- Updated play notebook with additional imports and new functions for point triangulation and undistortion. - Introduced `triangulate_one_point_from_multiple_views_linear` and `triangulate_points_from_multiple_views_linear` for batch triangulation of points. - Added `triangle_from_cluster` function to facilitate triangulation from detection clusters. - Enhanced `CameraParams` and `Detection` dataclasses with a projection matrix property for improved usability. - Cleaned up imports and execution counts in the notebook for better organization.
404 lines
12 KiB
Python
404 lines
12 KiB
Python
from collections import OrderedDict, defaultdict
|
||
from dataclasses import dataclass
|
||
from datetime import datetime
|
||
from typing import Any, TypeAlias, TypedDict
|
||
|
||
from beartype import beartype
|
||
from jax import Array
|
||
from jax import numpy as jnp
|
||
from jaxtyping import Num, jaxtyped
|
||
from typing_extensions import NotRequired
|
||
|
||
CameraID: TypeAlias = str # pylint: disable=invalid-name
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
@dataclass(frozen=True)
|
||
class CameraParams:
|
||
"""
|
||
Camera parameters: intrinsic matrix, extrinsic matrix, and distortion coefficients
|
||
"""
|
||
|
||
K: Num[Array, "3 3"]
|
||
"""
|
||
intrinsic matrix
|
||
"""
|
||
Rt: Num[Array, "4 4"]
|
||
"""
|
||
[R|t] extrinsic matrix
|
||
|
||
R and t are the rotation and translation that describe the change of
|
||
coordinates from world to camera coordinate systems (or camera frame)
|
||
"""
|
||
dist_coeffs: Num[Array, "N"]
|
||
"""
|
||
An array of distortion coefficients of the form
|
||
[k1, k2, [p1, p2, [k3]]], where ki is the ith
|
||
radial distortion coefficient and pi is the ith
|
||
tangential distortion coeff.
|
||
"""
|
||
image_size: Num[Array, "2"]
|
||
"""
|
||
The size of image plane (width, height)
|
||
"""
|
||
|
||
@property
|
||
def projection_matrix(self) -> Num[Array, "3 4"]:
|
||
"""
|
||
Returns the 3x4 projection matrix K @ [R|t].
|
||
|
||
The result is cached on first access. (lazy evaluation)
|
||
"""
|
||
pm = getattr(self, "_proj", None)
|
||
if pm is None:
|
||
pm = self.K @ self.Rt[:3, :]
|
||
# object.__setattr__ bypasses the frozen‐dataclass blocker
|
||
object.__setattr__(self, "_proj", pm)
|
||
return pm
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
@dataclass(frozen=True)
|
||
class Camera:
|
||
"""
|
||
a description of a camera
|
||
"""
|
||
|
||
id: CameraID
|
||
"""
|
||
Camera ID
|
||
"""
|
||
params: CameraParams
|
||
"""
|
||
Camera parameters
|
||
"""
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
@dataclass(frozen=True)
|
||
class Detection:
|
||
"""
|
||
One detection from a camera
|
||
"""
|
||
|
||
keypoints: Num[Array, "N 2"]
|
||
"""
|
||
Keypoints
|
||
"""
|
||
confidences: Num[Array, "N"]
|
||
"""
|
||
Confidences
|
||
"""
|
||
camera: Camera
|
||
"""
|
||
Camera
|
||
"""
|
||
timestamp: datetime
|
||
"""
|
||
Timestamp of the detection
|
||
"""
|
||
|
||
|
||
def classify_by_camera(
|
||
detections: list[Detection],
|
||
) -> OrderedDict[CameraID, list[Detection]]:
|
||
"""
|
||
Classify detections by camera
|
||
"""
|
||
# or use setdefault
|
||
camera_wise_split: dict[CameraID, list[Detection]] = defaultdict(list)
|
||
for entry in detections:
|
||
camera_id = entry.camera.id
|
||
camera_wise_split[camera_id].append(entry)
|
||
return OrderedDict(camera_wise_split)
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
def to_homogeneous(points: Num[Array, "N 2"] | Num[Array, "N 3"]) -> Num[Array, "N 3"]:
|
||
"""
|
||
Convert points to homogeneous coordinates
|
||
"""
|
||
if points.shape[-1] == 2:
|
||
return jnp.hstack((points, jnp.ones((points.shape[0], 1))))
|
||
elif points.shape[-1] == 3:
|
||
return points
|
||
else:
|
||
raise ValueError(f"Invalid shape for points: {points.shape}")
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
def point_line_distance(
|
||
points: Num[Array, "N 3"] | Num[Array, "N 2"],
|
||
line: Num[Array, "N 3"],
|
||
eps: float = 1e-9,
|
||
):
|
||
"""
|
||
Calculate the distance from a point to a line
|
||
|
||
Args:
|
||
point: (possibly homogeneous) points :math:`(N, 2 or 3)`.
