first commit
This commit is contained in:
176
model/SGraFormer.py
Normal file
176
model/SGraFormer.py
Normal file
@ -0,0 +1,176 @@
|
||||
## Our model was revised from https://github.com/zczcwh/PoseFormer/blob/main/common/model_poseformer.py
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from functools import partial
|
||||
from einops import rearrange
|
||||
from timm.models.layers import DropPath
|
||||
|
||||
from common.opt import opts
|
||||
|
||||
from model.Spatial_encoder import First_view_Spatial_features, Spatial_features
|
||||
from model.Temporal_encoder import Temporal__features
|
||||
|
||||
opt = opts().parse()
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class sgraformer(nn.Module):
|
||||
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
|
||||
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None):
|
||||
""" ##########hybrid_backbone=None, representation_size=None,
|
||||
Args:
|
||||
num_frame (int, tuple): input frame number
|
||||
num_joints (int, tuple): joints number
|
||||
in_chans (int): number of input channels, 2D joints have 2 channels: (x,y)
|
||||
embed_dim_ratio (int): embedding dimension ratio
|
||||
depth (int): depth of transformer
|
||||
num_heads (int): number of attention heads
|
||||
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
||||
qkv_bias (bool): enable bias for qkv if True
|
||||
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
||||
drop_rate (float): dropout rate
|
||||
attn_drop_rate (float): attention dropout rate
|
||||
drop_path_rate (float): stochastic depth rate
|
||||
norm_layer: (nn.Module): normalization layer
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
embed_dim = embed_dim_ratio * num_joints
|
||||
out_dim = num_joints * 3 #### output dimension is num_joints * 3
|
||||
##Spatial_features
|
||||
self.SF1 = First_view_Spatial_features(num_frame, num_joints, in_chans, embed_dim_ratio, depth,
|
||||
num_heads, mlp_ratio, qkv_bias, qk_scale,
|
||||
drop_rate, attn_drop_rate, drop_path_rate, norm_layer)
|
||||
self.SF2 = Spatial_features(num_frame, num_joints, in_chans, embed_dim_ratio, depth,
|
||||
num_heads, mlp_ratio, qkv_bias, qk_scale,
|
||||
drop_rate, attn_drop_rate, drop_path_rate, norm_layer)
|
||||
self.SF3 = Spatial_features(num_frame, num_joints, in_chans, embed_dim_ratio, depth,
|
||||
num_heads, mlp_ratio, qkv_bias, qk_scale,
|
||||
drop_rate, attn_drop_rate, drop_path_rate, norm_layer)
|
||||
self.SF4 = Spatial_features(num_frame, num_joints, in_chans, embed_dim_ratio, depth,
|
||||
num_heads, mlp_ratio, qkv_bias, qk_scale,
|
||||
drop_rate, attn_drop_rate, drop_path_rate, norm_layer)
|
||||
|
||||
## MVF
|
||||
self.view_pos_embed = nn.Parameter(torch.zeros(1, 4, num_frame, embed_dim))
|
||||
self.pos_drop = nn.Dropout(p=0.)
|
||||
|
||||
self.conv = nn.Sequential(
|
||||
nn.BatchNorm2d(4, momentum=0.1),
|
||||
nn.Conv2d(4, 1, kernel_size=opt.mvf_kernel, stride=1, padding=int(opt.mvf_kernel // 2), bias=False),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
|
||||
|
||||
self.conv_hop = nn.Sequential(
|
||||
nn.BatchNorm2d(4, momentum=0.1),
|
||||
nn.Conv2d(4, 1, kernel_size=opt.mvf_kernel, stride=1, padding=int(opt.mvf_kernel // 2), bias=False),
|
||||
nn.ReLU(inplace=True),
|
||||
)
|
||||
|
||||
self.conv_norm = nn.LayerNorm(embed_dim)
|
||||
|
||||
self.conv_hop_norm = nn.LayerNorm(embed_dim)
|
||||
|
||||
|
||||
# Time Serial
|
||||
self.TF = Temporal__features(num_frame, num_joints, in_chans, embed_dim_ratio, depth,
|
||||
num_heads, mlp_ratio, qkv_bias, qk_scale,
|
||||
drop_rate, attn_drop_rate, drop_path_rate, norm_layer)
|
||||
|
||||
self.head = nn.Sequential(
|
||||
nn.LayerNorm(embed_dim),
|
||||
nn.Linear(embed_dim, out_dim),
|
||||
)
|
||||
|
||||
self.hop_w0 = nn.Parameter(torch.ones(17, 17))
|
||||
self.hop_w1 = nn.Parameter(torch.ones(17, 17))
|
||||
self.hop_w2 = nn.Parameter(torch.ones(17, 17))
