Files
CVTH3PE/app/camera/__init__.py
crosstyan 032eb684ec feat: Enhance play notebook and camera module with new projection and distortion functionalities
- Updated play notebook to include new tracking and clustering functionalities.
- Introduced `distortion` and `project` functions for applying distortion to 2D points and projecting 3D points to 2D, respectively.
- Enhanced `CameraParams` and `Camera` classes with methods for distortion and projection, improving usability.
- Cleaned up execution counts in the notebook for better organization.
2025-04-21 18:38:08 +08:00

555 lines
17 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from collections import OrderedDict, defaultdict
from dataclasses import dataclass
from datetime import datetime
from typing import Any, TypeAlias, TypedDict, Optional
from beartype import beartype
from jax import Array
from jax import numpy as jnp
from jaxtyping import Num, jaxtyped
from typing_extensions import NotRequired
CameraID: TypeAlias = str # pylint: disable=invalid-name
@jaxtyped(typechecker=beartype)
def distortion(
points_2d: Num[Array, "N 2"],
K: Num[Array, "3 3"],
dist_coeffs: Num[Array, "5"],
) -> Num[Array, "N 2"]:
"""
Apply distortion to 2D points
Args:
points_2d: 2D points in image coordinates
K: Camera intrinsic matrix
dist_coeffs: Distortion coefficients [k1, k2, p1, p2, k3]
Returns:
Distorted 2D points
"""
k1, k2, p1, p2, k3 = dist_coeffs
# Get principal point and focal length
cx, cy = K[0, 2], K[1, 2]
fx, fy = K[0, 0], K[1, 1]
# Convert to normalized coordinates
x = (points_2d[:, 0] - cx) / fx
y = (points_2d[:, 1] - cy) / fy
r2 = x * x + y * y
# Radial distortion
xdistort = x * (1 + k1 * r2 + k2 * r2 * r2 + k3 * r2 * r2 * r2)
ydistort = y * (1 + k1 * r2 + k2 * r2 * r2 + k3 * r2 * r2 * r2)
# Tangential distortion
xdistort = xdistort + 2 * p1 * x * y + p2 * (r2 + 2 * x * x)
ydistort = ydistort + p1 * (r2 + 2 * y * y) + 2 * p2 * x * y
# Back to absolute coordinates
xdistort = xdistort * fx + cx
ydistort = ydistort * fy + cy
# Combine distorted coordinates
return jnp.stack([xdistort, ydistort], axis=1)
@jaxtyped(typechecker=beartype)
def project(
points_3d: Num[Array, "N 3"],
projection_matrix: Num[Array, "3 4"],
K: Num[Array, "3 3"],
dist_coeffs: Num[Array, "5"],
) -> Num[Array, "N 2"]:
"""
Project 3D points to 2D points
Args:
points_3d: 3D points in world coordinates
projection_matrix: pre-computed projection matrix (K @ Rt[:3, :])
K: Camera intrinsic matrix
dist_coeffs: Distortion coefficients
Returns:
2D points in image coordinates
"""
P = projection_matrix
p3d_homogeneous = jnp.hstack(
(points_3d, jnp.ones((points_3d.shape[0], 1), dtype=points_3d.dtype))
)
# Project points
p2d_homogeneous = p3d_homogeneous @ P.T
# Perspective division
p2d = p2d_homogeneous[:, 0:2] / p2d_homogeneous[:, 2:3]
# Apply distortion if needed
if dist_coeffs is not None:
# Check if valid points (between 0 and 1)
valid = jnp.all(p2d > 0, axis=1) & jnp.all(p2d < 1, axis=1)
# Only apply distortion if there are valid points
if jnp.any(valid):
# Only distort valid points
valid_p2d = p2d[valid]
distorted_valid = distortion(valid_p2d, K, dist_coeffs)
p2d = p2d.at[valid].set(distorted_valid)
return jnp.squeeze(p2d)
@jaxtyped(typechecker=beartype)
@dataclass(frozen=True)
class CameraParams:
"""
Camera parameters: intrinsic matrix, extrinsic matrix, and distortion coefficients
"""
K: Num[Array, "3 3"]
"""
intrinsic matrix
"""
Rt: Num[Array, "4 4"]
"""
[R|t] extrinsic matrix
R and t are the rotation and translation that describe the change of
coordinates from world to camera coordinate systems (or camera frame)
Rt is expected to be World-to-Camera (W2C) transformation matrix,
which is the result of `solvePnP` in OpenCV. (but converted to homogeneous coordinates)
World-to-Camera (W2C): Transforms points from world coordinates to camera coordinates
- The world origin is transformed to camera space
- Used for projecting 3D world points onto the camera's image plane
- Required for rendering/projection
"""
dist_coeffs: Num[Array, "5"]
"""
An array of distortion coefficients of the form
[k1, k2, [p1, p2, [k3]]], where ki is the ith
radial distortion coefficient and pi is the ith
tangential distortion coeff.
