171 lines
5.7 KiB
Python
171 lines
5.7 KiB
Python
import numpy as np
|
|
import copy
|
|
|
|
from common.cameras import h36m_cameras_intrinsic_params, h36m_cameras_extrinsic_params, \
|
|
normalize_screen_coordinates
|
|
|
|
|
|
class Skeleton:
|
|
|
|
def __init__(self, parents, joints_left, joints_right):
|
|
assert len(joints_left) == len(joints_right)
|
|
|
|
self._parents = np.array(parents)
|
|
self._joints_left = joints_left
|
|
self._joints_right = joints_right
|
|
self._compute_metadata()
|
|
|
|
def num_joints(self):
|
|
return len(self._parents)
|
|
|
|
def parents(self):
|
|
return self._parents
|
|
|
|
def has_children(self):
|
|
return self._has_children
|
|
|
|
def children(self):
|
|
return self._children
|
|
|
|
def remove_joints(self, joints_to_remove):
|
|
|
|
valid_joints = []
|
|
for joint in range(len(self._parents)):
|
|
if joint not in joints_to_remove:
|
|
valid_joints.append(joint)
|
|
|
|
for i in range(len(self._parents)):
|
|
while self._parents[i] in joints_to_remove:
|
|
self._parents[i] = self._parents[self._parents[i]]
|
|
|
|
index_offsets = np.zeros(len(self._parents), dtype=int)
|
|
new_parents = []
|
|
for i, parent in enumerate(self._parents):
|
|
if i not in joints_to_remove:
|
|
new_parents.append(parent - index_offsets[parent])
|
|
else:
|
|
index_offsets[i:] += 1
|
|
self._parents = np.array(new_parents)
|
|
|
|
if self._joints_left is not None:
|
|
new_joints_left = []
|
|
for joint in self._joints_left:
|
|
if joint in valid_joints:
|
|
new_joints_left.append(joint - index_offsets[joint])
|
|
self._joints_left = new_joints_left
|
|
if self._joints_right is not None:
|
|
new_joints_right = []
|
|
for joint in self._joints_right:
|
|
if joint in valid_joints:
|
|
new_joints_right.append(joint - index_offsets[joint])
|
|
self._joints_right = new_joints_right
|
|
|
|
self._compute_metadata()
|
|
|
|
return valid_joints
|
|
|
|
def joints_left(self):
|
|
return self._joints_left
|
|
|
|
def joints_right(self):
|
|
return self._joints_right
|
|
|
|
def _compute_metadata(self):
|
|
self._has_children = np.zeros(len(self._parents)).astype(bool)
|
|
for i, parent in enumerate(self._parents):
|
|
if parent != -1:
|
|
self._has_children[parent] = True
|
|
|
|
self._children = []
|
|
for i, parent in enumerate(self._parents):
|
|
self._children.append([])
|
|
for i, parent in enumerate(self._parents):
|
|
if parent != -1:
|
|
self._children[parent].append(i)
|
|
|
|
|
|
h36m_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12,
|
|
16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30], # 树的双亲表示法
|
|
joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23],
|
|
joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31])
|
|
|
|
|
|
class MocapDataset:
|
|
def __init__(self, fps, skeleton):
|
|
self._skeleton = skeleton
|
|
self._fps = fps
|
|
self._data = None
|
|
self._cameras = None
|
|
|
|
def remove_joints(self, joints_to_remove):
|
|
kept_joints = self._skeleton.remove_joints(joints_to_remove)
|
|
for subject in self._data.keys():
|
|
for action in self._data[subject].keys():
|
|
s = self._data[subject][action]
|
|
s['positions'] = s['positions'][:, kept_joints]
|
|
|
|
def __getitem__(self, key):
|
|
return self._data[key]
|
|
|
|
def subjects(self):
|
|
return self._data.keys()
|
|
|
|
def fps(self):
|
|
return self._fps
|
|
|
|
def skeleton(self):
|
|
return self._skeleton
|
|
|
|
def cameras(self):
|
|
return self._cameras
|
|
|
|
def supports_semi_supervised(self):
|
|
return False
|
|
|
|
|
|
class Human36mDataset(MocapDataset):
|
|
def __init__(self, path, opt, remove_static_joints=True):
|
|
super().__init__(fps=50, skeleton=h36m_skeleton)
|
|
self.train_list = ['S1', 'S5', 'S6', 'S7', 'S8']
|
|
self.test_list = ['S9', 'S11']
|
|
|
|
self._cameras = copy.deepcopy(h36m_cameras_extrinsic_params)
|
|
for cameras in self._cameras.values():
|
|
for i, cam in enumerate(cameras):
|
|
cam.update(h36m_cameras_intrinsic_params[i])
|
|
for k, v in cam.items():
|
|
if k not in ['id', 'res_w', 'res_h']:
|
|
cam[k] = np.array(v, dtype='float32')
|
|
|
|
if opt.crop_uv == 0:
|
|
cam['center'] = normalize_screen_coordinates(cam['center'], w=cam['res_w'], h=cam['res_h']).astype(
|
|
'float32')
|
|
cam['focal_length'] = cam['focal_length'] / cam['res_w'] * 2
|
|
|
|
if 'translation' in cam:
|
|
cam['translation'] = cam['translation'] / 1000
|
|
|
|
cam['intrinsic'] = np.concatenate((cam['focal_length'],
|
|
cam['center'],
|
|
cam['radial_distortion'],
|
|
cam['tangential_distortion']))
|
|
|
|
data = np.load(path, allow_pickle=True)['positions_3d'].item()
|
|
|
|
self._data = {}
|
|
for subject, actions in data.items():
|
|
self._data[subject] = {}
|
|
for action_name, positions in actions.items():
|
|
self._data[subject][action_name] = {
|
|
'positions': positions,
|
|
'cameras': self._cameras[subject],
|
|
}
|
|
|
|
if remove_static_joints:
|
|
self.remove_joints([4, 5, 9, 10, 11, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31])
|
|
|
|
self._skeleton._parents[11] = 8
|
|
self._skeleton._parents[14] = 8
|
|
|
|
def supports_semi_supervised(self):
|
|
return True |