|
||
line: lines coefficients :math:`(a, b, c)` with shape :math:`(N, 3)`, where :math:`ax + by + c = 0`.
|
||
eps: Small constant for safe sqrt.
|
||
|
||
Returns:
|
||
the computed distance with shape :math:`(N)`.
|
||
|
||
See also:
|
||
https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
|
||
"""
|
||
numerator = abs(line[:, 0] * points[:, 0] + line[:, 1] * points[:, 1] + line[:, 2])
|
||
denominator = jnp.sqrt(line[:, 0] * line[:, 0] + line[:, 1] * line[:, 1])
|
||
return numerator / (denominator + eps)
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
def left_to_right_epipolar_distance(
|
||
left: Num[Array, "N 3"],
|
||
right: Num[Array, "N 3"],
|
||
fundamental_matrix: Num[Array, "3 3"],
|
||
):
|
||
"""
|
||
Return one-sided epipolar distance for correspondences given the fundamental matrix.
|
||
|
||
Args:
|
||
left: points in the left image (homogeneous) :math:`(N, 3)`
|
||
right: points in the right image (homogeneous) :math:`(N, 3)`
|
||
fundamental_matrix: fundamental matrix :math:`(3, 3)`
|
||
|
||
Returns:
|
||
the computed distance with shape :math:`(N)`.
|
||
|
||
See also:
|
||
https://en.wikipedia.org/wiki/Fundamental_matrix_%28computer_vision%29
|
||
|
||
$$x^{\\prime T}Fx = 0$$
|
||
"""
|
||
F_t = fundamental_matrix.transpose()
|
||
line1_in_2 = jnp.matmul(left, F_t)
|
||
return point_line_distance(right, line1_in_2)
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
def right_to_left_epipolar_distance(
|
||
left: Num[Array, "N 3"],
|
||
right: Num[Array, "N 3"],
|
||
fundamental_matrix: Num[Array, "3 3"],
|
||
):
|
||
"""
|
||
Return one-sided epipolar distance for correspondences given the fundamental matrix.
|
||
|
||
Args:
|
||
left: points in the left image (homogeneous) :math:`(N, 3)`
|
||
right: points in the right image (homogeneous) :math:`(N, 3)`
|
||
fundamental_matrix: fundamental matrix :math:`(3, 3)`
|
||
|
||
Returns:
|
||
the computed distance with shape :math:`(N)`.
|
||
|
||
See also:
|
||
https://en.wikipedia.org/wiki/Fundamental_matrix_%28computer_vision%29
|
||
|
||
$$x^{\\prime T}Fx = 0$$
|
||
"""
|
||
line2_in_1 = jnp.matmul(right, fundamental_matrix)
|
||
return point_line_distance(left, line2_in_1)
|
||
|
||
|
||
def distance_between_epipolar_lines(
|
||
x1: Num[Array, "N 2"] | Num[Array, "N 3"],
|
||
x2: Num[Array, "N 2"] | Num[Array, "N 3"],
|
||
fundamental_matrix: Num[Array, "3 3"],
|
||
):
|
||
"""
|
||
Calculate the total epipolar line distance between x1 and x2.
