import cv2 from cv2 import aruco from cv2.typing import MatLike from enum import Enum from pathlib import Path from loguru import logger from itertools import chain class ArucoDictionary(Enum): Dict_4X4_50 = aruco.DICT_4X4_50 Dict_4X4_100 = aruco.DICT_4X4_100 Dict_4X4_250 = aruco.DICT_4X4_250 Dict_4X4_1000 = aruco.DICT_4X4_1000 Dict_5X5_50 = aruco.DICT_5X5_50 Dict_5X5_100 = aruco.DICT_5X5_100 Dict_5X5_250 = aruco.DICT_5X5_250 Dict_5X5_1000 = aruco.DICT_5X5_1000 Dict_6X6_50 = aruco.DICT_6X6_50 Dict_6X6_100 = aruco.DICT_6X6_100 Dict_6X6_250 = aruco.DICT_6X6_250 Dict_6X6_1000 = aruco.DICT_6X6_1000 Dict_7X7_50 = aruco.DICT_7X7_50 Dict_7X7_100 = aruco.DICT_7X7_100 Dict_7X7_250 = aruco.DICT_7X7_250 Dict_7X7_1000 = aruco.DICT_7X7_1000 Dict_APRILTAG_16h5 = aruco.DICT_APRILTAG_16h5 Dict_APRILTAG_25h9 = aruco.DICT_APRILTAG_25h9 Dict_APRILTAG_36h10 = aruco.DICT_APRILTAG_36h10 Dict_APRILTAG_36h11 = aruco.DICT_APRILTAG_36h11 Dict_ArUco_ORIGINAL = aruco.DICT_ARUCO_ORIGINAL def create_charuco_board( square_x: int, square_y: int, square_length: float, marker_length: float, dictionary: aruco.Dictionary, ) -> aruco.CharucoBoard: return aruco.CharucoBoard( # type: ignore (square_x, square_y), square_length, marker_length, dictionary ) # IMAGE_PATH = Path("/Users/crosstyan/Downloads/IMG_1505.jpeg") # IMAGE_PATH = Path("ss.png") IMAGE_FOLDER = Path("at") OUTPUT_FOLDER = Path("output") DICTIONARY = ArucoDictionary.Dict_4X4_50 def main(): OUTPUT_FOLDER.mkdir(exist_ok=True) images = chain(IMAGE_FOLDER.glob("*.jpeg"), IMAGE_FOLDER.glob("*.png"), IMAGE_FOLDER.glob("*.jpg")) for img_path in images: img = cv2.imread(str(img_path)) # 10x7 # minus 1 border_num_x = 9 border_num_y = 6 # 115mm square # 90mm marker # https://docs.opencv.org/4.x/d9/d6a/group__aruco.html#ga3bc50d61fe4db7bce8d26d56b5a6428a # https://docs.opencv.org/4.x/df/d4a/tutorial_charuco_detection.html # https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html # https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html # https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga93efa9b0aa890de240ca32b11253dd4a # https://docs.opencv.org/4.x/da/d13/tutorial_aruco_calibration.html # https://github.com/opencv/opencv/issues/22083 ret, chess_corners = cv2.findChessboardCorners( img, (border_num_x, border_num_y), flags=cv2.CALIB_CB_ADAPTIVE_THRESH | cv2.CALIB_CB_NORMALIZE_IMAGE | cv2.CALIB_CB_FAST_CHECK, ) if ret: cv2.drawChessboardCorners( img, (border_num_x, border_num_y), chess_corners, ret ) cv2.imwrite(str(OUTPUT_FOLDER / f"{img_path.stem}_chess.jpg"), img) logger.info("Chessboard found for {}", img_path) else: logger.warning("Chessboard not found for {}", img_path) # predefined_dict = aruco.getPredefinedDictionary(DICTIONARY.value) # corners, ids, rejected = aruco.detectMarkers(img, predefined_dict) # board = create_charuco_board(10, 7, 115, 90, predefined_dict) # detector = aruco.CharucoDetector(board) # if ids is not None: # aruco.drawDetectedMarkers(img, corners, ids) # ret, ch_corners, ch_ids = aruco.interpolateCornersCharuco(corners, ids, img, board) # if ch_corners is not None and ch_ids is not None: # aruco.drawDetectedCornersCharuco(img, ch_corners, ch_ids) # cv2.imwrite("output.jpg", img) if __name__ == "__main__": main()