"""
image_size: Num[Array, "2"]
"""
The size of image plane (width, height)
"""
@property
def pose_matrix(self) -> Num[Array, "4 4"]:
"""
The inversion of the extrinsic matrix, which gives Camera-to-World (C2W) transformation matrix.
Camera-to-World (C2W): Transforms points from camera coordinates to world coordinates
- The camera is the origin in camera space
- This transformation tells where the camera is positioned in world space
- Often used for camera positioning/orientation
The result is cached on first access. (lazy evaluation)
"""
t = getattr(self, "_pose", None)
if t is None:
t = jnp.linalg.inv(self.Rt)
object.__setattr__(self, "_pose", t)
return t
@property
def projection_matrix(self) -> Num[Array, "3 4"]:
"""
Returns the 3x4 projection matrix K @ [R|t].
The result is cached on first access. (lazy evaluation)
"""
pm = getattr(self, "_proj", None)
if pm is None:
pm = self.K @ self.Rt[:3, :]
# object.__setattr__ bypasses the frozendataclass blocker
object.__setattr__(self, "_proj", pm)
return pm
@jaxtyped(typechecker=beartype)
@dataclass(frozen=True)
class Camera:
"""
a description of a camera
"""
id: CameraID
"""
Camera ID
"""
params: CameraParams
"""
Camera parameters
"""
def project(self, points_3d: Num[Array, "N 3"]) -> Num[Array, "N 2"]:
"""
Project 3D points to 2D points using this camera's parameters
Args:
points_3d: 3D points in world coordinates
Returns:
2D points in image coordinates
"""
return project(
points_3d=points_3d,
K=self.params.K,
dist_coeffs=self.params.dist_coeffs,
projection_matrix=self.params.projection_matrix,
)
def distortion(self, points_2d: Num[Array, "N 2"]) -> Num[Array, "N 2"]:
"""
Apply distortion to 2D points using this camera's parameters
Args:
points_2d: 2D points in image coordinates
Returns:
Distorted 2D points
"""
return distortion(
points_2d=points_2d,
K=self.params.K,
dist_coeffs=self.params.dist_coeffs,
)
@jaxtyped(typechecker=beartype)
@dataclass(frozen=True)
class Detection:
"""
One detection from a camera
"""
keypoints: Num[Array, "N 2"]
"""
Keypoints
"""
confidences: Num[Array, "N"]
"""
Confidences
"""
camera: Camera
"""
Camera
"""
timestamp: datetime
"""
Timestamp of the detection
"""
def classify_by_camera(
detections: list[Detection],
) -> OrderedDict[CameraID, list[Detection]]:
"""
Classify detections by camera
"""
# or use setdefault
camera_wise_split: dict[CameraID, list[Detection]] = defaultdict(list)
for entry in detections:
camera_id = entry.camera.id
camera_wise_split[camera_id].append(entry)
return OrderedDict(camera_wise_split)
@jaxtyped(typechecker=beartype)
def to_homogeneous(points: Num[Array, "N 2"] | Num[Array, "N 3"]) -> Num[Array, "N 3"]:
"""
Convert points to homogeneous coordinates
"""
if points.shape[-1] == 2:
return jnp.hstack((points, jnp.ones((points.shape[0], 1))))
elif points.shape[-1] == 3:
return points
else:
raise ValueError(f"Invalid shape for points: {points.shape}")
@jaxtyped(typechecker=beartype)
def point_line_distance(
points: Num[Array, "N 3"] | Num[Array, "N 2"],
line: Num[Array, "N 3"],
eps: float = 1e-9,
):
"""
Calculate the distance from a point to a line
Args:
point: (possibly homogeneous) points :math:`(N, 2 or 3)`.
line: lines coefficients :math:`(a, b, c)` with shape :math:`(N, 3)`, where :math:`ax + by + c = 0`.
eps: Small constant for safe sqrt.
Returns:
the computed distance with shape :math:`(N)`.
