGI4kqR0cAqwDVrR6NHXaVl5hHaV9PqD/8DcYOPJ1SspXU7euF0vnjmb6fRex7oMBbKnbdg+GPQs162uLmLNoCIOzsnj6rks5/Uc/55FbrmXNe4P3+LUkSdrbGI4kqR1MAB4AkgSycpooKV9F/2FvMvTY5ynqtZbGLQWsemcoMx89mzXvDaZ+c7c2uj4oxgNPf5Vr/+k+Hvz5T3ilqIaJ11/Bg9fdYkCSJGkXDEeS1MaK4i0ckb+F6Ue9xCmHvkbfwW/T1JDH+/MPZ9afzmLtsv1Tiyg0Z9MeYWXpyn60JGMM3/895k+fwD4Dl3LGlddz/xV3sKWuuM33J0lSV2E4kqQ2dNJxL3J6v/eJLRpCyWGv8t68I3jx9/9A7YdltDTl0BEzN00tWfxpxvGc89W/Mvedi5l+78WEZJxTL7uRx355DfWb2v+GtJIkdUau8SopIl3z9K7eRbWcvbGEF3uv4Yn/uJL5z36NDau2rS7XUe85xkvzDuHwoe/Qo6iOluYcnrv/n2luTHDGVdeR162ug/qQJKlzMRxJisjRdMXJ62enjeWjeaOI//0jnH7F9RTtE83S0FXrSpmz6CC+dkwlEGhpzuGZuy4lv3stJ37nDmLxlkj6kiQpkxmOJEWkhK4yexSLt9CjzwdAYHRTLrFhb1PzylhCMs7Z1/2YvkMW0PE3GI3x8F//jhOPfI14LLXvjRt68ocbfkHPfZdzzNd/Z0CSJOlTDEeS9AWNzGrhsv3eJScWGAdc9cYIvnTIGzx921XM/cvJTPrXHzKkYgbxrD25HewXN3/JARR328TQ/ZalH9u4oZRHbv4Zh5/0GBVnGZAkSfokw5EkfUEVTbm0VH6JASHOQODpNWVsqC1izMGLeO3xs/jfqT/npO/eypfP/S+yczruJqMNTbn873Nf5uRjX+bjmasYdet68adbf8IxX3+AIRUz6PhZrUz1LpCMuglJUoQMR5L0BWQDY4GnCIwl8CqwMcR44OlxnHr8iwC89/pRPHjdL9l32Juc/bMrKSje0GH9/fXV0Rx36Dy6d9v8iUdjLHvjMB7+13/jy+f+FwNGzMWABLAIvw+StHczHEnqdLKzmhgy4G2i/UU2EIslKSUwrM9Seh06g6+Ne5AnE5sZN+YvrPqoiOMPncnQgcuAGGveG8zD/3ojm2tK+Pa/Xcq+w97okP7XrC/l3Q/6MfbI1z61JRWQnrr9ck67/EYDkiRJGI4kdUJZ8Rb69FpNLBbVL/OBow5+ld/d8C1u+ca/s7J4HX1yGsnZsA8LmhKEEKOhMZtpMw/la8emVosD2FJXzGO/uoa3XvwyZ1z5M0b+3TMdcM1PjP9+agJfO6aSrM/sK8ayNw9l9pOn8c1rfkLZ/kvauRdJkjKb4UhSBGJAj8/97IamPJ5//SuE0LE/wgaUL2PkAfPp3WMtAKMGz+OkyTcy6Lp/4EfDX2Xme8OpD1CQt5k+vVbzVOWxnP3VP9G7x8en0SVbsvnbQ+fxxG1XMe7C2zju7P9Hbv6mdu174dL9KCrcxIH9P/jsxhCn8n+/ReUfz2H8Rb+mW4917dqLJEmZzHAkKQLZwFFRN7HHNm3pRjIZ57CD5vD6osP5/V8mknjt73j+ubPgoz7UDZ9JIreBF+cdR92m7vQqruKVN0ZxwuFzaXXKWoizdM6R3HvZ3QypmMEZV15Pt5L1tNdpbfWNuTxdOYZvjp2+3X2EZBYvP/xtlr5+FN/46U+2BiRPsZMk7X0MR5K0m9bV9GLB0uE8M3M8zS3ZzF90GK89M4n7//N6FjwxmfteO5H6hrz0uP997iz+609f5xt/9xzZWZ89pW39qv48eO0v2bi+F5NvvZDe+71H+4SSGM/PPpzjRs2je8Hm7Y4IySxmPvpNGrd04xs//Sm5+dsfJ0lSV2Y4kqQ9EgNiJHIbuOCMuxn5jzfyyysv5vWDZ/G1Ex6jsGBjq3EL3t2fppYsDjnw3e2+2qbqnjx916W8/tRpnHnVdQw77jmItf1y0u+vLue9VX358hFzdjimsb6AP/7iZ9RvKuSEb91LPLupzfuQJCmTGY4kabcFvnrUXyjI20RIxmjKa+a/Xv4aBySzGHjqfzGwzzK+dsyTfHL2pyUZ58FnxvGdU59gR7NCLU25vPzwt3n+//sn/u4f72LM6X8gO7e+bTsPcR76y1gmVLxCbCfhq35jEY/eci09+y/jK/9wjwFJkrRXMRxJ0h54Z/lBNDblcuIRzzHgge/z/h8v4q+/uZUrb/slc985lIK8zeS0ChQxnp99GP16f0i/fT7cySvHePvlL/Hgtb/i0K/+mZO+eyv5RdW05Wl2sxYOY0B5Ffv1Wb3TcfUbi3jy369gxJen8Xfn3U08q7nNepAkKZMZjiRpt8VYVrUfzS3ZvF+1HzVDZ3PqPqv4fVMe1ZuL+PNLJ/Pnl06mqTmn1bM21efx7KujOfdrz7DzsBNj/ap9ue9Hd5KV08S5U79Pjz4rd/Gc3be5Po8nXzqGcUe/usvXrFu3D7+/4RccfPx0hhz9tzbrIXO1AO9F3YQkKWKGI0naQznZTRx64Dzifz2H4dW9eDm9JcbaDWWkrjf6pBj/M/0rHDV8IYUFW3bx6jEaNhfyxG+vYs7Tp3LezVM4aMyLtE04ifHkyxWMP/pV8hMNuxxbteQg/vDzqXzp2/+HwWNeaqMeMlULsDjqJiRJETMcSYpAGdA/6iY+t6bmXB569hs8ctyLPFLQyEe78Zw163uwdGVfTjlu90JGc2Mes544kz/fdiUnfudOvjTp/7TJ9T/Lq8r4cEMJx46avxujY1S9exDP3nsRZ1xxPQd1+YAkSdrbGY4kRaAbUBR1E19IIM4DL5/ATS1ZuxUXQohzz6On8vUTnyORs5shJ8RZPOsY/viL69lv1Ov8/fd/8YVv0hpCnP9+ajynHP/SThdm+FiMxbOO4a//dwrj/vk3lJSvwoAkSeqqDEeS9DmtXXYAa1cO2O3xi5f3p3ZTN44YumgP9hJjzXuD+f0NN1HYYz3f+OlP2Gfgu3yRgDL3ncEM338p+/be2QIRnxDizHnqVF5++Nuc9eNrKSnb+YIOkiR1VoYjSeogyRDj/z05gQvPfIzsPVwBrn5jEQ//640sea2C826+hEGHvkYs/ukby+6eus0FzJgzijO/8jy7G7JCiPP606fywdsjmHjDjygpW/W59i1JUiYzHElSh4nx0rxDyIq3cMC+K/f42U0N+bz0h3N54rYrOePK6znm6w8Qz9rz65C6F2zm+EPnU9Rt0549McSZfu9FVL03mHEX3kZ2om3vxSRJUtQMR5LUgRqbcnjoL2P59km7WtZ7+0Iyi7df+jJ/+PlUhlTM4KwfX0deYe1uP78gbwtTp9zF/CUHcMv/N4nPrqy3c00N+Tzx26to3FLAhIt+3eY3q5UkKUqGI0nqYC/NO4Qjhi7a5c1YdyzGB2+N4A83/IKsnCYm3vAjyvZfzK7CVkFePb+69N8p6raJn97xz9Q3Jj7X3pvqC/jzf1xBce8qTpryKwOSJKnLMBxJikA/IDvqJiJTvbGQ/3n2K3xrwl/4/AsrxNi4oZSH//XfWLHgEL7x05+kbta6gxXoYrEkV5773wwftJSf3nnh5w5G2zTV5/PU7T9i4Ii5HHfO/9vhfiVJ6kwMR5IiMBT4Yr+cd24x/ve5LzFsv2WUdN/4hV6npTmHZ++9mGn/dQmnXnYjR536P+R86lqgWCzJt096hjEjFjLp2utYsab8i7W/1fpV+/K7a3/FgaMrOeTEpzt5QKrfWpKkvZnhSJIiULOxkPdX9dmjFeN2JCSzWFR5AvdfdTtHfO1R/v4HN229DikQiyU596Rn+P7ZD3PR1CtYsabsC3Ye0hXLSbJhfR/+dNfVfOmC/2TQ0a994fcSnZXA0qibkCRFzHAkSZGI8X8f/3smHD1z928Ku4vXW7v0AB74l18DgX/85cWU9v2ArxzxOtecfy8/veOfWVZVzq4XYAgQS1Usr5msknqySupJDFlH/qFr6HbcSkq+uYiSsxfR41tvUXruQlqObmDai//E5oE5bfA+otJZQ50kqS3tvSf9S1LE3l9dznur+nLsqPlMf+0I9nTluM+KUfthGY//9mqOP+c+Lv/FpZwYK2DKLZfzl5lHbX39AFkBYhCLB7J61EMskN17M1lFjRAP5PbbSCynJfXPZ/FUaGj+MJ9Qn03Lxlw2zewDQLImQXJzNoQYDccUk9zSmcORJEmGI0mKTAhx/jTjOL73zf/hb3NH0dTcNuGiuSHBRy+dyISvPc/fGuv5cN/V5B/8Edn9NxKLBbL22UI80QIBko1ZEKD5wwKStQlCE2ycsS+hMYtkfXYq/AC0xNhxeAvEuzXT/FHBTsZIkpT5DEeSFKFXFxxMQ1MORx78Fi/PP6RNXrN3jw3ce81U/uepk7h39hi6n7SU3PoaGpYXQxKaZ5eTrM+CECO5KecTZ5R9zmCTlZp52lTZt036lyQpKoYjSRHwcsdtmluyufuPp3PqCS/yyhsjSIYv9r0pKazjlz/4Dx6bcTy/fOBb5P3dB1Q/NZr6N/Zpo44/K5adhHggNPr/VZLUuflJJikCx0XdQEaZt/hARuz/HoMHrPhCr1NSWMd/XPkrlnzQj5vu/zYtuYGs4gYaFpW2Uafbl9WjPnUa3mavOZIkdW6GI0kdLAYURd1ERtlcn8cDz4zjgtP/ROxz3isoP1HPHT/+JcWFm/j1786hqTmbvOHraFxa3O4zOlmFTSQ35rjgmySp0zMcSVLkYjzx4rHs33cVvYpr9vjZWfEW/vmMxyjIq+c7P/8JdZsLiOU3kxiynvpFpbT3IgnZfTbRtKZbu+9HkqT2ZjiSpAywcXM+s94aytnj/sqeTMFkxVuY8o3/5ctHvM4FN/6YDzf0ACDvoA00LSsiWZvbTh1vE4gnmgn1We28n/bWglNfkiTDkSRlhBj/788n8bVjKiku3LibzwlcdNYjXHzWI1xz9wXpYERWIDF0PfVv9aTdZ3NikNNnE00rC9t3P+1uJtAQdROSpIgZjiQpQ6z8cB/+NON4ynuu343RgYqRb3LuSc8w+Yaf8saSA9JbEvtXE7Zk0/xRfvs1u1UstwXigWR9Z1/8dAvOHEmSOvunmSR1ITHuefQ0QjLGIN4DYCn7b2dc4JiRb3Lz92/n0lt/wCtvDic9QxQL5A1bz+bXyiG0/zVA8fzmVDja5Ep1kqTOz5kjSR0sFyiOuomMlUzGyWMLN3Mlp/PodsfkZjdz2aQHuffxk1sHIyC792bIStK0uluH9JvVcwst1XmQdDEGSVLn1y7haOXKlXz729+mZ8+e5OfnM3LkSF577bX09hAC1157LX369CE/P5+xY8eyePHiVq+xfv16Jk2aRFFRESUlJZx//vls3Li75+FLylw9gIOibiKDBSbwNKfyJ2IESNfH25uas5hyww/56xOHUEElhzInNSYWKBhdRf3bPTvoDLFAVlEjybqcDpmlkiSpvbV5ONqwYQPHHnssOTk5PPXUUyxcuJBf/epX9OjRIz3m5ptv5rbbbuOuu+5i5syZdOvWjfHjx1NfX58eM2nSJBYsWMC0adN44oknmDFjBhdeeGFbtyspEv4ivSM5NHEB/0kuTXSnjvE8Q19WAYEcGhnBm/yes/nz5gnMTY5iGl/lHB4CIN6tiViihYYlJXTU9zhn3zoaP+jeIfuSJKndhTZ21VVXheOOO26H25PJZCgvLw+33HJL+rHq6uqQSCTCgw8+GEIIYeHChQEIs2bNSo956qmnQiwWCytXrtytPmpqaj75T66WZWVMlQf4KECwtlvJcAP/EgKE+zk3FFEdcqkP53J/qGRMWML+4VVGh40UhGbi4W4uCN2oC5AM3Y5dEQpGrw6Q7LBeS775VsjpX5MB37cvWreF6P9uWJZlWe1dNTU1O80QbT5z9Kc//YnRo0fzjW98g969e3PYYYfxn//5n+ntS5cupaqqirFjx6YfKy4uZsyYMVRWVgJQWVlJSUkJo0ePTo8ZO3Ys8XicmTNnbne/DQ0N1NbWtipJ6nxi/IFvspT9WMQQaikiEOP73EYjudzLZIqopYDN/Dff5jJuZROFxPKbyd2/hvq32v+mr+lOc5PEcpMdsiqeJEkdoc3D0Xvvvcedd97J4MGDeeaZZ7j44ov5/ve/z/333w9AVVUVAGVlZa2eV1ZWlt5WVVVF7969W23Pzs6mtLQ0PebTpk6dSnFxcbr69+/f1m9NkjrEm4zgIu7icU4BYiSJM49RHMJ8ruUGDmQJL3Es13IDmygEAolBNTQs7tGhq8bFspPE85qhxdMkJUldQ5uHo2QyyeGHH86//du/cdhhh3HhhRdywQUXcNddd7X1rlq5+uqrqampSdeKFSvadX+S1H5i/IXxvMEhALSQza/5IfXk0UCCO/guJ/NnljMgNTonSf6hazv0WiNIrYzXUp0gNGV12D7bRwCao25CkpQB2jwc9enTh4MPPrjVY8OGDWP58uUAlJeXA7BmzZpWY9asWZPeVl5eztq1a1ttb25uZv369ekxn5ZIJCgqKmpVktRVvMUwxvJX7uFCfsQvqaWYbUEoMXgDLdV5tKzr2NPbYnnNqZu/dvqV6gIwI+omJEkZoM3D0bHHHsuiRYtaPfbOO+8wcOBAAAYNGkR5eTnPPvtsenttbS0zZ86koqICgIqKCqqrq5k9e3Z6zPTp00kmk4wZM6atW5bUoYYBrm62p5JksYDh/IR/o5HcjzfEA4mDNrB5dlmHh5TEoBoa3+8q/xC1OeoGJEmZYLeWftsDr776asjOzg433nhjWLx4cXjggQdCQUFB+O///u/0mJtuuimUlJSExx57LMyfPz+cdtppYdCgQWHLli3pMRMmTAiHHXZYmDlzZnjxxRfD4MGDw8SJE3e7D1ers6xMrbNCx62m1vUrp19tKPnmW4Gslo7ddywZis94J+QesD7y78EXr5YA40L0fzcsy7Ks9q5drVbHnsefXXv88cfDiBEjQiKRCEOHDg333HNPq+3JZDJcc801oaysLCQSiXDiiSeGRYsWtRqzbt26MHHixFBYWBiKiorC5MmTQ11d3W73YDiyrEwtw1HbVTIUn7o45B64vsO/p7Gc5tDz/HkhXtiQAd+HL1qGI8uyrL2ldhWOYiGEQBdUW1tLcXFx1G1I+oyzgIfxRrBfXLy4nuKTlrLhfw6C5o5dFCGW10zJ19+h+uGDCA3ZHbrvtpcETgL+EnUjkqR2VlNTs9O1Cdr8miNJUkcIFBy2loYlPaC543+UZ5dugeYYoaGzr1QnSdLHDEeS1AnF8pvJ6beRLQt6EsUsXLzb1pXqJEnqQgxHktTpBPIO2kDD4h6ELdEElJx+dTStLIxk35IktRfDkaQOthf+Qh1vgdGzIKexTV4ulmghb+RHHX7T148FsooaaalJRLR/SZLah+FIUgc7IeoGOt6QRfDk1+Cr09rk5XL2raO5qoCW9Xlt8np7LB7IKq2nuYNvOitJUnszHEnqYFnsdbMN+VuguAa6133x14onyR/1IVvm70NU38d4QTMAyc1d5ZqjGuD9qJuQJGUAw5EkdRqB3P51xGLQ/FF0szaxRAsEutBKdZuBD6NuQpKUAQxHktSJ5I/6kM2vlUEyuh/fWSX1NK0uhOReNgMoSeryDEeS1ElkldYTL2yiMeJV4rJ71BOa4ux1p0dKkro8w5EkdQqBgiPWUL+gZyQ3ff1kH9l9NtG0uluEPUiS1D4MR5LU3rrXQUsWbPz8Mz7xgmaye22h/u1Sop6xySpsIlmXG2kPkiS1B8ORpA6UBxwQdRMd7+hXYEs+zBv1OV8gkHfwOppWd4t8EYRYfjOx/Gaao1pGXJKkdmQ4ktSBcoF9o26i48VC6s/PuYhCLL+ZxLB1bJ7Tm6hnjWI5SQBCpKf2SZLUPvx0k6SMFsjtt5Gm5UUkaxJRN0NOn020fJQPTX58SJK6Hj/dJCmTZQXyD19D/cKeRD1rBBDLSpLclJMRvUiS1NYMR5KUwXL71xEas2heF91NXz8pd79aGld0j7qNNrYOaIq6CUlSBjAcSVKmigUSB61n86zyDLnhaiCW19wFrzd6C9gYdROSpAzQ1T7hJKnLyO61heye9TStKYi6FQBiuUmyS+tpzpB+JElqa4YjSR0oG3/s7K5A3sgP2TJvn4hv+vqxWKKZ0BzrgjNHkiSl+AknqQMNBcqjbqJTiHdrIrtnPQ2Le5Apix9k9WgguSUn8nstSZLUXgxHkjpQNuAv1rsWyD/kQ5pWdSNk0JLZ2aVbaPHmr5KkLixzPnUlSUDqpq+5B1azZV70N339pOxeW2j+KJ9M6kmSpLZkOJKkjBLI3a+WplWFJDfmRN3Mx+KBrJ71NH/oYgySpK7LcCRJ7SmWhEFLYU0ZbOq26/HZSQoOXUv9m73IqBmaWCBe0LT1BrCSJHVNhiNJak/xJAx7C1b0h9qiXQ7P7V9HS20uzWsza4YmXtAMIUZyi9eMSZK6LsORpA6UQTMhmSgWyDt4HZtnl0HIrO9VPK8ZkjFCQ3bUrbSD1VE3IEnKEIYjSR3oSPyxs2M5fTYRL2zKyOt6svtspKmqAELUnbSH2VE3IEnKEP6WIqkD7YOzRzsSSAxbx5Y5vaEl075HgazCJpKbc/D/nySpKzMcSVImiEFuvzqa1+eRiQEkZ986Gpfv+popSZI6M8ORJGWKzMtEKfFALLeFUO9iDJKkrs1wJEnaqXi3ZuKJFlo25EXdiiRJ7cpwJEnaqdCQRbIhm3i3pqhbkSSpXRmOJEk7FRrjNCwuITF4A110uTpJkgDDkaQOEwMKo25Cn0uM+rd7krt/DWQbjiRJXZfhSFIHyQGOjroJfU7J2lxCQxa5A2qjbkWSpHZjOJLUgfyR02mFGA2LSkkc1NVOrUsCDVE3IUnKEP6mIkntqfda2P89mDkGQqau1b17Gt4rJrt0SxdbmKEOmB11E5KkDGE4kqT2lFcP3evgw33I3BsZ7Z7QkEXzunxyD6iJupU2FICuFPYkSV+E4UiStJtibJnbm/wRH0JWMupmJElqc4YjSdJua/4on9ASJ7vnlqhbkSSpzRmOJEm7ryVGw9ul5A1bT9damEGSJMORpA5TtrXUucVoeL+Y3P1qiCVaom5GkqQ2ZTiS1EGKgZKom8hYsdwWiEFozIq6lV1K1uTS/GEBiQOqcfZIktSVGI4kKQPEuzVBLJDcmBN1K7shRv3CniQOrI66EUmS2pThSJK0xxo/KCTerYmsHvVRtyJJUpsxHEmS9lxznKZVhSQGV0fdiSRJbcZwJEn6HGJsmb8PuQNrO/k9j5YAH0XdhCQpQxiOJEmfS0t1gtAUJ6fPpqhb+QLqgIaom5AkZQjDkaQOkgvEom6i4+U2QixAY27UnbS9APVv9SR/5Iep9yhJUifX5uGopaWFa665hkGDBpGfn88BBxzAz3/+c0L4+IMzhMC1115Lnz59yM/PZ+zYsSxevLjV66xfv55JkyZRVFRESUkJ559/Phs3bmzrdiV1mGOARET7DvRhFb1ZQxbNxOjA08COehWyWuCVoztunx0mRtOK7mT33kw8vznqZiRJ+sKy2/oFf/GLX3DnnXdy//33M3z4cF577TUmT55McXEx3//+9wG4+eabue2227j//vsZNGgQ11xzDePHj2fhwoXk5eUBMGnSJFavXs20adNoampi8uTJXHjhhfzud79r65YldYgcopo56sdK/sI4urGJKsqZzyF8wL5UUkENxSxjILUUUU8eoa3/zSi7uevOHAHJzdk0Li8iZ2AtDW+VslfODkqSuo7Qxk4++eTwne98p9VjZ555Zpg0aVIIIYRkMhnKy8vDLbfckt5eXV0dEolEePDBB0MIISxcuDAAYdasWekxTz31VIjFYmHlypW71UdNTU0gdXdCy7Iyon4YIERSWTSFU3gs3MyPwp85KbzFkPAhPUMthaGR7LCCfuEthoT7OTf8ih+GU3k0jOPp0IeVoZgNAZKfqD3c/+T/E9icFxi2YOc9lm4OpZPnB+ItkX2fPm9ll9eFkrMWBWKf4/sTeU0PEA/R//2wLMuyOqJqamp2miHafObomGOO4Z577uGdd97hoIMOYt68ebz44ovceuutACxdupSqqirGjh2bfk5xcTFjxoyhsrKSc845h8rKSkpKShg9enR6zNixY4nH48ycOZMzzjijrduW1IW1kM3jnMrjnAJAEbXkUc8AltOfFRzJLPqxkiOYTTc28c/cTS6NVFPCRgqZzyFsIZ/n+Aof0Ys5HEYd3VlPKYEYgRh784xJ89oCyE6SXbaJ5qrCqNuRJOlza/Nw9OMf/5ja2lqGDh1KVlYWLS0t3HjjjUyaNAmAqqoqAMrKylo9r6ysLL2tqqqK3r17t240O5vS0tL0mE9raGigoeHjFYdqa2vb7D1J6ipSAaaWYmopZi1lvMaRPMKZQKCAzWTRwgG8SwnVHM/f2IcPqaCSXBr5e54gTpIWslhPKcsZwDp6MpMxLGMgbzGM1fShhmKayaaZnGjfbkdJxml8r5i8gzawsaobe3NQlCR1bm0ejv7whz/wwAMP8Lvf/Y7hw4czd+5cLr30Uvr27ct5553X1rtLmzp1Ktdff327vb6kri7GZroBMJfDAHierwCBHJrIppkBLKcHGziKV+nGJk5gBn1YzZXcTA5N5NLIGsqopYj32J93OYDXVn/Ea2/DogjfWUeof6snxX//LrHcJKExK+p2JEn6XNo8HF1xxRX8+Mc/5pxzzgFg5MiRLFu2jKlTp3LeeedRXl4OwJo1a+jTp0/6eWvWrOHQQw8FoLy8nLVr17Z63ebmZtavX59+/qddffXVXHbZZemva2tr6d+/f1u+NUl7pRhN5NJELosYCsArVACBm/gxuTTSk3X0YyX78x59WM2RzGIgyziMOVzw9AbefL2M8Zu7UxPtG2lXyY05JBuyyOlfS+O7PaJuR5Kkz6XNw9HmzZuJx1uv9pSVlUUymVo6d9CgQZSXl/Pss8+mw1BtbS0zZ87k4osvBqCiooLq6mpmz57NEUccAcD06dNJJpOMGTNmu/tNJBIkElEtEyxp1wZF3UAbS11r1EAeq+jHKvoxi6PSWxPUk0c9B/Aum9Z2o4Z9I+y1I8TYMq83+aPW0vheCYTOcmrdUlLX6EqS1A7h6JRTTuHGG29kwIABDB8+nDlz5nDrrbfyne98B4BYLMall17Kv/7rvzJ48OD0Ut59+/bl9NNPB2DYsGFMmDCBCy64gLvuuoumpiYuueQSzjnnHPr27dvWLUtqdzHg4Kib6FAN5NFAHq9zRNStdJimlYV0O3Yl8aJGkjWd5R+rFmI4kiSl7da62HugtrY2/OAHPwgDBgwIeXl5Yf/99w8//elPQ0NDQ3pMMpkM11xzTSgrKwuJRCKceOKJYdGiRa1eZ926dWHixImhsLAwFBUVhcmTJ4e6urrd7sOlvC0rkyoW4K+ByJdtztzqzEt5f1zJ0K3ig5B/eFX4XMueR1KXh+j/fliWZVkdVbtayjsWQgh0QbW1tRQXF0fdhiQgNXM0DTgx6kYyVlbpFopPW8L6+4dDso1vRNuBsntvovu4ZWx4cCi0dIb38SPgV1E3IUnqIDU1NRQVFe1we2f45JIkdRLNH+UTtmST278u6lYkSdpjhiNJUttJxqlf1IPE4A2kzmCQJKnzMBxJktpUw5IeZO+zmVhBc9StSJK0RwxHkjpADH/c7D1CfRYt1XkkBnXlOztJkroif1uR1AF6A8OibkIdJsaWub1JHFCdWqhQkqROwnAkqQNkA3lRN6EO1LQ2n3i3JrJKt0TdiiRJu81wJElqe81x6t8uJW/oejJ3YYZmYFnUTUiSMojhSJLUDmI0Li0mcWA1sdxk1M3sQDPwTtRNSJIyiOFIktQuWmoSNH+UT3bZJjJ39kiSpI8ZjiRJ7SPEqH+7lPxRH0bdiSRJu8VwJElqN03Li8gqaiCruCHqViRJ2iXDkaQO0JPUinXakXhBM8nNORBiUbfSpkJTnKaqbiQGV0fdiiRJu2Q4ktQBDga6Rd1ERssu20Tzh/ld8NKcGFvm9SZ3vxqIZ+rCDJIkpRiOJHWArjUb0r663veqZUOCWE6SnPLNUbciSdJOGY4kSe0rGaN+YU/yhn9EF5wakyR1IYYjSVI7i9GwpIScfhuJ5TdH3YwkSTtkOJIktbvkphyaPuhO7r51ZM7sUcPWkiQpxXAkSeoAMRoWl5B/6IcZdFnVsq0lSVKK4UhSB0hE3YAyQNOqQmI5SbL3yZSFGQKZM4slScoEhiNJHeDLZNB0gSISmrJoWFpM4qANUbciSdJ2GY4kdYCcqBtQhqh/s2dqYYaclqhbkSTpMwxHkqQOk9yYC81xcvati7oVSZI+w3AkSeo4AbbM34fE4Gq83keSlGkMR5KkDhSjcUV3sntvIt69MepmJElqxXAkSepQoT6LxveLKdx/Hc4eSZIySXbUDUjS3i0QjyUpzammKRZjI4Guu7JfIDvezKHlczmz/PdsOCzBU6vP4c21I+i671mS1JkYjiS1szygf9RNZIhATryJwsRGBhYv44g+sxncczFH9XuVD7sXsahuMDfnXsfGxu5RN9rGAoW5Gxl/wDN8ffj/AHD/3PMYsvJtfv5313DBn/6TjzbvE0FfyQj2KUnKZLEQQpc8p6G2tpbi4uKo25BED2A+sG/UjXS47HgThbkbOajnOwwqWcqYfWcyuu9r9CtaSd/uq9iwpQeVKyp45O0zeHnFMUw56nYKcjZz+TO/YnNTt6jb/8LisRbKC6uYOPJBvjb4SRasHc7ds/+ZRR8NoTmZQ1asmd+e9AMGFi9j8mP3RhCQ7gSm4Kl9krT3qKmpoaioaIfbDUeS2tneEI5Sp8b1KviIPoWrObj3Qo7t/xL9ilbSp3A1dQ3d6VmwjtL89TS25DJz5RieWTKe55Z+hdUb+5AMcSDGPgVrefib3+CRt87gtpnfJ3TKy0IDiawGhvZ6m4uOvIsRvd/kkbfO4OEF32BlXT+SIavV6JK8Ddx9yj+zuq4PP/rLL2lOduQ9sX4JXNGB+5MkRc1wJCliXTscDe31Fv946H0cUjafbrmbqK0vYsmGA1my7kD2Lf6Aob3eJjvezOJ1g3ly8dd4bdVoqutL2NE1NoNK3uNP3zqV65+/jv9Z+PUdjss8gdL89VTsW8l3j7yDWCxw/9zzeO79r7B2U2929j5K8jZw7+mTmb3qCKb+7WpaQked8W04kqS9za7CkdccSWpnW4AldNVwlBVrYcGHw3nwjYlsbipgdL/XGHfAXzjr4P/lzbUjuHPWxcxaeSTV9SW7NRO0tHoQlz1zK9ec8HPeWXcQ89ccQmYHpEDP/HWcPeL3nDvq/+Ptj4Zyz+wLmfbeV9ncVMDu9F5d34Nrp9/AhaPvITerkS3NfjRJkqLhzJGkDjAcOBuoAA4BepK6k0Am/9K/Z0ryNnDHyd/lo829eHzRKcxadeROZ4h2LnD+4f+HEb3f5LKnb83Q0+tSM0XnjHiIU4f8iZkfjOGxRacxr2rU55z5CcQIBGJ03HHhzJEk7W08rU5SBskmFYxGkgpMxwCjSc0q5dC5w1KgIGfzbs+W7EpWrJnseDMNLXlfvLV2kBVr5vJjfgXAA29MYmVtPzrf/z/DkSTtbQxHkjJYFlAIDAGOA44H9gMOBArwPtWZLR5rSS8m0TkZjiRpb+M1R5IyWAtQA7y6tX4DJEjdF+lo4MvA4cAgYNu9fzrrL+Jdz6dXnpMkqbMzHEnKIElSCzi8s7X+H9CNVFgaBhwLjAEOoitetyRJkqJlOJKU4TYBb2+tR0jNLPUGRgBfInUqXl+gD5CLYUm7J5CauZQk6WOGI0mdTAOwYms9RerHWAkwmNQCD18htSJebwxL2rEk8GLUTUiSMozhSFIn1wx8tLUqgVtJnXI3DDgA+DvgKFIr4rXNSnLqKjZG3YAkKcMYjiR1MYFUUPrb1rqP1Ip4BwBHkLpu6UigH1CEPwYlSdI2/lYgaS+wEZi3te4ldbpdP2AUqVPxjgWGkppZSkTUoyRJiprhSNJeJpC6bum9rfUIqRvQlpFaBW8MqUUeDgX2IXUvJk/FkyRpb+BNYCXpM7KAHsBIUkFpMKnrlgaQmnXy5rSdVyB1ndpbwEnAqmjbkSR1KG8CK0l7rIXUdUvPba04qfstHUjqFLxjSc0s9QfyMSxlohZS98xqAJYA9cCMrY+9TCocrY2sO0lSZnLmSJL2WIzUYg77kFrc4XhgNKkZpuJPjFH7+OTH1kZSwWclsHzrn68D1cAcoBFYjfc1kiSBM0eS1A4CULO1lgAPkppB6gMcRupeS0OAg0ldyxTHsPR5BFL3I9q2AuEm4F1gGTCT1MzPe8AaUjNCm6JpU5LUZRiOJKlNbOHjRR7+l9QiD71IBaQvkZpdGkrqhrUJDEuflCR1+lszqfDTQOrUt42kQtB6UrNC1aRmgpoi6VKS1PUZjiSpXTSROp1rNfAsqR+3ZUA5qeXDv0LquqVyII+uHZa2nQZXTypEriMVIj8CXuHjENQErCB1+ltzx7cpSdrrec2RJEWmB6nrlI4ktYT4oaRWxOtO51zkYdspcDVAHfAGqVmfeaROhftg659bto6RJKlj7eqaI8ORJGWMAmA/UtctHUdqhml/Uqfh5UTXViuB1KltSeD9rf89C9hAagGEVVtrDbAZZ4AkSZlkV+Foj/9pcsaMGZxyyin07duXWCzGo48+2mp7CIFrr72WPn36kJ+fz9ixY1m8eHGrMevXr2fSpEkUFRVRUlLC+eefz8aNG1uNmT9/Pscffzx5eXn079+fm2++eU9blaROZjOwEHgA+C6p2aQjgdOBG0ktRb2OjgkcjaRmdz4gtZz5n4Arge8DFaRW5ztqa124dduDwAvAYqC2g/qUJKnt7PE1R5s2bWLUqFF85zvf4cwzz/zM9ptvvpnbbruN+++/n0GDBnHNNdcwfvx4Fi5cSF5eHgCTJk1i9erVTJs2jaamJiZPnsyFF17I7373OyA16zNu3DjGjh3LXXfdxRtvvMF3vvMdSkpKuPDCC7/gW5akziCQukbn7a31JB9ft3Q4qdPxTgCOAHqTmlna3euWwif+3EBqAYTFpGZ73tm6vzVb/2wgFcgCrZfQliSpCwpfABAeeeSR9NfJZDKUl5eHW265Jf1YdXV1SCQS4cEHHwwhhLBw4cIAhFmzZqXHPPXUUyEWi4WVK1eGEEK44447Qo8ePUJDQ0N6zFVXXRWGDBmy273V1NRs+yS3LMvqohUP0CPAcQGuDPBogLcDbArQEiAZoDFAQ4D3AiwM8FCAXwc4K8DYAAMDlATIzYD3Y1mWZVntWzU1NTvNEG26Wt3SpUupqqpi7Nix6ceKi4sZM2YMlZWVnHPOOVRWVlJSUsLo0aPTY8aOHUs8HmfmzJmcccYZVFZWcsIJJ5Cbm5seM378eH7xi1+wYcMGevTo8Zl9NzQ00NDQkP66tra2Ld+aJGWgJKmZnxe3Vhaple/2B44GSoGXSN3/Zxmp0/a2XS8kSZI+rU3DUVVVFQBlZWWtHi8rK0tvq6qqonfv3q2byM6mtLS01ZhBgwZ95jW2bdteOJo6dSrXX39927wRSeqUWkgFoTe2liRJ2hOdca3Y7br66qupqalJ14oVK6JuSZIkSVIn0qbhqLy8HIA1a9a0enzNmjXpbeXl5axdu7bV9ubmZtavX99qzPZe45P7+LREIkFRUVGrkiRJkqTd1abhaNCgQZSXl/Pss8+mH6utrWXmzJlUVFQAUFFRQXV1NbNnz06PmT59OslkkjFjxqTHzJgxg6ampvSYadOmMWTIkO2eUidJkiRJX9huL/+2VV1dXZgzZ06YM2dOAMKtt94a5syZE5YtWxZCCOGmm24KJSUl4bHHHgvz588Pp512Whg0aFDYsmVL+jUmTJgQDjvssDBz5szw4osvhsGDB4eJEyemt1dXV4eysrJw7rnnhjfffDM89NBDoaCgINx999273aer1VmWZVmWZVmW9cna1Wp1exyOnnvuue3u6LzzzgshpJbzvuaaa0JZWVlIJBLhxBNPDIsWLWr1GuvWrQsTJ04MhYWFoaioKEyePDnU1dW1GjNv3rxw3HHHhUQiEfr16xduuummPerTcGRZlmVZlmVZ1idrV+EoFkIIdEG1tbUUFxdH3YYkSZKkDFFTU7PTtQm6zGp1kiRJkvRFGI4kSZIkCcORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEnA5whHM2bM4JRTTqFv377EYjEeffTR9LampiauuuoqRo4cSbdu3ejbty//8A//wKpVq1q9xvr165k0aRJFRUWUlJRw/vnns3HjxlZj5s+fz/HHH09eXh79+/fn5ptv/nzvUJIkSZJ2wx6Ho02bNjFq1Chuv/32z2zbvHkzr7/+Otdccw2vv/46f/zjH1m0aBGnnnpqq3GTJk1iwYIFTJs2jSeeeIIZM2Zw4YUXprfX1tYybtw4Bg4cyOzZs7nlllv42c9+xj333PM53qIkSZIk7YbwBQDhkUce2emYV199NQBh2bJlIYQQFi5cGIAwa9as9JinnnoqxGKxsHLlyhBCCHfccUfo0aNHaGhoSI+56qqrwpAhQ3a7t5qamgBYlmVZlmVZlmUFINTU1Ow0Q7T7NUc1NTXEYjFKSkoAqKyspKSkhNGjR6fHjB07lng8zsyZM9NjTjjhBHJzc9Njxo8fz6JFi9iwYUN7tyxJkiRpL5Tdni9eX1/PVVddxcSJEykqKgKgqqqK3r17t24iO5vS0lKqqqrSYwYNGtRqTFlZWXpbjx49PrOvhoYGGhoa0l/X1ta26XuRJEmS1LW128xRU1MT3/zmNwkhcOedd7bXbtKmTp1KcXFxuvr379/u+5QkSZLUdbRLONoWjJYtW8a0adPSs0YA5eXlrF27ttX45uZm1q9fT3l5eXrMmjVrWo3Z9vW2MZ929dVXU1NTk64VK1a05VuSJEmS1MW1eTjaFowWL17MX//6V3r27Nlqe0VFBdXV1cyePTv92PTp00kmk4wZMyY9ZsaMGTQ1NaXHTJs2jSFDhmz3lDqARCJBUVFRq5IkSZKk3bXH4Wjjxo3MnTuXuXPnArB06VLmzp3L8uXLaWpq4utf/zqvvfYaDzzwAC0tLVRVVVFVVUVjYyMAw4YNY8KECVxwwQW8+uqrvPTSS1xyySWcc8459O3bF4Bvfetb5Obmcv7557NgwQJ+//vf89vf/pbLLrus7d65JEmSJH3Sbq+NvdVzzz233WXxzjvvvLB06dIdLpv33HPPpV9j3bp1YeLEiaGwsDAUFRWFyZMnh7q6ulb7mTdvXjjuuONCIpEI/fr1CzfddNMe9elS3pZlWZZlWZZlfbJ2tZR3LIQQ6IJqa2spLi6Oug1JkiRJGaKmpmanl9+0+32OJEmSJKkzMBxJkiRJEoYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAZ8jHM2YMYNTTjmFvn37EovFePTRR3c49qKLLiIWi/Gb3/ym1ePr169n0qRJFBUVUVJSwvnnn8/GjRtbjZk/fz7HH388eXl59O/fn5tvvnlPW5UkSZKk3bbH4WjTpk2MGjWK22+/fafjHnnkEV555RX69u37mW2TJk1iwYIFTJs2jSeeeIIZM2Zw4YUXprfX1tYybtw4Bg4cyOzZs7nlllv42c9+xj333LOn7UqSJEnS7glfABAeeeSRzzz+wQcfhH79+oU333wzDBw4MPz6179Ob1u4cGEAwqxZs9KPPfXUUyEWi4WVK1eGEEK44447Qo8ePUJDQ0N6zFVXXRWGDBmy273V1NQEwLIsy7Isy7IsKwChpqZmpxmiza85SiaTnHvuuVxxxRUMHz78M9srKyspKSlh9OjR6cfGjh1LPB5n5syZ6TEnnHACubm56THjx49n0aJFbNiwYbv7bWhooLa2tlVJkiRJ0u5q83D0i1/8guzsbL7//e9vd3tVVRW9e/du9Vh2djalpaVUVVWlx5SVlbUas+3rbWM+berUqRQXF6erf//+X/StSJIkSdqLtGk4mj17Nr/97W+57777iMVibfnSu3T11VdTU1OTrhUrVnTo/iVJkiR1bm0ajv72t7+xdu1aBgwYQHZ2NtnZ2SxbtozLL7+c/fbbD4Dy8nLWrl3b6nnNzc2sX7+e8vLy9Jg1a9a0GrPt621jPi2RSFBUVNSqJEmSJGl3tWk4Ovfcc5k/fz5z585NV9++fbniiit45plnAKioqKC6uprZs2ennzd9+nSSySRjxoxJj5kxYwZNTU3pMdOmTWPIkCH06NGjLVuWJEmSJACy9/QJGzduZMmSJemvly5dyty5cyktLWXAgAH07Nmz1ficnBzKy8sZMmQIAMOGDWPChAlccMEF3HXXXTQ1NXHJJZdwzjnnpJf9/ta3vsX111/P+eefz1VXXcWbb77Jb3/7W379619/kfcqSZIkSTu222tjb/Xcc89td1m88847b7vjP72UdwghrFu3LkycODEUFhaGoqKiMHny5FBXV9dqzLx588Jxxx0XEolE6NevX7jpppv2qE+X8rYsy7Isy7Is65O1q6W8YyGEQBdUW1tLcXFx1G1IkiRJyhA1NTU7XZugzZfyliRJkqTOyHAkSZIkSRiOJEmSJAkwHEmSJEkS0IXDURddZ0KSJEnS57SrjNBlw9G6deuibkGSJElSBqmrq9vp9j2+CWxnUVpaCsDy5ctd0lttqra2lv79+7NixYqdLgUpfR4eX2ovHltqLx5bak9tdXyFEKirq6Nv3747Hddlw1E8npoUKy4u9i+q2kVRUZHHltqNx5fai8eW2ovHltpTWxxfuzNh0mVPq5MkSZKkPWE4kiRJkiS6cDhKJBJcd911JBKJqFtRF+Oxpfbk8aX24rGl9uKxpfbU0cdXLLjmtSRJkiR13ZkjSZIkSdoThiNJkiRJwnAkSZIkSYDhSJIkSZKALhqObr/9dvbbbz/y8vIYM2YMr776atQtKcP97Gc/IxaLtaqhQ4emt9fX1zNlyhR69uxJYWEhZ511FmvWrGn1GsuXL+fkk0+moKCA3r17c8UVV9Dc3NzRb0UZYMaMGZxyyin07duXWCzGo48+2mp7CIFrr72WPn36kJ+fz9ixY1m8eHGrMevXr2fSpEkUFRVRUlLC+eefz8aNG1uNmT9/Pscffzx5eXn079+fm2++ub3fmiK2q2PrH//xHz/zs2zChAmtxnhsaXumTp3KkUceSffu3enduzenn346ixYtajWmrT4Ln3/+eQ4//HASiQQHHngg9913X3u/PUVod46tL3/5y5/52XXRRRe1GtNRx1aXC0e///3vueyyy7juuut4/fXXGTVqFOPHj2ft2rVRt6YMN3z4cFavXp2uF198Mb3thz/8IY8//jgPP/wwL7zwAqtWreLMM89Mb29paeHkk0+msbGRl19+mfvvv5/77ruPa6+9Noq3ooht2rSJUaNGcfvtt293+80338xtt93GXXfdxcyZM+nWrRvjx4+nvr4+PWbSpEksWLCAadOm8cQTTzBjxgwuvPDC9Pba2lrGjRvHwIEDmT17Nrfccgs/+9nPuOeee9r9/Sk6uzq2ACZMmNDqZ9mDDz7YarvHlrbnhRdeYMqUKbzyyitMmzaNpqYmxo0bx6ZNm9Jj2uKzcOnSpZx88sl85StfYe7cuVx66aX80z/9E88880yHvl91nN05tgAuuOCCVj+7PvmPMh16bIUu5qijjgpTpkxJf93S0hL69u0bpk6dGmFXynTXXXddGDVq1Ha3VVdXh5ycnPDwww+nH3vrrbcCECorK0MIITz55JMhHo+Hqqqq9Jg777wzFBUVhYaGhnbtXZkNCI888kj662QyGcrLy8Mtt9ySfqy6ujokEonw4IMPhhBCWLhwYQDCrFmz0mOeeuqpEIvFwsqVK0MIIdxxxx2hR48erY6vq666KgwZMqSd35EyxaePrRBCOO+888Jpp522w+d4bGl3rV27NgDhhRdeCCG03WfhlVdeGYYPH95qX2effXYYP358e78lZYhPH1shhPClL30p/OAHP9jhczry2OpSM0eNjY3Mnj2bsWPHph+Lx+OMHTuWysrKCDtTZ7B48WL69u3L/vvvz6RJk1i+fDkAs2fPpqmpqdVxNXToUAYMGJA+riorKxk5ciRlZWXpMePHj6e2tpYFCxZ07BtRRlu6dClVVVWtjqfi4mLGjBnT6ngqKSlh9OjR6TFjx44lHo8zc+bM9JgTTjiB3Nzc9Jjx48ezaNEiNmzY0EHvRpno+eefp3fv3gwZMoSLL76YdevWpbd5bGl31dTUAFBaWgq03WdhZWVlq9fYNsbf0/Yenz62tnnggQfo1asXI0aM4Oqrr2bz5s3pbR15bGXv0egM99FHH9HS0tLqGwdQVlbG22+/HVFX6gzGjBnDfffdx5AhQ1i9ejXXX389xx9/PG+++SZVVVXk5uZSUlLS6jllZWVUVVUBUFVVtd3jbts2aZttx8P2jpdPHk+9e/dutT07O5vS0tJWYwYNGvSZ19i2rUePHu3SvzLbhAkTOPPMMxk0aBDvvvsuP/nJTzjppJOorKwkKyvLY0u7JZlMcumll3LssccyYsQIgDb7LNzRmNraWrZs2UJ+fn57vCVliO0dWwDf+ta3GDhwIH379mX+/PlcddVVLFq0iD/+8Y9Axx5bXSocSZ/XSSedlP7vQw45hDFjxjBw4ED+8Ic/+INaUqdxzjnnpP975MiRHHLIIRxwwAE8//zznHjiiRF2ps5kypQpvPnmm62uvZXawo6OrU9e9zhy5Ej69OnDiSeeyLvvvssBBxzQoT12qdPqevXqRVZW1mdWTlmzZg3l5eURdaXOqKSkhIMOOoglS5ZQXl5OY2Mj1dXVrcZ88rgqLy/f7nG3bZu0zbbjYWc/p8rLyz+ziExzczPr16/3mNMe2X///enVqxdLliwBPLa0a5dccglPPPEEzz33HPvuu2/68bb6LNzRmKKiIv8xsovb0bG1PWPGjAFo9bOro46tLhWOcnNzOeKII3j22WfTjyWTSZ599lkqKioi7EydzcaNG3n33Xfp06cPRxxxBDk5Oa2Oq0WLFrF8+fL0cVVRUcEbb7zR6peOadOmUVRUxMEHH9zh/StzDRo0iPLy8lbHU21tLTNnzmx1PFVXVzN79uz0mOnTp5NMJtMfGBUVFcyYMYOmpqb0mGnTpjFkyBBPe1LaBx98wLp16+jTpw/gsaUdCyFwySWX8MgjjzB9+vTPnFrZVp+FFRUVrV5j2xh/T+u6dnVsbc/cuXMBWv3s6rBja4+Wb+gEHnrooZBIJMJ9990XFi5cGC688MJQUlLSanUL6dMuv/zy8Pzzz4elS5eGl156KYwdOzb06tUrrF27NoQQwkUXXRQGDBgQpk+fHl577bVQUVERKioq0s9vbm4OI0aMCOPGjQtz584NTz/9dNhnn33C1VdfHdVbUoTq6urCnDlzwpw5cwIQbr311jBnzpywbNmyEEIIN910UygpKQmPPfZYmD9/fjjttNPCoEGDwpYtW9KvMWHChHDYYYeFmTNnhhdffDEMHjw4TJw4Mb29uro6lJWVhXPPPTe8+eab4aGHHgoFBQXh7rvv7vD3q46zs2Orrq4u/OhHPwqVlZVh6dKl4a9//Ws4/PDDw+DBg0N9fX36NTy2tD0XX3xxKC4uDs8//3xYvXp1ujZv3pwe0xafhe+9914oKCgIV1xxRXjrrbfC7bffHrKyssLTTz/doe9XHWdXx9aSJUvCDTfcEF577bWwdOnS8Nhjj4X9998/nHDCCenX6Mhjq8uFoxBC+Pd///cwYMCAkJubG4466qjwyiuvRN2SMtzZZ58d+vTpE3Jzc0O/fv3C2WefHZYsWZLevmXLlvDd73439OjRIxQUFIQzzjgjrF69utVrvP/+++Gkk04K+fn5oVevXuHyyy8PTU1NHf1WlAGee+65AHymzjvvvBBCajnva665JpSVlYVEIhFOPPHEsGjRolavsW7dujBx4sRQWFgYioqKwuTJk0NdXV2rMfPmzQvHHXdcSCQSoV+/fuGmm27qqLeoiOzs2Nq8eXMYN25c2GeffUJOTk4YOHBguOCCCz7zj4MeW9qe7R1XQLj33nvTY9rqs/C5554Lhx56aMjNzQ37779/q32o69nVsbV8+fJwwgknhNLS0pBIJMKBBx4YrrjiilBTU9PqdTrq2IptbVqSJEmS9mpd6pojSZIkSfq8DEeSJEmShOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQB8P8D29P9gxwdhP0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHlCAYAAAA+8YdPAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAASspJREFUeJzt3Xl8VPW9//HXZBvCkoRFEkBAtIqiiAtKU5cucgFLrVbbKqWWWqpXxdatFrmta2uheK9We13b22pbq9bW5crP5VJQqTUiooiApS4oiAYskEkCZJ3v74/AyCA7k0xm8no+Hp9HM+d858znyGmGN+ec74mEEAKSJEmS1MHlpLsBSZIkSWoPDEeSJEmShOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJQDsPR7fddhv77bcfnTp1YsSIEbz00kvpbkmSJElSlmq34ejBBx/ksssu45prruGVV15h2LBhjB49mtWrV6e7NUmSJElZKBJCCOluYltGjBjBMcccw3//938DEI/H6d+/P9/73ve48sor09ydJEmSpGyTl+4GtqWhoYH58+czZcqUxLKcnBxGjhxJRUXFNt9TX19PfX194nU8Hmft2rX07NmTSCTS6j1LkiRJap9CCNTU1NC3b19ycrZ/8Vy7DEf/+te/aG5uprS0NGl5aWkp//jHP7b5nqlTp3Lddde1RXuSJEmSMtCKFSvYd999t7u+3d5ztLumTJlCLBZL1PLly9PdkiRJkqR2pFu3bjtc3y7PHPXq1Yvc3FxWrVqVtHzVqlWUlZVt8z3RaJRoNNoW7UmSJEnKQDu73aZdnjkqKCjg6KOPZtasWYll8XicWbNmUV5ensbOJEmSJGWrdnnmCOCyyy5jwoQJDB8+nGOPPZZf/OIXrF+/nnPOOSfdrUmSJEnKQu02HJ155pl89NFHXH311VRWVnLEEUfw1FNPfWKSBkmSJElKhXb7nKO9VV1dTXFxcbrbkCRJktROxGIxioqKtru+Xd5zJEmSJEltzXAkSZIkSRiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCIC/dDUiSpLaQx8df+02bSpK0JcORJEkZIx/ostWyLsBgILLFsn7AkVuN+xQwaNPPbwG/Ap4HYqlvU5IylOFIkqRWFdnqdT6wz1bL9gEO2WpZd+A4kq+A3wc4eBvb67WNz9z6c7c0BPgS8DpwK/D/gNU7GC9JHYPhSJKkHYrQ8nW5ZdjIBQaSHFyKgGO3WtYHOHqr7XWmJeBsub38Tct3FGhSKULLPhxByxmkD4Dfbfp5ORDaqA9Jal8iIYSs/A1YXV1NcXFxutuQJLULEVouP9syfBQCB221LAqcCBRssawb8GmSQ08eLZeo5W71GQW0XcBJtQB8CPwF+CPwMt6XJCnbxGIxioqKtrvecCRJylL9gIuB3rScmTmG5NCTv2nd1mEmZxvLOpIArKflUrtfAAuBDelsSJJSZmfhyMvqJElZ6mLgB3TsoLMnIkBX4OvAKcBrtISkJ4Da9LUlSW3A5xxJkrLUts4KaddFaLkPqhz4A/AC8B9A33Q2JUmtynAkSZJ2Ih8YCvwU+Dvwo02v/WuEpOzibzVJUhbKB8rS3UQWigD7AT8B/kbL7HZHA53S2JMkpY7hSJKUhQppeTCqWkcEKAbOAebQcj/SKbT8d5ekzGU4kiRJe2jzfUmfBx6iZYa7SXzyobSSlBkMR5IkKQWitISkW2m5L+n7tEyn7qQYkjKH4UiSJKVQDi0P170ZmA/cAhxM8gNzJal9MhxJkqRWkAOUAhfRMnnDw8BJJD+IV5LaF8ORJCkL5eOZivYiQss9SKcAM2gJSacDJWnsSZK2zXAkScpCB+NU3u1NhJYpv78I/Al4DvguLSHJ+5IktQ+GI0lSFsrFr7j2KkLLn8/hwJ3AXOBnwCAMSZLSzW8OSZKUJrm0TN4wmZYZ7u4CPgPkpbMpSR2Y4UiSJKVZBOhDy2V2/wf8ETge6JrOpiR1QIYjSZLUTkSALsDXgJnAX4FxQHE6m5LUgRiOJElSO9QJGAH8DngR+DEtD5WVpNZjOJIkZaGj8CsuW+TRMvvg9bTcl3QdcAT++UpqDf5mkSRloT4481m2iQADgauBZ4HfAAeksyFJWcjpYCRJUoYpBr4FNNMyiUNIbzuSsoZnjiRJUgaK0HLmyDOEklLHcCRJkiRJGI4kSVLGak53A5KyjOFIkpRlcoDe6W5CbeJvQDzdTUjKIoYjSVKWyaNlqmdlvw3pbkBSljEcSZIkSRKGI0mSJEkCDEeSJEmSBLRCOJo6dSrHHHMM3bp1o3fv3px22mksXbo0aUxdXR2TJk2iZ8+edO3alTPOOINVq1YljVm+fDljx46lc+fO9O7dmyuuuIKmpqZUtytJkiRJQCuEo+eee45Jkybx4osvMnPmTBobGxk1ahTr169PjLn00kt5/PHHeeihh3juuef44IMPOP300xPrm5ubGTt2LA0NDbzwwgvce++93HPPPVx99dWpbleSlHVy8cIISdIeCa1s9erVAQjPPfdcCCGEqqqqkJ+fHx566KHEmDfeeCMAoaKiIoQQwhNPPBFycnJCZWVlYswdd9wRioqKQn19/S59biwWC4BlWZbV4ergANUBgpXV1RDg5G38+VuWZW2/YrHYDjNEq//TWiwWA6BHjx4AzJ8/n8bGRkaOHJkYc/DBBzNgwAAqKioAqKioYOjQoZSWlibGjB49murqahYvXrzNz6mvr6e6ujqpJEkdUd6mUnaLAx+muwlJWaZVw1E8HueSSy7huOOO47DDDgOgsrKSgoICSkpKksaWlpZSWVmZGLNlMNq8fvO6bZk6dSrFxcWJ6t+/f4r3RpIkSVI2a9VwNGnSJBYtWsQDDzzQmh8DwJQpU4jFYolasWJFq3+mJEmSpOzRatcdXHTRRcyYMYM5c+aw7777JpaXlZXR0NBAVVVV0tmjVatWUVZWlhjz0ksvJW1v82x2m8dsLRqNEo1GU7wXkiRJkjqKlJ85CiFw0UUX8cgjjzB79mwGDRqUtP7oo48mPz+fWbNmJZYtXbqU5cuXU15eDkB5eTmvv/46q1evToyZOXMmRUVFDBkyJNUtS5IkSVLqzxxNmjSJP/7xjzz22GN069YtcY9QcXExhYWFFBcXM3HiRC677DJ69OhBUVER3/ve9ygvL+fTn/40AKNGjWLIkCGcffbZTJ8+ncrKSn784x8zadIkzw5JknZiCJCf7iYkSZloN2fm3im2M23eb3/728SYjRs3hgsvvDB07949dO7cOXzlK18JH374YdJ23n333XDyySeHwsLC0KtXr3D55ZeHxsbGXe7Dqbwty7I6al0aSPs001br1zsBem3jz9+yLGv7tbOpvCObAk3Wqa6upri4ON1tSJLa3KXATeluQq3udeBYoC7djUjKILFYjKKiou2u9xHikiRJkoThSJIkSZIAw5EkSZIkAYYjSVLW6ZnuBiRJGcpwJEnKIhHg0+luQpKUoQxHkiQpA60AmtLdhKQsYziSJEkZaCmGI0mpZjiSJEmSJAxHkiRJkgQYjiRJWSWCX22SpD3lN4gkKYv0Bg5JdxOSpAxlOJIkZZE8oFO6m5AkZSjDkSRJyjABqE53E5KykOFIkiRlmAA8n+4mJGUhw5EkScpAId0NSMpChiNJkiRJwnAkScoq++GEDJKkPWU4kiRlkQFANN1NSJIylOFIkiRJkjAcSZKkjNMArE93E5KykOFIkiRlmI+ApeluQlIWMhxJkqQM5FTeklLPcCRJyiJF6W5AkpTBDEeSpCxyAhBJdxOSpAxlOJIkZRGDkSRpzxmOJEmSJAnDkSRJyjjNOCGDpNZgOJIkSRlmPlCT7iYkZSHDkSQpi3jPUcdQB8TT3YSkLGQ4kiRliW7AsHQ3IUnKYIYjSVKWyKMlIEmStGcMR5IkSZKE4UiSJEmSAMORJEnKOI3pbkBSljIcSZKkDBKA59LdhKQsZTiSJGWJUqBLuptQm6hLdwOSspThSJKUJfYFitPdhCQpgxmOJEmSJAnDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJWaNzuhtQm1gPLEl3E5KylOFIkpQlTgQi6W5Cra4RWJPuJiRlKcORJClL5GE4kiTtDcORJEmSJGE4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSQpKxQAR6a7CbWJN3G2OkmtpdXD0bRp04hEIlxyySWJZXV1dUyaNImePXvStWtXzjjjDFatWpX0vuXLlzN27Fg6d+5M7969ueKKK2hqamrtdiVJGSkH6JnuJtQmqoH6dDchKUu1ajiaN28ed911F4cffnjS8ksvvZTHH3+chx56iOeee44PPviA008/PbG+ubmZsWPH0tDQwAsvvMC9997LPffcw9VXX92a7UqSJEnqyEIrqampCQceeGCYOXNm+OxnPxsuvvjiEEIIVVVVIT8/Pzz00EOJsW+88UYAQkVFRQghhCeeeCLk5OSEysrKxJg77rgjFBUVhfr6+l36/FgsFgDLsiyrQ1SnAIsCBCvra2aASEj/MWdZViZWLBbbYYZotTNHkyZNYuzYsYwcOTJp+fz582lsbExafvDBBzNgwAAqKioAqKioYOjQoZSWlibGjB49murqahYvXtxaLUuSJEnqwPJaY6MPPPAAr7zyCvPmzfvEusrKSgoKCigpKUlaXlpaSmVlZWLMlsFo8/rN67alvr6e+vqPr0Gurq7em12QJEmS1MGk/MzRihUruPjii7nvvvvo1KlTqje/XVOnTqW4uDhR/fv3b7PPliSlWwnQLd1NSJIyXMrD0fz581m9ejVHHXUUeXl55OXl8dxzz3HrrbeSl5dHaWkpDQ0NVFVVJb1v1apVlJWVAVBWVvaJ2es2v948ZmtTpkwhFoslasWKFaneNUlSu9UXKN3pKGWDt2m5dUCSUi/l4eikk07i9ddfZ8GCBYkaPnw448ePT/ycn5/PrFmzEu9ZunQpy5cvp7y8HIDy8nJef/11Vq9enRgzc+ZMioqKGDJkyDY/NxqNUlRUlFSSJCnbvJHuBiRlsZTfc9StWzcOO+ywpGVdunShZ8+eieUTJ07ksssuo0ePHhQVFfG9732P8vJyPv3pTwMwatQohgwZwtlnn8306dOprKzkxz/+MZMmTSIajaa6ZUmSJElqnQkZdubmm28mJyeHM844g/r6ekaPHs3tt9+eWJ+bm8uMGTO44IILKC8vp0uXLkyYMIHrr78+He1KkiRJ6gAiIYSsvHC3urqa4uLidLchSWoTRwEvAF5dkP0uAW5JdxOSMlQsFtvh7TdpOXMkSVJqFQCRdDfRxlr+bbOgcCMFnTawz8BldOm+lsOPeIX+VX2466EzqKrtSsf77yJJe85wJEnKAscB+eluopUEcnKayYvW063nvygo3ED/IQsp2mc1/QYvSYSjdR/uy4bqYj5443AuOve3nHL8C0z55YU8/9rhtOIz3yUpqxiOJElZIJ/MP0MSyCuoJ5IT6F72AYXdqhl4+Ct0KV7HvocsIpIbB6Cqsg9rP9iX2jW9mP3b86ld15PadT1paiggxHOBwKUBfjTlBn517fX86cmT+cX9X2dtdTZcah4HfMi7pNbjPUeSpCxwJTA13U3sokBOXhOdOtfSrddHlJR9SL+DllBS+iG9BrxHTm4jtet6kpMT592FR7G+qjsrFg+jfkNnatbsQ4jn7PRMUG5+A2dd+0N6kMMJuYXsUxzjqjvP5YXXDyMez22j/WwNG4FjgUXpbkRShtrZPUeGI0lSFsiMcBSJxJl05kNERzxDfdEa1se6U7u2JyuXDiG2qg8fvn0Q9eu7siFWvEUA2pMzYoGe+y7nWz+fxFO3TqG8dC2XnPUnHnn2s9x8/5lU1WTqvUgbgWOAxeluRFKGckIGSZLaiRAidO+ynn/ru46v/3A6H33Qj+bGglb4pAhr3h/A3+4/h89++w5+d+Uv+duCYfz0/Lt59MbJ/PiOf+eFhUOJey+SJCXxt6IkSW0mwq0Pfo1ITQk/nvwzuhSva9XPWvD0l6hesw/Hn3kvb73fj7OvuZrfPXEyd065kWvP+x+Ku9a04udLUuYxHEmSMlwOcGS6m9gkkBetY/M021uvg0CstitX3jqJLx/0LhdeP5miXqu2M37vNTVGmfWbCzli1P+jdP83aWjM5zf/+yVO+8FUDhqwnMdv+iFDBr1DpJU+X5IyjeFIkpThIkCfdDcBQI+8Ji4a+QQFuU2fWDc8r5Fv/dsT5ObEeWHhUH77pzM5+8glfPWKn5BX0NBqPa1adgAvPfZ1xpx/M/nROiDCW+/359vX/Zgn/17OQ1Ov4sKvPkyngnpaK6RJUqYwHEmSlCLjmvLo/MRpNDR//MylXOCbkWZuas6ldu5xLbPNEeHm+89kzaIj+cpnXuTfvvvf5Oa3UkAKObzw52+QV9DAsV/+My3TYUNdQ5Rpv/smE677Mad+dg5/mnoVh+6/jPYdkDbQMimDJLUOw5EkSSlQCJxEhBlbTHKQC5wPTB/2d351yHweri4mvmmWuKqarvzHbRdywEf78dnP/5VR591Kbn59q/TWsLEzT95+OZ8+/X7KDngrsTyEHF5+42DOmPwz/v7aUB782dVc9LW/0LnT9i4NTLflwPvpbkJSFjMcSZKUAkcATXw8yXQR8EtgFPClxSMoHjKXLp3Wb/GOCC+8NpQ/PXkyIxp6MPT4ZzjpnDuJROKt0F2Elf84lPlPnMbo82+moDC5j5oNXZj++/Gcc/1/cMoJz/PHn17DYQe8Q/sLSO2tH0nZxnAkSdJeigDfymvggbwGupd8xOEDlvK7U/6HQfus5DzglcYob688gNKeq5LeFw853PLg1wixHuRWjGL/I+cx5ITZtE4IiPDCX8aTH63jmC89zObL6zYLIYd5S4bw9Sk/5cXXD+O+66/jwq8+TJdOXsYmqePwOUeSpAxXSMt5mvQp67SeUZPP55CelUyN9SKSF+ix/wJOeedQVn3UD4B3Vu7PIfu9wTsrD0h677rqIn5857ncNWU6599+LieefScAi+ecRKof1NqwoTNP3XEpX/vRj3nn1WP48K3Bn/iM2Pqu/PzebzJr3tH87MK7GDXiJX50x7+z5J1BhIx8cKwk7TrPHEmSMtw+wKC0dnBQ//eIdAocse+bdH7ybF55/NucesOvmfvGMYkxI4/5K2tiPbf5/hcXHcafZ3+eS774f7z44Lf40sXTOGjE30n9GaQI779xGEsrTuBz37qbnNzmbY4KRJi35BDOmPwzPqoq4f9+eQmHHvBOinuRpPbHcCRJ0l56+a2D+etPb+O1W/+Ldfu+xe8XHUNDUwHxeMvXbCQS550P9uf1t4Zu8/3xeA633P919ulexdFdG3jytsv5/IS76LnvclIfkHJ47r6J9Oy3gqGf/7/tbr8wWs/XR87imCFvcPcjp7K8sizFfUhS+2M4kiRpL60POfxgfTH17x5G0Zj7mfTj73DG5//CqSc+Rn5eA4fuv5jC6EbqGjptdxtVtV350e3/ziXjHqLu7SG88OdvcPqV19Cj34rU91vVnafvuoTPf/tOSso+2Gpt4KABy7nnmp/yzZOf5qLpl3P9/5xD9fouKe9j933y+VGSlEqREEJWTv1SXV1NcXFxutuQJLW6QcAC0n3fEUDfThso3f8N+vd8n2mTrqSxKZ87Hz6fdz7Yn5cWH8u6mh47fH8kEuea7/6GQwa9y7ev/xHlZ93DkBNn88er/ou1KwektNdIJM7Y7/+cwm7VPPzz62huzCea38g3T36aS7/xAH+e9Xluvv9MYrVdSfW9T3vuZuCydDchKYPFYjGKirb/fWE4kiRluPYTjjbLyWlmn5KP6N5tHXUNnVhX051Ybckuvbe4aw2P/eeV/O6JMfz+6X9jzAU30a3nv/jzDT+loa5zSvvs0n0N5/znBfztgQlsXDqUGy64i9491jHltvOpeH0oIbSXULTZNGBKupuQlMEMR5KkLPcp4BWgW7obSZHA8cMWcsvlv+CLl/wna2q7MPrfb6GgcCMzbv0hjSkNSIGhxz/DDy++hSObu/LQX7/ALx74ejs7W7Qlw5GkvbOzcOQ9R5KkDHcM0B7uh0mVCH9fOJRnXzmSzxy+iKaGKE/fdTEFhRs45ZKp5HfakKLPCQweuJyrvzSLIZEC7lvei5/97pvEarvRPoORJLU+w5EkKcNFybavsxByuP/pf+PLJz5PXm4zTQ2deOqOS+m93zt8/lu/IhKJ73wjO1AYrWPil2fwp59dxaK39+eMyT+jYcA/GThsPq3zAFpJygzZ9W0iSVKWWPzOIPr2+oj9+nwIQGx1H+6/+j/Z95DXOeqLj+5hQAoMHvge91xzA988+SkunH45P/n1Obz79qeY9ZsLGf3vv6Bz8brU7ogkZRDDkSRJ7dDG+igPP/M5Rh77cmJZbHUZD0+7nuO+9geO+uKjsMsBKRAtqGfil2fw52k/4o1lA/nKD6fx99cOJx5ygAgLZ4/hX+8P5HNn/5pITnucMjsA9eluQlKWMxxJktQuRfjrS8M58cgFFOQ1JpZVrerDk7dfzknn3MHhJz3Fzi+DCxzYfwW/v+4nTBj7BP8+9Ydc96uJVNUk31sUb8rj/+66mIM+/TwHHDVvF7bb1uLA39LdhKQsZziSJKmdeq+yjGhBI0cc9OYWSyO8+dJneGT6tRz39d/T58B/sKMgc8bnn+WRG6ew+J1BnHL5jbywcChhmxMuRFj3YT+e+/13+bfzbqVLydpU785eCkBDupuQlOUMR5KkDDc03Q20mqbmXP48+3OMLn+R5ADUEpD++utJfOWH19HnU0vZXkB66/19+fZ1P+Ynvz5nF6bojrBw1hjWfrAvn/3mb4jkNKduZyQpAxiOJEkZbr90N9CKIvz1pWP49NDF9CyOfWLdm/M+w5K/fZ6zrruCXv3f2+YWXnvzQF5+45BN9xZtLbRUJJDTrZ7cXhvIH1LF83PPouDwtXQubW9njySpdeWluwFJkrR9H60r4T//8A3qGws+sS43xCn8476syz2MUefdwiPTr2VjzfYegB4gN5DTqYmcro3k7bOB3JJ68vusJ6ewCfLi0JRD46rOxDb0Zu78r7Cx2oepS+pYDEeSJLVbgYP4J6Uv/5P1HEmEOLk081X+TD1RzuAvlDdV8K3f30v07EWc+oOf8OiNV1NX34VIbiCv10ZyOjVRsF+MnM5N5O2zgRCPEJpyaP5XIc1VUTa8VEZ8Qz7NVVFCcwTiEfL71ZJXtp74Rv+aIKlj8beeJEntVA/Wch/jaSSfv3AGX2A2X2IGX+QJ9uNd/kUvJnAvf286ntzfj+C0/7ieIRfO4N0PhhEpbKK5poBQn0fDsiLiG/JpfLY/oTGHkAg9277/KL9fLU2rOkPcq+8ldSyGI0mS2qlJ3MZRvMKvOJdcmvkB/8kXmE2EwEfswwTu5SnGABGamwqY+dj55A+OUfX/DiQ05xDqczfN07CjSRi2Egnk969h46u9W2mv9tRq4O10NyEpy/lPQpKkDJYHdEt3E61mDT0BOIC36UYNffiQX/NdPqBvUjDarLkINr7bg/j6AkJdHoQIuxWMgEhBM3kldTRVdknhnqRCHVCT7iYkZTnDkSQpgxUDh6W7iVbzKKfxL3oxn6PZQGdiFPMFZvNTfvyJYEQkkNdzIw0r9i4s5vXaSHx9vvcbSeqQDEeSpAy2+2dGMkkdnWgij0Eso4k83mU/evEvnuOzfGK/cwK5xfUtl9Lthfz+NTS8321Hz5WVpKxlOJIkqZ2qpoipTKETdRQT40P68CQnM5TXPzE2t1sD5ASaY9E9/8BIIL9vLY0rd/awWEnKTp4zlySpnWoin//mIu7gAprJ5WquJxAhvo1/28zrtZHmdZ0gvuehJhJtJreogaaPOu9N25KUsQxHkiS1axGaN31db2B7kyQEcooaiNcUbJqEYc/kdq8jNOQQX5+/x9uQpEzmZXWSpAyW3fcc7Y6CfWtoeL/rXmwhUNC/hvplJe30fqMVQEO6m5CU5QxHkqQMdhjQI91NpF9OIKdrw97dbwQU9K+m4d0i2mfgfAeoT3cTkrKc4UiSlMEK8QpxyOnUTE7nJprXdtrjbUQKm4gUNtO8Zs+3IUmZznAkSVKGy9tnA82xKKFxz6fxLuhXS7w2f6+2IUmZznAkSVKGixQ2Ea/L3avJGPL3rWmZwnsvtiFJmc5wJElShivYr5qGd4v3fAM5cfLL1m96vpEkdVyGI0lS2xsIXAA4Y/Tey4mTW1RP87o9n4whp7CJSOcmmtYUprAxSco8hiNJUtv7CvBToGxvNzR473vJcJHcQG63hpYHwO6hvN4biMeihPr2er9RAJamuwlJHYDhSJLU9nI21V7f3nJQKjaS0XKKGmiuKSC+YU9PwwUKBlVT/25RSvtKvX+muwFJHYDhSJLU9jp2nkmp3KJ6iEf2/MGtOWGL+438g5HUsRmOJEltKwKU03IiYHWae8kCBQNqaFi+52d9cro0EiloprnK5xtJkuFIktS2IkB3YD3QkOZeMl0kkNtrI00fFbKnZ33yem0kXlNAqGuv9xtJUttplXC0cuVKvvnNb9KzZ08KCwsZOnQoL7/8cmJ9CIGrr76aPn36UFhYyMiRI3nzzTeTtrF27VrGjx9PUVERJSUlTJw4kdra2tZoV5KkzBQJ5HZu3IuzPoH8/jXUvdk9pW1JUqZKeThat24dxx13HPn5+Tz55JMsWbKE//qv/6J7949/8U6fPp1bb72VO++8k7lz59KlSxdGjx5NXV1dYsz48eNZvHgxM2fOZMaMGcyZM4fzzjsv1e1KkjJWBOiS7ibSKqdbIyEeobm6YM82EIGCvrU0ruyC9xtJEhBSbPLkyeH444/f7vp4PB7KysrCjTfemFhWVVUVotFouP/++0MIISxZsiQAYd68eYkxTz75ZIhEImHlypW71EcsFgu03J5qWZZltafKITCLwOxNP+/xtjoHeCNA6LCVv291KDlrSSAS36P35xTXhe7fXBTIa077vuy46gOctIvHhWVZ1vYrFovtMEOk/MzR//7v/zJ8+HC+9rWv0bt3b4488kh+9atfJdYvW7aMyspKRo4cmVhWXFzMiBEjqKioAKCiooKSkhKGDx+eGDNy5EhycnKYO3fuNj+3vr6e6urqpJIkZbuOfOtsIL9PLU2VXVq+8vdAQf9qmtcUQlN7P2tUDSxOdxOSOoCUf6u888473HHHHRx44IE8/fTTXHDBBXz/+9/n3nvvBaCyshKA0tLSpPeVlpYm1lVWVtK7d++k9Xl5efTo0SMxZmtTp06luLg4Uf3790/1rkmSUqEX8CngJSCe5l4yXH7fWho/2NMpuAMFA6s3zXTX3sMR7HEClKTdkPJwFI/HOeqoo/jZz37GkUceyXnnnce5557LnXfemeqPSjJlyhRisViiVqxY0aqfJ0naQ1GgCPgo3Y1kuAjkdGkiXruHD3/Ni5PXo47Gyo5935YkbSnl4ahPnz4MGTIkadkhhxzC8uXLASgrKwNg1apVSWNWrVqVWFdWVsbq1ckPv2hqamLt2rWJMVuLRqMUFRUllSRJ2SqnsImcTk00rS3co/fndmuEnEB8TydzkKQslPJwdNxxx7F06dKkZf/85z8ZOHAgAIMGDaKsrIxZs2Yl1ldXVzN37lzKy8sBKC8vp6qqivnz5yfGzJ49m3g8zogRI1LdsiQpI2XCpWCtJ6eogXhdLqFxz77K88rW07SmcI/fL0lZaZemftsNL730UsjLyws33HBDePPNN8N9990XOnfuHP7whz8kxkybNi2UlJSExx57LCxcuDCceuqpYdCgQWHjxo2JMWPGjAlHHnlkmDt3bnj++efDgQceGMaNG7fLfThbnWVZVjut/gTWEbh8b7d1WIDqQNpnUktPdTr0o1A09q09fH88FH3x7dDp0I/Svh+7Vh8FKN3J8WBZlrXz2tlsdSkPRyGE8Pjjj4fDDjssRKPRcPDBB4e77747aX08Hg9XXXVVKC0tDdFoNJx00klh6dKlSWPWrFkTxo0bF7p27RqKiorCOeecE2pqana5B8ORZVlWO62UhaNjAzQE0v4X9/TUXoWbvObQ49uvh9zuG9O+H7tWbwXovgvHhGVZ1o5rZ+EoEkIIZKHq6mqKi4vT3YYkaWujgYeB04CZe7OhY4HngT2ckCCjBYrPeJONr/am4Z2S3X53bs+NFH/xHdbefzA05aa+vZR7Ahib7iYkZYFYLLbDuQm80FiS1Lb2oeXbZ9XOBmp7IgVx8krqaFrVeY/en7/pfiOaMuWvAVn577iS2qFM+a0oSZI2ySmqJ96QS7x+T876BPL71lL3z+509EktJGlrhiNJkjJMbpdG4uvz9+zMT6Tl4bHNVdHUNyZJGc5wJEnKUAPpqF9j+f1qaXjP5/lJUqp1zG8VSVIWGAJkwmQCqRbI7V5HfEM+XhYnSallOJIkta1SoHZT7ZUOepN+biCv9waaPuyS7k7aUEO6G5DUQRiOJElt6xjgA2Dl3m6og541iUeIr88np1tHCgzPprsBSR2E4UiSpEwSIjSv7URez43p7qQNdaQgKCmdDEeSJGWY+IZ8cro00mEvLZSkVmI4kiRlqE7pbiBtGld2Jb/fXt+0JUnaiuFIkpSB8oDj091E2jTX5hOJNkNePN2tSFJWMRxJktpOHlACrAX2+u/1eXu7gYwVrykgp1MzkQLDkSSlkuFIktR2ugGHAfOBxjT3ksFCPEKozyWnsCndrbSBOFCf7iYkdRCGI0mSMk1TLs3VBeT16Agz1m0E5qa7CUkdhOFIkqQMFN+Y10HOHAF0lP2UlG6GI0mSMlDjim7k969JdxuSlFUMR5KkDFQGDEx3E2nVXFMAOQGfdSRJqWM4kiS1nVwgQgqukiqkZXaHjqt5XSfye28kku+MdZKUKoYjSVLbGQL0BJ5PdyOZLzRFCHFannckSUoJw5Ekqe10ouXs0fp0N5L5Ql0eoS6P3OJsn+baywYltR3DkSRJGSpen9sBzhwtAz5IdxOSOgjDkSRJGarx/W4U9K9OdxutbANQl+4mJHUQhiNJUgYqBfLS3USaRQiNOUTynbFOklLFcCRJajs5tPw9fq//Ln8oLTcwdWyN73cjv2/t7n+bhwiRSKu0JEkZzXAkSWo7xwMfAf9IdyPZId6QCzmBSN5uTOcdoPHDLuT38wGykrQ1w5Ekqe0U0fKMo43pbiQ7xGvyAcjp2rAb74oQGnKJRH0+kiRtzXAkSVLG2nzfkUFHklLBcCRJUqaKb7pEbt9svkTuTcDwJ6ltGI4kSRkomu4G2okIoSln0z1H2Tpj3dsYjiS1FcORJKltpeTv8J9NxUayQuN7RRQMzPZnHUlS2zAcSZLaRhQYDrwG1KZiYwKI12X7856y9YyYpPbIcCRJahs5QDEQA5rT3EsWaV7XiZzOTUQ6N6W7FUnKeNn+z02SpB3Yhz17lGoRcASwW88RbYamJ+Hp/EGs4wjgFZLvJVkHrN/qTZ412JkQgEggkh/3v5Yk7SXDkSR1UAcA/w8o24P35gAFu/umBmi6IocL9/kOv+OylgVJ8Wo58K8tXr9PyzV4m9UCL9ISqLrtds9ZqzGH5jWF5Jetpz6WjZcb7lYEl6S9YjiSpA5qBfBToHQP3hsDXmL3z+s0B3hr9e+BPwMjSA45hwP9t3g9DPjyFq8jtESyCH59bSlCaI5smrEu2zQD/0h3E5I6EL9dJKmDagD+0OafGgf+uenn17Zat/UZgs5A9y1edwGO2rRsGp49+ljDu8UU7BejbnGvdLeSYnFgWbqbkNSBGI4kSe3E1ueh1vPJe5CW0nKu61oMRx8LjTlE8jc/68jL0CRpTzlbnSRJGa5pdWdyS+o3BSRJ0p4yHEmSlOHi9blEcuOQ63x1krQ3DEeSJGW4UJdH8/p88nptSHcrkpTRDEeSJGW6ADTnEMnzzJEk7Q3DkSQpw5SwB09ZynpdVzbTb9AysuvBuRtpeb6VJLUNZ6uTJGWYIUBRuptoN6K5dXx1yJ/5+rD7aM7P4cqFN/HPNQeRHbPWVQLvprsJSR2IZ44kScpIgf27v82vT/0uU0dO4c6/fo8nnj+N/xp9OX27fZDu5iQpI3nmSJKkDFOQW89Xh/yZn3zhKj5avw/j/3Iff1t+AjmROJFI4H9OncjEx/6HD2r6pbtVScoonjmSJCljBPYrWcZvTv0Ov/7yd3mtchhff+hP/G35CUCEeMjl3gUTeK9qICcf+OQ239+1oIbPFM+lkDqy6/4kSdp7njmSJCkD5Oc08PVD/8RPvnAV/YpWcufL5zN55s+paypMGtfQHOV7T/ySkHTPUaBrQS2nHPQ43//0reR3ruPl/GO4aN7tNMXz23ZHJKkd88yRJCnDdLR/12u5t+i3p53Dr0/9Lt0L1/Hvj9+1zWC0WWO8IBF6uhbUcOZhD/Lg187knq98mxWx/pzymyfo1NzA/t3facsdkaR2z3AkScown013A20ocMaQvzDjG19i3ND7eb96X879319x74IJ2w1Gm9/XJb+WMw99gNvGTuKgnv+ke6d1/O8/vsx5j9/Nh7V9+fOSrzJh2L1EiLfZ3uy+j4CmdDchqQNJeThqbm7mqquuYtCgQRQWFnLAAQfwk5/8hBA+vq45hMDVV19Nnz59KCwsZOTIkbz55ptJ21m7di3jx4+nqKiIkpISJk6cSG2tzzqQJHUmO6ap3jVd8tcTqy9m3spjOOWPj/PnJV8lbPfru+WeojMPfZDbxk6iR+FabnnxYoaVvsa8D47h3Md/RVVddwDmvHcih+zzBj0K17bdzuy214H6dDchqSMJKXbDDTeEnj17hhkzZoRly5aFhx56KHTt2jXccsstiTHTpk0LxcXF4dFHHw2vvfZa+PKXvxwGDRoUNm7cmBgzZsyYMGzYsPDiiy+Gv/3tb+FTn/pUGDdu3C73EYvFAi13mlqWZVlZVb8JEDpIxcNPvvCj8NtTJ4TundYEiG93XNeC6nDmofeHe077Vjh/+O2hV+fVYUS/ivD6hYeGSz59U8iNNH7iPcP7vhSKo+vawX5ur+5I4XFjWZZFiMViO8wQKQ9HY8eODd/5zneSlp1++ulh/PjxIYQQ4vF4KCsrCzfeeGNifVVVVYhGo+H+++8PIYSwZMmSAIR58+Ylxjz55JMhEomElStX7lIfhiPLsqxsrY4VjoqiVaFzfu1213cpqAlnHnp/uPcrZ4cLht8WehZ+FCAejuk3Nyw4//Bwafl/bSMYZUoZjizLSm3tLByl/LK6z3zmM8yaNYt//vOfALz22ms8//zznHzyyQAsW7aMyspKRo4cmXhPcXExI0aMoKKiAoCKigpKSkoYPnx4YszIkSPJyclh7ty5qW5ZkqR2KkJ1fTEbGrtsZ23gO0f8hh6Fa7nsqZu44+ULWFfXndMOfpT/HPUDLnnqF9zy4sU0h442iYUk7ZmU/7a88sorqa6u5uCDDyY3N5fm5mZuuOEGxo8fD0BlZSUApaWlSe8rLS1NrKusrKR3797Jjebl0aNHj8SYrdXX11Nf//F1ydXV1SnbJ0mS2qNADrfPu5DmkMvm+7AO7b2Yaz93LRc98d88v/x4OtL9WZK0t1Iejv70pz9x33338cc//pFDDz2UBQsWcMkll9C3b18mTJiQ6o9LmDp1Ktddd12rbV+S1B5EgU+lu4l2ZeuzQm98dAhj/vAUlbVlGIwkafek/LK6K664giuvvJKzzjqLoUOHcvbZZ3PppZcydepUAMrKygBYtWpV0vtWrVqVWFdWVsbq1auT1jc1NbF27drEmK1NmTKFWCyWqBUrVqR61yRJaVcA9Et3E+1aUzyfyto+ZH4wCsDGdDchqYNJeTjasGEDOTnJm83NzSUeb3mOwqBBgygrK2PWrFmJ9dXV1cydO5fy8nIAysvLqaqqYv78+Ykxs2fPJh6PM2LEiG1+bjQapaioKKkkSVImey7dDUjqYFJ+Wd0pp5zCDTfcwIABAzj00EN59dVXuemmm/jOd74DQCQS4ZJLLuGnP/0pBx54IIMGDeKqq66ib9++nHbaaQAccsghjBkzhnPPPZc777yTxsZGLrroIs466yz69u2b6pYlSRmjGYiluwm1mcZ0NyCpo9mlebF3Q3V1dbj44ovDgAEDQqdOncL+++8ffvSjH4X6+vrEmHg8Hq666qpQWloaotFoOOmkk8LSpUuTtrNmzZowbty40LVr11BUVBTOOeecUFNTs8t9OJW3ZVlWttYXAvwxwFMBPgjw4aaqDS3PAdqy0j0VtbXnFQ/wxW38+VuWZe157Wwq70gIIZCFqqurKS4uTncbkqRWkwdseQn1QGDzTKj5wGeBwk2vDwE2X3mQC+y76X83v075VebaazXA54H5OxsoSbssFovt8PYbH3wgScpQTcDaLV6v3Wr941v8nM/HX3m5tMx4t/n1MD4OTlHg+E3/C1BCS5CClgBVSOZPdJBuAdiw6X8BqoD3t1g3D/gX8ArwWls3J6mDMxxJkjqARpLvX1mwxc8vbzU2d4ufuwK9Nv0cBY6lJWgB7AcM3fRzp00/b35vIbD1g1uzLVSFrX6uouWeMGi5L+yNLda/yscBqAGYy8d/HrW0hKHNmpGkdDEcSZKUZMu/nMdIngBiyXbekwt05+MA1JeW8MSmZcfTchaKTcsHbbGujJYpyje/TuclfnE+Dj0BWAVsfsB6LS2XuMU3vX4DeGvTz83AQj6eersBJ86QlIkMR5Ik7bVmks9+fETyJWGPbvFzPh9fthcBDqTlzBPAYOCATT/nAp/h4zNQXYABfBzAouxakGqmJaxstoKW+3mgJcz8nZZLFAHe5eMAGIC3abkEbvN2fO6QpOxmOJIkqU1tfYnfK1v8/MJWY/P4OAwV8vG9UXnAp/l4wolS4Jgttv8cULfp9SpazupsVgms3/Rz4ONgJEkyHEmS1G5tGVwageotXi/aauzmEJWVk9BKUpswHEmSlBUMRZK0t3ywgyRJkiRhOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkSYDhSJIkSZIAw5EkSZIkAYYjSZIkSQIMR5IkSZIEGI4kSZIkCTAcSZIkSRJgOJIkSZIkwHAkSZIkScAehKM5c+Zwyimn0LdvXyKRCI8++mjS+hACV199NX369KGwsJCRI0fy5ptvJo1Zu3Yt48ePp6ioiJKSEiZOnEhtbW3SmIULF3LCCSfQqVMn+vfvz/Tp03d/7yRJkiRpF+12OFq/fj3Dhg3jtttu2+b66dOnc+utt3LnnXcyd+5cunTpwujRo6mrq0uMGT9+PIsXL2bmzJnMmDGDOXPmcN555yXWV1dXM2rUKAYOHMj8+fO58cYbufbaa7n77rv3YBclSZIkaReEvQCERx55JPE6Ho+HsrKycOONNyaWVVVVhWg0Gu6///4QQghLliwJQJg3b15izJNPPhkikUhYuXJlCCGE22+/PXTv3j3U19cnxkyePDkMHjx4l3uLxWIBsCzLsizLsizLCkCIxWI7zBApvedo2bJlVFZWMnLkyMSy4uJiRowYQUVFBQAVFRWUlJQwfPjwxJiRI0eSk5PD3LlzE2NOPPFECgoKEmNGjx7N0qVLWbdu3TY/u76+nurq6qSSJEmSpF2V0nBUWVkJQGlpadLy0tLSxLrKykp69+6dtD4vL48ePXokjdnWNrb8jK1NnTqV4uLiRPXv33/vd0iSJElSh5E1s9VNmTKFWCyWqBUrVqS7JUmSJEkZJKXhqKysDIBVq1YlLV+1alViXVlZGatXr05a39TUxNq1a5PGbGsbW37G1qLRKEVFRUklSZIkSbsqpeFo0KBBlJWVMWvWrMSy6upq5s6dS3l5OQDl5eVUVVUxf/78xJjZs2cTj8cZMWJEYsycOXNobGxMjJk5cyaDBw+me/fuqWxZkiRJklrs8vRvm9TU1IRXX301vPrqqwEIN910U3j11VfDe++9F0IIYdq0aaGkpCQ89thjYeHCheHUU08NgwYNChs3bkxsY8yYMeHII48Mc+fODc8//3w48MADw7hx4xLrq6qqQmlpaTj77LPDokWLwgMPPBA6d+4c7rrrrl3u09nqLMuyLMuyLMvasnY2W91uh6Nnnnlmmx80YcKEEELLdN5XXXVVKC0tDdFoNJx00klh6dKlSdtYs2ZNGDduXOjatWsoKioK55xzTqipqUka89prr4Xjjz8+RKPR0K9fvzBt2rTd6tNwZFmWZVmWZVnWlrWzcBQJIQSyUHV1NcXFxeluQ5IkSVI7EYvFdjg3QdbMVidJkiRJe8NwJEmSJEkYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAvYgHM2ZM4dTTjmFvn37EolEePTRRxPrGhsbmTx5MkOHDqVLly707duXb33rW3zwwQdJ21i7di3jx4+nqKiIkpISJk6cSG1tbdKYhQsXcsIJJ9CpUyf69+/P9OnT92wPJUmSJGkX7HY4Wr9+PcOGDeO22277xLoNGzbwyiuvcNVVV/HKK6/w8MMPs3TpUr785S8njRs/fjyLFy9m5syZzJgxgzlz5nDeeecl1ldXVzNq1CgGDhzI/PnzufHGG7n22mu5++6792AXJUmSJGkXhL0AhEceeWSHY1566aUAhPfeey+EEMKSJUsCEObNm5cY8+STT4ZIJBJWrlwZQgjh9ttvD927dw/19fWJMZMnTw6DBw/e5d5isVgALMuyLMuyLMuyAhBisdgOM0Sr33MUi8WIRCKUlJQAUFFRQUlJCcOHD0+MGTlyJDk5OcydOzcx5sQTT6SgoCAxZvTo0SxdupR169a1dsuSJEmSOqC81tx4XV0dkydPZty4cRQVFQFQWVlJ7969k5vIy6NHjx5UVlYmxgwaNChpTGlpaWJd9+7dP/FZ9fX11NfXJ15XV1endF8kSZIkZbdWO3PU2NjI17/+dUII3HHHHa31MQlTp06luLg4Uf3792/1z5QkSZKUPVolHG0ORu+99x4zZ85MnDUCKCsrY/Xq1Unjm5qaWLt2LWVlZYkxq1atShqz+fXmMVubMmUKsVgsUStWrEjlLkmSJEnKcikPR5uD0Ztvvslf//pXevbsmbS+vLycqqoq5s+fn1g2e/Zs4vE4I0aMSIyZM2cOjY2NiTEzZ85k8ODB27ykDiAajVJUVJRUkiRJkrSrdjsc1dbWsmDBAhYsWADAsmXLWLBgAcuXL6exsZGvfvWrvPzyy9x33300NzdTWVlJZWUlDQ0NABxyyCGMGTOGc889l5deeom///3vXHTRRZx11ln07dsXgG984xsUFBQwceJEFi9ezIMPPsgtt9zCZZddlro9lyRJkqQt7fLc2Js888wz25wWb8KECWHZsmXbnTbvmWeeSWxjzZo1Ydy4caFr166hqKgonHPOOaGmpibpc1577bVw/PHHh2g0Gvr16xemTZu