|
||||
self.hop_w3 = nn.Parameter(torch.ones(17, 17))
|
||||
self.hop_w4 = nn.Parameter(torch.ones(17, 17))
|
||||
|
||||
self.hop_global = nn.Parameter(torch.ones(17, 17))
|
||||
|
||||
self.linear_hop = nn.Linear(8, 2)
|
||||
# self.max_pool = nn.MaxPool1d(2)
|
||||
|
||||
self.edge_embedding = nn.Linear(17*17*4, 17*17)
|
||||
|
||||
def forward(self, x, hops):
|
||||
b, f, v, j, c = x.shape
|
||||
|
||||
edge_embedding = self.edge_embedding(hops[0].reshape(1, -1))
|
||||
|
||||
###############golbal feature#################
|
||||
x_hop_global = x.unsqueeze(3).repeat(1, 1, 1, 17, 1, 1)
|
||||
x_hop_global = x_hop_global - x_hop_global.permute(0, 1, 2, 4, 3, 5)
|
||||
x_hop_global = torch.sum(x_hop_global ** 2, dim=-1)
|
||||
hop_global = x_hop_global / torch.sum(x_hop_global, dim=-1).unsqueeze(-1)
|
||||
hops = hops.unsqueeze(1).unsqueeze(2).repeat(1, f, v, 1, 1, 1)
|
||||
hops1 = hop_global * hops[:, :, :, 0]
|
||||
hops2 = hop_global * hops[:, :, :, 1]
|
||||
hops3 = hop_global * hops[:, :, :, 2]
|
||||
hops4 = hop_global * hops[:, :, :, 3]
|
||||
# hops = torch.cat((hops1,hops2,hops3,hops4), dim=-1)
|
||||
hops = torch.cat((hops1,hops2,hops3,hops4), dim=-1)
|
||||
|
||||
|
||||
x1 = x[:, :, 0]
|
||||
x2 = x[:, :, 1]
|
||||
x3 = x[:, :, 2]
|
||||
x4 = x[:, :, 3]
|
||||
|
||||
x1 = x1.permute(0, 3, 1, 2)
|
||||
x2 = x2.permute(0, 3, 1, 2)
|
||||
x3 = x3.permute(0, 3, 1, 2)
|
||||
x4 = x4.permute(0, 3, 1, 2)
|
||||
|
||||
hop1 = hops[:, :, 0]
|
||||
hop2 = hops[:, :, 1]
|
||||
hop3 = hops[:, :, 2]
|
||||
hop4 = hops[:, :, 3]
|
||||
|
||||
hop1 = hop1.permute(0, 3, 1, 2)
|
||||
hop2 = hop2.permute(0, 3, 1, 2)
|
||||
hop3 = hop3.permute(0, 3, 1, 2)
|
||||
hop4 = hop4.permute(0, 3, 1, 2)
|
||||
|
||||
### Semantic graph transformer encoder
|
||||
x1, hop1, MSA1, MSA2, MSA3, MSA4 = self.SF1(x1, hop1, edge_embedding)
|
||||
x2, hop2, MSA1, MSA2, MSA3, MSA4 = self.SF2(x2, hop2, MSA1, MSA2, MSA3, MSA4, edge_embedding)
|
||||
x3, hop3, MSA1, MSA2, MSA3, MSA4 = self.SF3(x3, hop3, MSA1, MSA2, MSA3, MSA4, edge_embedding)
|
||||
x4, hop4, MSA1, MSA2, MSA3, MSA4 = self.SF4(x4, hop4, MSA1, MSA2, MSA3, MSA4, edge_embedding)
|
||||
|
||||
### Multi-view cross-channel fusion
|
||||
x = torch.cat((x1.unsqueeze(1), x2.unsqueeze(1), x3.unsqueeze(1), x4.unsqueeze(1)), dim=1) + self.view_pos_embed
|
||||
x = self.pos_drop(x)
|
||||
x = self.conv(x).squeeze(1) + x1 + x2 + x3 + x4
|
||||
x = self.conv_norm(x)
|
||||
|
||||
hop = torch.cat((hop1.unsqueeze(1), hop2.unsqueeze(1), hop3.unsqueeze(1), hop4.unsqueeze(1)), dim=1) + self.view_pos_embed
|
||||
hop = self.pos_drop(hop)
|
||||
# hop = self.conv_hop(hop).squeeze(1) + hop1 + hop2 + hop3 + hop4
|
||||
# hop = self.conv_hop_norm(hop)
|
||||
hop = self.conv(hop).squeeze(1) + hop1 + hop2 + hop3 + hop4
|
||||
hop = self.conv_norm(hop)
|
||||
|
||||
x = x * hop
|
||||
|
||||
|
||||
### Temporal transformer encoder
|
||||
x = self.TF(x)
|
||||
|
||||
x = self.head(x)
|
||||
x = x.view(b, opt.frames, j, -1)
|
||||
|
||||
print("=============> x.shape", x.shape)
|
||||
return x
|
||||
|
||||
|
||||
# x = torch.rand((8, 27, 4, 17 , 2))
|
||||
# hops = torch.rand((8,4,17,17))
|
||||
# mvft = hmvformer(num_frame=opt.frames, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
|
||||
# num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None, drop_path_rate=0.1)
|
||||
# print(mvft(x, hops).shape)
|
||||
343
model/Spatial_encoder.py
Normal file
343
model/Spatial_encoder.py
Normal file
@ -0,0 +1,343 @@
|
||||
## Our model was revised from https://github.com/zczcwh/PoseFormer/blob/main/common/model_poseformer.py
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from functools import partial
|
||||
from einops import rearrange
|
||||
from timm.models.layers import DropPath
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
|
||||
self.edge_embedding = nn.Linear(17*17, 17*17)
|
||||
|
||||
