{ "cells": [ { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "import awkward as ak\n", "from awkward import Array as AwakwardArray, Record as AwkwardRecord\n", "from typing import cast\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
[{prediction: None, trackings: [], frame_num: 0, ...},\n",
       " {prediction: None, trackings: [], frame_num: 1, ...},\n",
       " {prediction: None, trackings: [], frame_num: 2, ...},\n",
       " {prediction: None, trackings: [], frame_num: 3, ...},\n",
       " {prediction: None, trackings: [], frame_num: 4, ...},\n",
       " {prediction: None, trackings: [], frame_num: 5, ...},\n",
       " {prediction: None, trackings: [], frame_num: 6, ...},\n",
       " {prediction: None, trackings: [], frame_num: 7, ...},\n",
       " {prediction: None, trackings: [], frame_num: 8, ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " ...,\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...},\n",
       " {prediction: {Akeypoints: [[...]], ...}, trackings: [{...}], ...}]\n",
       "-------------------------------------------------------------------\n",
       "type: 808 * {\n",
       "    prediction: ?{\n",
       "        Akeypoints: var * var * var * float64,\n",
       "        bboxes: var * var * float64,\n",
       "        scores: var * var * var * float64,\n",
       "        frame_number: int64,\n",
       "        reference_frame_size: {\n",
       "            "0": int64,\n",
       "            "1": int64\n",
       "        }\n",
       "    },\n",
       "    trackings: var * {\n",
       "        id: int64,\n",
       "        bounding_boxes: var * var * float64\n",
       "    },\n",
       "    frame_num: int64,\n",
       "    reference_frame_size: {\n",
       "        height: int64,\n",
       "        width: int64\n",
       "    }\n",
       "}
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "a_ak = ak.from_parquet(\"pose/a.parquet\")\n", "b_ak = ak.from_parquet(\"pose/b.parquet\")\n", "# display(a_ak)\n", "display(b_ak)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
{Akeypoints: [[[893, 417], [898, 408], [...], ..., [782, 596], [785, 599]]],\n",
       " bboxes: [[756, 341, 940, 597]],\n",
       " scores: [[[0.907], [0.896], [0.916], [0.341], ..., [0.811], [0.835], [0.802]]],\n",
       " frame_number: 5,\n",
       " reference_frame_size: {'0': 1080, '1': 1920}}\n",
       "--------------------------------------------------------------------------------\n",
       "type: {\n",
       "    Akeypoints: var * var * var * float64,\n",
       "    bboxes: var * var * float64,\n",
       "    scores: var * var * var * float64,\n",
       "    frame_number: int64,\n",
       "    reference_frame_size: {\n",
       "        "0": int64,\n",
       "        "1": int64\n",
       "    }\n",
       "}
" ], "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_ak[\"prediction\"][5]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "unique_tracking_ids_a = np.unique(ak.to_numpy(ak.flatten(cast(AwakwardArray, a_ak[\"trackings\"][\"id\"]))))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 2 }