2W306lbdlWZZlWZZlWVvWzqbyjoQQAlmourqa4uLidLchSZIkqZ2IxWI7vP2m1Z9zJEmSJEmZwHAkSZIkSRiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBBiOJEmSJAkwHEmSJEkSYDiSJEmSJMBwJEmSJEmA4UiSJEmSAMORJEmSJAGGI0mSJEkCDEeSJEmSBOxBOJozZw6nnHIKffv2JRKJ8Oijj2537Pnnn08kEuEXv/hF0vK1a9cyfvx4ioqKKCkpYeLEidTW1iaNWbhwISeccAKdOnWif//+TJ8+fXdblSRJkqRdttvhaP369QwbNozbbrtth+MeeeQRXnzxRfr27fuJdePHj2fx4sXMnDmTGTNmMGfOHM4777zE+urqakaNGsXAgQOZP38+N954I9deey1333337rYrSZIkSbsm7AUgPPLII59Y/v7774d+/fqFRYsWhYEDB4abb745sW7JkiUBCPPmzUsse/LJJ0MkEgkrV64MIYRw++23h+7du4f6+vrEmMmTJ4fBgwfvcm+xWCwAlmVZlmVZlmVZAQixWGyHGSLl9xzF43HOPvtsrrjiCg499NBPrK+oqKCkpIThw4cnlo0cOZKcnBzmzp2bGHPiiSdSUFCQGDN69GiWLl3KunXrtvm59fX1VFdXJ5UkSZIk7aqUh6Of//zn5OXl8f3vf3+b6ysrK+ndu3fSsry8PHr06EFlZWViTGlpadKYza83j9na1KlTKS4uTlT//v33dlckSZIkdSApDUfz58/nlltu4Z577iESiaRy0zs1ZcoUYrFYolasWNGmny9JkiQps6U0HP3tb39j9erVDBgwgLy8PPLy8njvvfe4/PLL2W+//QAoKytj9erVSe9rampi7dq1lJWVJcasWrUqaczm15vHbC0ajVJUVJRUkiRJkrSrUhqOzj77bBYuXMiCBQsS1bdvX6644gqefvppAMrLy6mqqmL+/PmJ982ePZt4PM6IESMSY+bMmUNjY2NizMyZMxk8eDDdu3dPZcuSJEmSBEDe7r6htraWt956K/F62bJlLFiwgB49ejBgwAB69uyZND4/P5+ysjIGDx4MwCGHHMKYMWM499xzufPOO2lsbOSiiy7irLPOSkz7/Y1vfIPrrruOiRMnMnnyZBYtWsQtt9zCzTffvDf7KkmSJEnbt8tzY2/yzDPPbHNavAkTJmxz/NZTeYcQwpo1a8K4ceNC165dQ1FRUTjnnHNCTU1N0pjXXnstHH/88SEajYZ+/fqFadOm7VafTuVtWZZlWZZlWdaWtbOpvCMhhEAWqq6upri4ON1tSJIkSWonYrHYDucmSPlU3pIkSZKUiQxHkiRJkoThSJIkSZIAw5EkSZIkAVkcjrJ0nglJkiRJe2hnGSFrw9GaNWvS3YIkSZKkdqSmpmaH63f7IbCZokePHgAsX77cKb2VUtXV1fTv358VK1bscCpIaU94fKm1eGyptXhsqTWl6vgKIVBTU0Pfvn13OC5rw1FOTstJseLiYv+PqlZRVFTksaVW4/Gl1uKxpdbisaXWlIrja1dOmGTtZXWSJEmStDsMR5IkSZJEFoejaDTKNddcQzQaTXcryjIeW2pNHl9qLR5bai0eW2pNbX18RYJzXkuSJElS9p45kiRJkqTdYTiSJEmSJAxHkiRJkgQYjiRJkiQJyNJwdNttt7HffvvRqVMnRowYwUsvvZTultTOXXvttUQikaQ6+OCDE+vr6uqYNGkSPXv2pGvXrpxxxhmsWrUqaRvLly9n7NixdO7cmd69e3PFFVfQ1NTU1ruidmDOnDmccsop9O3bl0gkwqOPPpq0PoTA1VdfTZ8+fSgsLGTkyJG8+eabSWPWrl3L+PHjKSoqoqSkhIkTJ1JbW5s0ZuHChZxwwgl06tSJ/v37M3369NbeNaXZzo6tb3/725/4XTZmzJikMR5b2papU6dyzDHH0K1bN3r37s1pp53G0qVLk8ak6rvw2Wef5aijjiIajfKpT32Ke+65p7V3T2m0K8fW5z73uU/87jr//POTxrTVsZV14ejBBx/ksssu45prruGVV15h2LBhjB49mtWrV6e7NbVzhx56KB9++GGinn/++cS6Sy+9lMcff5yHHnqI5557jg8++IDTTz89sb65uZmxY8fS0NDACy+8wL333ss999zD1VdfnY5dUZqtX7+eYcOGcdttt21z/fTp07n11lu58847mTt3Ll26dGH06NHU1dUlxowfP57Fixczc+ZMZsyYwZw5czjvvPMS66urqxk1ahQDBw5k/vz53HjjjVx77bXcfffdrb5/Sp+dHVsAY8aMSfpddv/99yet99jStjz33HNMmjSJF198kZkzZ9LY2MioUaNYv359YkwqvguXLVvG2LFj+fznP8+CBQu45JJL+O53v8vTTz/dpvurtrMrxxbAueeem/S7a8t/lGnTYytkmWOPPTZMmjQp8bq5uTn07ds3TJ06NY1dqb275pprwrBhw7a5rqqqKuTn54eHHnooseyNN94IQKioqAghhPDEE0+EnJycUFlZmRhzxx13hKKiolBfX9+qvat9A8IjjzySeB2Px0NZWVm48cYbE8uqqqpCNBoN999/fwghhCVLlgQgzJs3LzHmySefDJFIJKxcuTKEEMLtt98eunfvnnR8TZ48OQwePLiV90jtxdbHVgghTJgwIZx66qnbfY/HlnbV6tWrAxCee+65EELqvgt/+MMfhkMPPTTps84888wwevTo1t4ltRNbH1shhPDZz342XHzxxdt9T1seW1l15qihoYH58+czcuTIxLKcnBxGjhxJRUVFGjtTJnjzzTfp27cv+++/P+PHj2f58uUAzJ8/n8bGxqTj6uCDD2bAgAGJ46qiooKhQ4dSWlqaGDN69Giqq6tZvHhx2+6I2rVly5ZRWVmZdDwVFxczYsSIpOOppKSE4cOHJ8aMHDmSnJwc5s6dmxhz4oknUlBQkBgzevRoli5dyrp169pob9QePfvss/Tu3ZvBgwdzwQUXsGbNmsQ6jy3tqlgsBkCPHj2A1H0XVlRUJG1j8xj/ntZxbH1sbXbffffRq1cvDjvsMKZMmcKGDRsS69ry2MrbrdHt3L/+9S+am5uT/sMBlJaW8o9//CNNXSkTjBgxgnvuuYfBgwfz4Ycfct1113HCCSewaNEiKisrKSgooKSkJOk9paWlVFZWAlBZWbnN427zOmmzzcfDto6XLY+n3r17J63Py8ujR48eSWMGDRr0iW1sXte9e/dW6V/t25gxYzj99NMZNGgQb7/9Nv/xH//BySefTEVFBbm5uR5b2iXxeJxLLrmE4447jsMOOwwgZd+F2xtTXV3Nxo0bKSwsbI1dUjuxrWML4Bvf+AYDBw6kb9++LFy4kMmTJ7N06VIefvhhoG2PrawKR9KeOvnkkxM/H3744YwYMYKBAwfypz/9yV/UkjLGWWedlfh56NChHH744RxwwAE8++yznHTSSWnsTJlk0qRJLFq0KOneWykVtndsbXnf49ChQ+nTpw8nnXQSb7/9NgcccECb9phVl9X16tWL3NzcT8ycsmrVKsrKytLUlTJRSUkJBx10EG+99RZlZWU0NDRQVVWVNGbL46qsrGybx93mddJmm4+HHf2eKisr+8QkMk1NTaxdu9ZjTrtl//33p1evXrz11luAx5Z27qKLLmLGjBk888wz7Lvvvonlqfou3N6YoqIi/zEyy23v2NqWESNGACT97mqrYyurwlFBQQFHH300s2bNSiyLx+PMmjWL8vLyNHamTFNbW8vbb79Nnz59OProo8nPz086rpYuXcry5csTx1V5eTmvv/560l86Zs6cSVFREUOGDGnz/tV+DRo0iLKysqTjqbq6mrlz5yYdT1VVVcyfPz8xZvbs2cTj8cQXRnl5OXPmzKGxsTExZubMmQwePNjLnpTw/vvvs2bNGvr06QN4bGn7QghcdNFFPPLII8yePfsTl1am6ruwvLw8aRubx/j3tOy1s2NrWxYsWACQ9LurzY6t3Zq+IQM88MADIRqNhnvuuScsWbIknHfeeaGkpCRpdgtpa5dffnl49tlnw7Jly8Lf//73MHLkyNCrV6+wevXqEEII559/fhgwYECYPXt2ePnll0N5eXkoLy9PvL+pqSkcdthhYdSoUWHBggXhqaeeCvvss0+YMmVKunZJaVRTUxNeffXV8OqrrwYg3HTTTeHVV18N7733XgghhGnTpoWSkpLw2GOPhYULF4ZTTz01DBo0KGzcuDGxjTFjxoQjjzwyzJ07Nzz//PPhwAMPDOPGjUusr6qqCqWlpeHss88OixYtCg888EDo3LlzuOuuu9p8f9V2dnRs1dTUhB/84AehoqIiLFu2LPz1r38NRx11VDjwwANDXV1dYhseW9qWCy64IBQXF4dnn302fPjhh4nasGFDYkwqvgvfeeed0Llz53DFFVeEN954I9x2220hNzc3PPXUU226v2o7Ozu23nrrrXD99deHl19+OSxbtiw89thjYf/99w8nnnhiYhtteWxlXTgKIYRf/vKXYcCAAaGgoCAce+yx4cUXX0x3S2rnzjzzzNCnT59QUFAQ+vXrF84888zw1ltvJdZv3LgxXHjhhaF79+6hc+fO4Stf+Ur48MMPk7bx7rvvhpNPPjkUFhaGXr16hcsvvzw0Nja29a6oHXjmmWcC8ImaMGFCCKFlOu+rrroqlJaWhmg0Gk466aSwdOnSpG2sWbMmjBs3LnTt2jUUFRWFc845J9TU1CSNee2118Lxxx8fotFo6NevX5g2bVpb7aLSZEfH1oYNG8KoUaPCPvvsE/Lz88PAgQPDueee+4l/HPTY0rZs67gCwm9/+9vEmFR9Fz7zzDPhiCOOCAUFBWH//fdP+gxln50dW8uXLw8nnnhi6NGjR4hGo+FTn/pUuOKKK0IsFkvaTlsdW5FNTUuSJElSh5ZV9xxJkiRJ0p4yHEmSJEkShiNJkiRJAgxHkiRJkgQYjiRJkiQJMBxJkiRJEmA4kiRJkiTAcCRJkiRJgOFIkiRJkgDDkSRJkiQBhiNJkiRJAgxHkiRJkgTA/wd1z7V+iynQfwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -793,7 +794,7 @@ }, { "cell_type": "code", - "execution_count": 338, + "execution_count": 30, "id": "faab365e", "metadata": {}, "outputs": [], @@ -804,7 +805,7 @@ }, { "cell_type": "code", - "execution_count": 339, + "execution_count": 31, "id": "3f52fdf7", "metadata": {}, "outputs": [ @@ -1339,6 +1340,24 @@ "metadata": {}, "output_type": "display_data" }, + { + "data": { + "text/plain": [ + "'超过1人'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "'超过1人'" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, { "data": { "text/plain": [ @@ -1387,7 +1406,7 @@ }, { "cell_type": "code", - "execution_count": 340, + "execution_count": 32, "id": "cedc1d7f", "metadata": {}, "outputs": [], @@ -1398,7 +1417,7 @@ }, { "cell_type": "code", - "execution_count": 341, + "execution_count": 33, "id": "a9d1e5da", "metadata": {}, "outputs": [],