See also:
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
"""
numerator = abs(line[:, 0] * points[:, 0] + line[:, 1] * points[:, 1] + line[:, 2])
denominator = jnp.sqrt(line[:, 0] * line[:, 0] + line[:, 1] * line[:, 1])
return numerator / (denominator + eps)
@jaxtyped(typechecker=beartype)
def left_to_right_epipolar_distance(
left: Num[Array, "N 3"],
right: Num[Array, "N 3"],
fundamental_matrix: Num[Array, "3 3"],
):
"""
Return one-sided epipolar distance for correspondences given the fundamental matrix.
Args:
left: points in the left image (homogeneous) :math:`(N, 3)`
right: points in the right image (homogeneous) :math:`(N, 3)`
fundamental_matrix: fundamental matrix :math:`(3, 3)`
Returns:
the computed distance with shape :math:`(N)`.
See also:
https://en.wikipedia.org/wiki/Fundamental_matrix_%28computer_vision%29
$$x^{\\prime T}Fx = 0$$
"""
F_t = fundamental_matrix.transpose()
line1_in_2 = jnp.matmul(left, F_t)
return point_line_distance(right, line1_in_2)
@jaxtyped(typechecker=beartype)
def right_to_left_epipolar_distance(
left: Num[Array, "N 3"],
right: Num[Array, "N 3"],
fundamental_matrix: Num[Array, "3 3"],
):
"""
Return one-sided epipolar distance for correspondences given the fundamental matrix.
Args:
left: points in the left image (homogeneous) :math:`(N, 3)`
right: points in the right image (homogeneous) :math:`(N, 3)`
fundamental_matrix: fundamental matrix :math:`(3, 3)`
Returns:
the computed distance with shape :math:`(N)`.
See also:
https://en.wikipedia.org/wiki/Fundamental_matrix_%28computer_vision%29
$$x^{\\prime T}Fx = 0$$
"""
line2_in_1 = jnp.matmul(right, fundamental_matrix)
return point_line_distance(left, line2_in_1)
def distance_between_epipolar_lines(
x1: Num[Array, "N 2"] | Num[Array, "N 3"],
x2: Num[Array, "N 2"] | Num[Array, "N 3"],
fundamental_matrix: Num[Array, "3 3"],
):
"""
Calculate the total epipolar line distance between x1 and x2.
"""
if x1.shape[0] != x2.shape[0]:
raise ValueError(
f"x1 and x2 must have the same number of points: {x1.shape[0]} != {x2.shape[0]}"
)
if x1.shape[-1] == 2:
points1 = to_homogeneous(x1)
elif x1.shape[-1] == 3:
points1 = x1
else:
raise ValueError(f"Invalid shape for correspondence1: {x1.shape}")
if x2.shape[-1] == 2:
points2 = to_homogeneous(x2)
elif x2.shape[-1] == 3:
points2 = x2
else:
raise ValueError(f"Invalid shape for correspondence2: {x2.shape}")
if fundamental_matrix.shape != (3, 3):
raise ValueError(
f"Invalid shape for fundamental_matrix: {fundamental_matrix.shape}"
)
# points 1 and 2 are unnormalized points
dist_1 = jnp.mean(
right_to_left_epipolar_distance(points1, points2, fundamental_matrix)
)
dist_2 = jnp.mean(
left_to_right_epipolar_distance(points1, points2, fundamental_matrix)
)
distance = dist_1 + dist_2
return distance
@jaxtyped(typechecker=beartype)
def calculate_fundamental_matrix(
camera_left: Camera, camera_right: Camera
) -> Num[Array, "3 3"]:
"""
Calculate the fundamental matrix for the given cameras.
"""
# Intrinsics
K1 = camera_left.params.K
K2 = camera_right.params.K
# Extrinsics (World to Camera transforms)
Rt1 = camera_left.params.Rt
Rt2 = camera_right.params.Rt
# Convert to Camera to World (Inverse)
T2: Array = jnp.linalg.inv(Rt2)
# Relative transform from Left to Right
T_rel = T2 @ Rt1
R = T_rel[:3, :3]
t = T_rel[:3, 3:]
# Skew-symmetric matrix for cross product
def skew(v: Num[Array, "3"]) -> Num[Array, "3 3"]:
return jnp.array(
[
[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0],
]
)
t_skew = skew(t.reshape(-1))
# Essential Matrix
E = t_skew @ R
# Fundamental Matrix
F = jnp.linalg.inv(K2).T @ E @ jnp.linalg.inv(K1)
return F
def compute_affinity_epipolar_constraint_with_pairs(
left: Detection, right: Detection, alpha_2d: float
):
"""
Compute the affinity between two groups of detections by epipolar constraint,
where camera parameters are included in the detections.