|
||
"""
|
||
if x1.shape[0] != x2.shape[0]:
|
||
raise ValueError(
|
||
f"x1 and x2 must have the same number of points: {x1.shape[0]} != {x2.shape[0]}"
|
||
)
|
||
|
||
if x1.shape[-1] == 2:
|
||
points1 = to_homogeneous(x1)
|
||
elif x1.shape[-1] == 3:
|
||
points1 = x1
|
||
else:
|
||
raise ValueError(f"Invalid shape for correspondence1: {x1.shape}")
|
||
|
||
if x2.shape[-1] == 2:
|
||
points2 = to_homogeneous(x2)
|
||
elif x2.shape[-1] == 3:
|
||
points2 = x2
|
||
else:
|
||
raise ValueError(f"Invalid shape for correspondence2: {x2.shape}")
|
||
|
||
if fundamental_matrix.shape != (3, 3):
|
||
raise ValueError(
|
||
f"Invalid shape for fundamental_matrix: {fundamental_matrix.shape}"
|
||
)
|
||
|
||
# points 1 and 2 are unnormalized points
|
||
dist_1 = jnp.mean(
|
||
right_to_left_epipolar_distance(points1, points2, fundamental_matrix)
|
||
)
|
||
dist_2 = jnp.mean(
|
||
left_to_right_epipolar_distance(points1, points2, fundamental_matrix)
|
||
)
|
||
distance = dist_1 + dist_2
|
||
return distance
|
||
|
||
|
||
@jaxtyped(typechecker=beartype)
|
||
def calculate_fundamental_matrix(
|
||
camera_left: Camera, camera_right: Camera
|
||
) -> Num[Array, "3 3"]:
|
||
"""
|
||
Calculate the fundamental matrix for the given cameras.
|
||
"""
|
||
|
||
# Intrinsics
|
||
K1 = camera_left.params.K
|
||
K2 = camera_right.params.K
|
||
|
||
# Extrinsics (World to Camera transforms)
|
||
Rt1 = camera_left.params.Rt
|
||
Rt2 = camera_right.params.Rt
|
||
|
||
# Convert to Camera to World (Inverse)
|
||
T2: Array = jnp.linalg.inv(Rt2)
|
||
|
||
# Relative transform from Left to Right
|
||
T_rel = T2 @ Rt1
|
||
|
||
R = T_rel[:3, :3]
|
||
t = T_rel[:3, 3:]
|
||
|
||
# Skew-symmetric matrix for cross product
|
||
def skew(v: Num[Array, "3"]) -> Num[Array, "3 3"]:
|
||
return jnp.array(
|
||
[
|
||
[0, -v[2], v[1]],
|
||
[v[2], 0, -v[0]],
|
||
[-v[1], v[0], 0],
|
||
]
|
||
)
|
||
|
||
t_skew = skew(t.reshape(-1))
|
||
|
||
# Essential Matrix
|
||
E = t_skew @ R
|
||
|
||
# Fundamental Matrix
|
||
F = jnp.linalg.inv(K2).T @ E @ jnp.linalg.inv(K1)
|
||
|
||
return F
|
||
|
||
|
||
def compute_affinity_epipolar_constraint_with_pairs(
|
||
left: Detection, right: Detection, alpha_2d: float
|
||
):
|
||
"""
|
||
Compute the affinity between two groups of detections by epipolar constraint,
|
||
where camera parameters are included in the detections.
|
||
|
||
Note:
|
||
Originally, alpha_2d comes from the paper as a scaling factor for epipolar error affinity.
|
||
Its role is mainly to normalize error into [0,1] range, but it could lead to negative affinity.
|
||
An alternative approach is using normalized epipolar error relative to image size, with soft cutoff,
|
||
like exp(-error / threshold), for better interpretability and stability.
|
||
"""
|
||
fundamental_matrix = calculate_fundamental_matrix(left.camera, right.camera)
|
||
d = distance_between_epipolar_lines(
|
||
left.keypoints, right.keypoints, fundamental_matrix
|
||
)
|
||
return 1 - (d / alpha_2d)
|
||
|
||
|
||
def calculate_affinity_matrix_by_epipolar_constraint(
|
||
detections: list[Detection] | dict[CameraID, list[Detection]],
|
||
alpha_2d: float,
|
||
) -> tuple[list[Detection], Num[Array, "N N"]]:
|
||
"""
|
||
Calculate the affinity matrix by epipolar constraint
|
||
|
||
This function evaluates the geometric consistency of every pair of detections
|
||
across different cameras using the fundamental matrix. It assumes that
|
||
detections from the same camera are not comparable and should have zero affinity.