def forward(self, x, edge_embedding):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
|
||||
edge_embedding = self.edge_embedding(edge_embedding)
|
||||
edge_embedding = edge_embedding.reshape(1, 17, 17).unsqueeze(0).repeat(B, self.num_heads, 1, 1)
|
||||
# print(edge_embedding.shape)
|
||||
|
||||
attn = attn + edge_embedding
|
||||
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class CVA_Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.Qnorm = nn.LayerNorm(dim)
|
||||
self.Knorm = nn.LayerNorm(dim)
|
||||
self.Vnorm = nn.LayerNorm(dim)
|
||||
self.QLinear = nn.Linear(dim, dim)
|
||||
self.KLinear = nn.Linear(dim, dim)
|
||||
self.VLinear = nn.Linear(dim, dim)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
|
||||
self.edge_embedding = nn.Linear(17*17, 17*17)
|
||||
|
||||
|
||||
|
||||
|
||||
def forward(self, x, CVA_input, edge_embedding):
|
||||
B, N, C = x.shape
|
||||
# CVA_input = self.max_pool(CVA_input)
|
||||
# print(CVA_input.shape)
|
||||
q = self.QLinear(self.Qnorm(CVA_input)).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
k = self.KLinear(self.Knorm(CVA_input)).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
v = self.VLinear(self.Vnorm(x)).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
|
||||
edge_embedding = self.edge_embedding(edge_embedding)
|
||||
edge_embedding = edge_embedding.reshape(1, 17, 17).unsqueeze(0).repeat(B, self.num_heads, 1, 1)
|
||||
|
||||
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x), edge_embedding))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Multi_Out_Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
|
||||
self.norm_hop1 = norm_layer(dim)
|
||||
self.norm_hop2 = norm_layer(dim)
|
||||
self.mlp_hop = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
def forward(self, x, hops, edge_embedding):
|
||||
MSA = self.drop_path(self.attn(self.norm1(x), edge_embedding))
|
||||
MSA = self.norm_hop1(hops) * MSA
|
||||
|
||||
x = x + MSA
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
|
||||
|
||||
hops = hops + MSA
|
||||
hops = hops + self.drop_path(self.mlp_hop(self.norm_hop2(hops)))
|
||||
|
||||
|
||||
return x, hops, MSA
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Multi_In_Out_Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
self.cva_attn = CVA_Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
# self.max_pool = nn.MaxPool1d(3, stride=1, padding=1, dilation=1, return_indices=False, ceil_mode=False)
|
||||
|
||||
|
||||
self.norm_hop1 = norm_layer(dim)
|
||||
self.norm_hop2 = norm_layer(dim)
|
||||
self.mlp_hop = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
def forward(self, x, hops, CVA_input, edge_embedding):
|
||||
MSA = self.drop_path(self.cva_attn(x, CVA_input, edge_embedding))
|
||||
MSA = self.norm_hop1(hops) * MSA
|
||||
|
||||
x = x + MSA
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
|
||||
hops = hops + MSA
|
||||
hops = hops + self.drop_path(self.mlp_hop(self.norm_hop2(hops)))
|
||||
return x, hops, MSA
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class First_view_Spatial_features(nn.Module):
|
||||
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
|
||||
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None):
|
||||
super().__init__()
|
||||
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
### spatial patch embedding
|
||||
self.Spatial_patch_to_embedding = nn.Linear(in_chans, embed_dim_ratio)
|
||||
self.Spatial_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))
|
||||
|
||||
|
||||
self.hop_to_embedding = nn.Linear(68, embed_dim_ratio)
|
||||
self.hop_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))
|
||||
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
self.block1 = Multi_Out_Block(dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0],
|
||||
norm_layer=norm_layer)
|
||||
self.block2 = Multi_Out_Block(dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1],