Note:
Originally, alpha_2d comes from the paper as a scaling factor for epipolar error affinity.
Its role is mainly to normalize error into [0,1] range, but it could lead to negative affinity.
An alternative approach is using normalized epipolar error relative to image size, with soft cutoff,
like exp(-error / threshold), for better interpretability and stability.
"""
fundamental_matrix = calculate_fundamental_matrix(left.camera, right.camera)
d = distance_between_epipolar_lines(
left.keypoints, right.keypoints, fundamental_matrix
)
return 1 - (d / alpha_2d)
def calculate_affinity_matrix_by_epipolar_constraint(
detections: list[Detection] | dict[CameraID, list[Detection]],
alpha_2d: float,
) -> tuple[list[Detection], Num[Array, "N N"]]:
"""
Calculate the affinity matrix by epipolar constraint
This function evaluates the geometric consistency of every pair of detections
across different cameras using the fundamental matrix. It assumes that
detections from the same camera are not comparable and should have zero affinity.
The affinity is computed by:
1. Calculating the fundamental matrix between the two cameras.
2. Measuring the average point-to-epipolar-line distance for all keypoints.
3. Mapping the distance to affinity with the formula: 1 - (distance / alpha_2d).
Args:
detections: Either a flat list of Detection or a dict grouping Detection by CameraID.
alpha_2d: Image resolution-dependent threshold controlling affinity scaling.
Typically relates to expected pixel displacement rate.
Returns:
sorted_detections: Flattened list of detections sorted by camera order.
affinity_matrix: Array of shape (N, N), where N is the number of detections.
Notes:
- Detections from the same camera always have affinity = 0.
- Affinity decays linearly with epipolar error until 0 (or potentially negative).
- Consider switching to exp(-error / scale) style for non-negative affinity.
- alpha_2d should be adjusted based on image resolution or empirical observation.
Affinity Matrix layout:
assuming we have 3 cameras
C0 has 3 detections: D0_C0, D1_C0, D2_C0
C1 has 2 detections: D0_C1, D1_C1
C2 has 2 detections: D0_C2, D1_C2
D0_C0(0), D1_C0(1), D2_C0(2), D0_C1(3), D1_C1(4), D0_C2(5), D1_C2(6)
D0_C0(0) 0 0 0 a_03 a_04 a_05 a_06
D1_C0(1) 0 0 0 a_13 a_14 a_15 a_16
...
D0_C1(3) a_30 a_31 a_32 0 0 a_35 a_36
...
D1_C2(6) a_60 a_61 a_62 a_63 a_64 0 0
"""
if isinstance(detections, dict):
camera_wise_split = detections
else:
camera_wise_split = classify_by_camera(detections)
num_entries = sum(len(entries) for entries in camera_wise_split.values())
affinity_matrix = jnp.ones((num_entries, num_entries), dtype=jnp.float32) * -jnp.inf
affinity_matrix_mask = jnp.zeros((num_entries, num_entries), dtype=jnp.bool_)
acc = 0
total_indices = set(range(num_entries))
camera_id_index_map: dict[CameraID, set[int]] = defaultdict(set)
camera_id_index_map_inverse: dict[CameraID, set[int]] = defaultdict(set)
# sorted by [D0_C0, D1_C0, D2_C0, D0_C1, D1_C1, D0_C2, D1_C2...]
sorted_detections: list[Detection] = []
for camera_id, entries in camera_wise_split.items():
for i, _ in enumerate(entries):
camera_id_index_map[camera_id].add(acc)
sorted_detections.append(entries[i])
acc += 1
camera_id_index_map_inverse[camera_id] = (
total_indices - camera_id_index_map[camera_id]
)
# ignore self-affinity
# ignore same-camera affinity
# assuming commutative
for i, det in enumerate(sorted_detections):
other_indices = camera_id_index_map_inverse[det.camera.id]
for j in other_indices:
if i == j:
continue
if affinity_matrix_mask[i, j] or affinity_matrix_mask[j, i]:
continue
a = compute_affinity_epipolar_constraint_with_pairs(
det, sorted_detections[j], alpha_2d
)
affinity_matrix = affinity_matrix.at[i, j].set(a)
affinity_matrix = affinity_matrix.at[j, i].set(a)
affinity_matrix_mask = affinity_matrix_mask.at[i, j].set(True)
affinity_matrix_mask = affinity_matrix_mask.at[j, i].set(True)
return sorted_detections, affinity_matrix