|
||
|
||
The affinity is computed by:
|
||
1. Calculating the fundamental matrix between the two cameras.
|
||
2. Measuring the average point-to-epipolar-line distance for all keypoints.
|
||
3. Mapping the distance to affinity with the formula: 1 - (distance / alpha_2d).
|
||
|
||
Args:
|
||
detections: Either a flat list of Detection or a dict grouping Detection by CameraID.
|
||
alpha_2d: Image resolution-dependent threshold controlling affinity scaling.
|
||
Typically relates to expected pixel displacement rate.
|
||
|
||
Returns:
|
||
sorted_detections: Flattened list of detections sorted by camera order.
|
||
affinity_matrix: Array of shape (N, N), where N is the number of detections.
|
||
|
||
Notes:
|
||
- Detections from the same camera always have affinity = 0.
|
||
- Affinity decays linearly with epipolar error until 0 (or potentially negative).
|
||
- Consider switching to exp(-error / scale) style for non-negative affinity.
|
||
- alpha_2d should be adjusted based on image resolution or empirical observation.
|
||
|
||
|
||
Affinity Matrix layout:
|
||
assuming we have 3 cameras
|
||
C0 has 3 detections: D0_C0, D1_C0, D2_C0
|
||
C1 has 2 detections: D0_C1, D1_C1
|
||
C2 has 2 detections: D0_C2, D1_C2
|
||
|
||
D0_C0(0), D1_C0(1), D2_C0(2), D0_C1(3), D1_C1(4), D0_C2(5), D1_C2(6)
|
||
D0_C0(0) 0 0 0 a_03 a_04 a_05 a_06
|
||
D1_C0(1) 0 0 0 a_13 a_14 a_15 a_16
|
||
...
|
||
D0_C1(3) a_30 a_31 a_32 0 0 a_35 a_36
|
||
...
|
||
D1_C2(6) a_60 a_61 a_62 a_63 a_64 0 0
|
||
"""
|
||
if isinstance(detections, dict):
|
||
camera_wise_split = detections
|
||
else:
|
||
camera_wise_split = classify_by_camera(detections)
|
||
num_entries = sum(len(entries) for entries in camera_wise_split.values())
|
||
affinity_matrix = jnp.ones((num_entries, num_entries), dtype=jnp.float32) * -jnp.inf
|
||
affinity_matrix_mask = jnp.zeros((num_entries, num_entries), dtype=jnp.bool_)
|
||
|
||
acc = 0
|
||
total_indices = set(range(num_entries))
|
||
camera_id_index_map: dict[CameraID, set[int]] = defaultdict(set)
|
||
camera_id_index_map_inverse: dict[CameraID, set[int]] = defaultdict(set)
|
||
# sorted by [D0_C0, D1_C0, D2_C0, D0_C1, D1_C1, D0_C2, D1_C2...]
|
||
sorted_detections: list[Detection] = []
|
||
for camera_id, entries in camera_wise_split.items():
|
||
for i, _ in enumerate(entries):
|
||
camera_id_index_map[camera_id].add(acc)
|
||
sorted_detections.append(entries[i])
|
||
acc += 1
|
||
camera_id_index_map_inverse[camera_id] = (
|
||
total_indices - camera_id_index_map[camera_id]
|
||
)
|
||
|
||
# ignore self-affinity
|
||
# ignore same-camera affinity
|
||
# assuming commutative
|
||
for i, det in enumerate(sorted_detections):
|
||
other_indices = camera_id_index_map_inverse[det.camera.id]
|
||
for j in other_indices:
|
||
if i == j:
|
||
continue
|
||
if affinity_matrix_mask[i, j] or affinity_matrix_mask[j, i]:
|
||
continue
|
||
a = compute_affinity_epipolar_constraint_with_pairs(
|
||
det, sorted_detections[j], alpha_2d
|
||
)
|
||
affinity_matrix = affinity_matrix.at[i, j].set(a)
|
||
affinity_matrix = affinity_matrix.at[j, i].set(a)
|
||
affinity_matrix_mask = affinity_matrix_mask.at[i, j].set(True)
|
||
affinity_matrix_mask = affinity_matrix_mask.at[j, i].set(True)
|
||
|
||
return sorted_detections, affinity_matrix
|