Files
crosstyan 6034175a10 refactor: Migrate solver module to use CVXOPT wrapper
- Rename `_wrap` to `_cvx_opt_wrap` for consistency
- Update import paths in solver module
- Add type hints to `solution_mat_clusters` method
- Improve type annotations in `solve` method
2025-03-03 17:40:05 +08:00

250 lines
6.6 KiB
Python

"""
See also:
https://github.com/cvxopt/cvxopt/blob/master/src/C/glpk.c
"""
from typing import Tuple, Union, Literal, Optional, Dict, Any, Set, overload, TypedDict
from cvxopt import glpk # type: ignore
from . import Matrix, SparseMatrix
CvxMatLike = Union[Matrix, SparseMatrix]
CvxBool = Literal["GLP_ON", "GLP_OFF"]
class GLPKOptions(TypedDict, total=False):
# Common parameters
msg_lev: Literal["GLP_MSG_OFF", "GLP_MSG_ERR", "GLP_MSG_ON", "GLP_MSG_ALL"]
presolve: CvxBool
tm_lim: int
out_frq: int
out_dly: int
# LP-specific parameters
meth: Literal["GLP_PRIMAL", "GLP_DUAL", "GLP_DUALP"]
pricing: Literal["GLP_PT_STD", "GLP_PT_PSE"]
r_test: Literal["GLP_RT_STD", "GLP_RT_HAR"]
tol_bnd: float
tol_dj: float
tol_piv: float
obj_ll: float
obj_ul: float
it_lim: int
# MILP-specific parameters
br_tech: Literal[
"GLP_BR_FFV", "GLP_BR_LFV", "GLP_BR_MFV", "GLP_BR_DTH", "GLP_BR_PCH"
]
bt_tech: Literal["GLP_BT_DFS", "GLP_BT_BFS", "GLP_BT_BLB", "GLP_BT_BPH"]
pp_tech: Literal["GLP_PP_NONE", "GLP_PP_ROOT", "GLP_PP_ALL"]
fp_heur: CvxBool
gmi_cuts: CvxBool
mir_cuts: CvxBool
cov_cuts: CvxBool
clq_cuts: CvxBool
tol_int: float
tol_obj: float
mip_gap: float
cb_size: int
binarize: CvxBool
StatusLP = Literal["optimal", "primal infeasible", "dual infeasible", "unknown"]
StatusILP = Literal[
"optimal",
"feasible",
"undefined",
"invalid formulation",
"infeasible problem",
"LP relaxation is primal infeasible",
"LP relaxation is dual infeasible",
"unknown",
]
@overload
def lp(
c: Matrix,
G: CvxMatLike,
h: Matrix,
) -> Tuple[StatusLP, Optional[Matrix], Optional[Matrix]]:
"""
(status, x, z) = lp(c, G, h)
PURPOSE
(status, x, z) = lp(c, G, h) solves the pair of primal and dual LPs
minimize c'*x maximize -h'*z
subject to G*x <= h subject to G'*z + c = 0
z >= 0.
ARGUMENTS
c nx1 dense 'd' matrix with n>=1
G mxn dense or sparse 'd' matrix with m>=1
h mx1 dense 'd' matrix
status 'optimal', 'primal infeasible', 'dual infeasible'
or 'unknown'
x if status is 'optimal', a primal optimal solution;
None otherwise
z if status is 'optimal', the dual optimal solution;
None otherwise
"""
@overload
def lp(
c: Matrix,
G: CvxMatLike,
h: Matrix,
A: CvxMatLike,
b: Matrix,
) -> Tuple[StatusLP, Optional[Matrix], Optional[Matrix], Optional[Matrix]]:
"""
(status, x, z, y) = lp(c, G, h, A, b)
PURPOSE
(status, x, z, y) = lp(c, G, h, A, b) solves the pair of primal and
dual LPs
minimize c'*x maximize -h'*z + b'*y
subject to G*x <= h subject to G'*z + A'*y + c = 0
A*x = b z >= 0.
ARGUMENTS
c nx1 dense 'd' matrix with n>=1
G mxn dense or sparse 'd' matrix with m>=1
h mx1 dense 'd' matrix
A pxn dense or sparse 'd' matrix with p>=0
b px1 dense 'd' matrix
status 'optimal', 'primal infeasible', 'dual infeasible'
or 'unknown'
x if status is 'optimal', a primal optimal solution;
None otherwise
z,y if status is 'optimal', the dual optimal solution;
None otherwise
"""
# https://cvxopt.org/userguide/coneprog.html#linear-programming
def lp(
c: Matrix,
G: CvxMatLike,
h: Matrix,
A: Optional[CvxMatLike] = None,
b: Optional[Matrix] = None,
):
"""
(status, x, z, y) = lp(c, G, h, A, b)
(status, x, z) = lp(c, G, h)
PURPOSE
(status, x, z, y) = lp(c, G, h, A, b) solves the pair of primal and
dual LPs
minimize c'*x maximize -h'*z + b'*y
subject to G*x <= h subject to G'*z + A'*y + c = 0
A*x = b z >= 0.
(status, x, z) = lp(c, G, h) solves the pair of primal and dual LPs
minimize c'*x maximize -h'*z
subject to G*x <= h subject to G'*z + c = 0
z >= 0.
ARGUMENTS
c nx1 dense 'd' matrix with n>=1
G mxn dense or sparse 'd' matrix with m>=1
h mx1 dense 'd' matrix
A pxn dense or sparse 'd' matrix with p>=0
b px1 dense 'd' matrix
status 'optimal', 'primal infeasible', 'dual infeasible'
or 'unknown'
x if status is 'optimal', a primal optimal solution;
None otherwise
z,y if status is 'optimal', the dual optimal solution;
None otherwise
"""
if A is None and b is None:
return glpk.lp(c, G, h)
return glpk.lp(c, G, h, A, b)
def ilp(
c: Matrix,
G: CvxMatLike,
h: Matrix,
A: Optional[CvxMatLike] = None,
b: Optional[Matrix] = None,
I: Optional[Set[int]] = None,
B: Optional[Set[int]] = None,
) -> Tuple[StatusILP, Optional[Matrix]]:
"""
Solves a mixed integer linear program using GLPK.
(status, x) = ilp(c, G, h, A, b, I, B)
PURPOSE
Solves the mixed integer linear programming problem
minimize c'*x
subject to G*x <= h
A*x = b
x[k] is integer for k in I
x[k] is binary for k in B
ARGUMENTS
c nx1 dense 'd' matrix with n>=1
G mxn dense or sparse 'd' matrix with m>=1
h mx1 dense 'd' matrix
A pxn dense or sparse 'd' matrix with p>=0
b px1 dense 'd' matrix
I set of indices of integer variables
B set of indices of binary variables
status if status is 'optimal', 'feasible', or 'undefined',
a value of x is returned and the status string
gives the status of x. Other possible values of
status are: 'invalid formulation',
'infeasible problem', 'LP relaxation is primal
infeasible', 'LP relaxation is dual infeasible',
'unknown'.
x a (sub-)optimal solution if status is 'optimal',
'feasible', or 'undefined'. None otherwise
"""
return glpk.ilp(c, G, h, A, b, I, B)
def set_global_options(options: GLPKOptions) -> None:
glpk.options = options
def get_global_options() -> GLPKOptions:
return glpk.options