|
||||
norm_layer=norm_layer)
|
||||
self.block3 = Multi_Out_Block(dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[2],
|
||||
norm_layer=norm_layer)
|
||||
self.block4 = Multi_Out_Block(dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[3],
|
||||
norm_layer=norm_layer)
|
||||
|
||||
self.Spatial_norm = norm_layer(embed_dim_ratio)
|
||||
|
||||
self.hop_norm = norm_layer(embed_dim_ratio)
|
||||
|
||||
def forward(self, x, hops, edge_embedding):
|
||||
b, _, f, p = x.shape ##### b is batch size, f is number of frames, p is number of joints
|
||||
x = rearrange(x, 'b c f p -> (b f) p c', )
|
||||
|
||||
x = self.Spatial_patch_to_embedding(x)
|
||||
x += self.Spatial_pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
hops = rearrange(hops, 'b c f p -> (b f) p c', )
|
||||
hops = self.hop_to_embedding(hops)
|
||||
hops += self.hop_pos_embed
|
||||
hops = self.pos_drop(hops)
|
||||
|
||||
|
||||
x, hops, MSA1 = self.block1(x, hops, edge_embedding)
|
||||
x, hops, MSA2 = self.block2(x, hops, edge_embedding)
|
||||
x, hops, MSA3 = self.block3(x, hops, edge_embedding)
|
||||
x, hops, MSA4 = self.block4(x, hops, edge_embedding)
|
||||
|
||||
x = self.Spatial_norm(x)
|
||||
x = rearrange(x, '(b f) w c -> b f (w c)', f=f)
|
||||
|
||||
hops = self.hop_norm(hops)
|
||||
hops = rearrange(hops, '(b f) w c -> b f (w c)', f=f)
|
||||
|
||||
return x, hops, MSA1, MSA2, MSA3, MSA4
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Spatial_features(nn.Module):
|
||||
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
|
||||
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None):
|
||||
super().__init__()
|
||||
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
|
||||
### spatial patch embedding
|
||||
self.Spatial_patch_to_embedding = nn.Linear(in_chans, embed_dim_ratio)
|
||||
self.Spatial_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))
|
||||
|
||||
self.hop_to_embedding = nn.Linear(68, embed_dim_ratio)
|
||||
self.hop_pos_embed = nn.Parameter(torch.zeros(1, num_joints, embed_dim_ratio))
|
||||
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
self.block1 = Multi_In_Out_Block(
|
||||
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer)
|
||||
self.block2 = Multi_In_Out_Block(
|
||||
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1], norm_layer=norm_layer)
|
||||
self.block3 = Multi_In_Out_Block(
|
||||
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[2], norm_layer=norm_layer)
|
||||
self.block4 = Multi_In_Out_Block(
|
||||
dim=embed_dim_ratio, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[3], norm_layer=norm_layer)
|
||||
|
||||
self.Spatial_norm = norm_layer(embed_dim_ratio)
|
||||
|
||||
self.hop_norm = norm_layer(embed_dim_ratio)
|
||||
|
||||
def forward(self, x, hops, MSA1, MSA2, MSA3, MSA4, edge_embedding):
|
||||
b, _, f, p = x.shape ##### b is batch size, f is number of frames, p is number of joints
|
||||
x = rearrange(x, 'b c f p -> (b f) p c', )
|
||||
|
||||
x = self.Spatial_patch_to_embedding(x)
|
||||
x += self.Spatial_pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
|
||||
hops = rearrange(hops, 'b c f p -> (b f) p c', )
|
||||
hops = self.hop_to_embedding(hops)
|
||||
hops += self.hop_pos_embed
|
||||
hops = self.pos_drop(hops)
|
||||
|
||||
|
||||
x, hops, MSA1 = self.block1(x, hops, MSA1, edge_embedding)
|
||||
x, hops, MSA2 = self.block2(x, hops, MSA2, edge_embedding)
|
||||
x, hops, MSA3 = self.block3(x, hops, MSA3, edge_embedding)
|
||||
x, hops, MSA4 = self.block4(x, hops, MSA4, edge_embedding)
|
||||
|
||||
|
||||
x = self.Spatial_norm(x)
|
||||
x = rearrange(x, '(b f) w c -> b f (w c)', f=f)
|
||||
|
||||
hops = self.hop_norm(hops)
|
||||
hops = rearrange(hops, '(b f) w c -> b f (w c)', f=f)
|
||||
|
||||
return x, hops, MSA1, MSA2, MSA3, MSA4
|
||||
159
model/Temporal_encoder.py
Normal file
159
model/Temporal_encoder.py
Normal file
@ -0,0 +1,159 @@
|
||||
## Our model was revised from https://github.com/zczcwh/PoseFormer/blob/main/common/model_poseformer.py
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from functools import partial
|
||||
from einops import rearrange
|
||||
from timm.models.layers import DropPath
|
||||
|
||||
from common.opt import opts
|
||||
|
||||
opt = opts().parse()
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class CVA_Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.Qnorm = nn.LayerNorm(dim)
|
||||
self.Knorm = nn.LayerNorm(dim)
|
||||
self.Vnorm = nn.LayerNorm(dim)
|
||||
self.QLinear = nn.Linear(dim, dim)
|
||||
self.KLinear = nn.Linear(dim, dim)
|
||||
self.VLinear = nn.Linear(dim, dim)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
|
||||
|
||||
|
||||
def forward(self, x, CVA_input):
|
||||
B, N, C = x.shape
|
||||
q = self.QLinear(self.Qnorm(CVA_input)).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
k = self.KLinear(self.Knorm(CVA_input)).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
v = self.VLinear(self.Vnorm(x)).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
||||
attn = (q @ k.transpose(-2, -1)) * self.scale
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
#######################################################################################################################
|
||||
class Temporal__features(nn.Module):
|
||||
def __init__(self, num_frame=9, num_joints=17, in_chans=2, embed_dim_ratio=32, depth=4,
|
||||
num_heads=8, mlp_ratio=2., qkv_bias=True, qk_scale=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.2, norm_layer=None):
|
||||
super().__init__()
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
embed_dim = embed_dim_ratio * num_joints #### temporal embed_dim is num_joints * spatial embedding dim ratio
|
||||
out_dim = num_joints * 3 #### output dimension is num_joints * 3
|
||||
### Temporal patch embedding
|
||||
self.Temporal_pos_embed = nn.Parameter(torch.zeros(1, num_frame, embed_dim))
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
|
||||
for i in range(depth)])
|
||||
|
||||
self.Temporal_norm = norm_layer(embed_dim)
|
||||
####### A easy way to implement weighted mean
|
||||
self.weighted_mean = torch.nn.Conv1d(in_channels=num_frame, out_channels=1, kernel_size=1)
|
||||
|
||||
def forward(self, x):
|
||||
b = x.shape[0]
|
||||
x += self.Temporal_pos_embed
|
||||
x = self.pos_drop(x)
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.Temporal_norm(x)
|
||||
##### x size [b, f, emb_dim], then take weighted mean on frame dimension, we only predict 3D pose of the center frame
|
||||
# x = self.weighted_mean(x)
|
||||
x = x.view(b, opt.frames, -1)
|
||||
return x
|
||||
BIN
model/__pycache__/HMVFormer.cpython-37.pyc
Normal file
BIN
model/__pycache__/HMVFormer.cpython-37.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/HMVFormer_new.cpython-37.pyc
Normal file
BIN
model/__pycache__/HMVFormer_new.cpython-37.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/SGraFormer.cpython-38.pyc
Normal file
BIN
model/__pycache__/SGraFormer.cpython-38.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/Spatial_encoder.cpython-37.pyc
Normal file
BIN
model/__pycache__/Spatial_encoder.cpython-37.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/Spatial_encoder.cpython-38.pyc
Normal file
BIN
model/__pycache__/Spatial_encoder.cpython-38.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/Spatial_encoder_new.cpython-37.pyc
Normal file
BIN
model/__pycache__/Spatial_encoder_new.cpython-37.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/Temporal_encoder.cpython-38.pyc
Normal file
BIN
model/__pycache__/Temporal_encoder.cpython-38.pyc
Normal file
Binary file not shown.
BIN
model/__pycache__/Temtemporal_encoder.cpython-37.pyc
Normal file
BIN
model/__pycache__/Temtemporal_encoder.cpython-37.pyc
Normal file
Binary file not shown.
Reference in New Issue
Block a user