First running triangulation concept.
This commit is contained in:
333
scripts/test_triangulate.py
Normal file
333
scripts/test_triangulate.py
Normal file
@ -0,0 +1,333 @@
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
|
||||
import draw_utils
|
||||
import triangulate_poses
|
||||
import utils_2d_pose
|
||||
from skelda import utils_pose
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||
test_img_dir = filepath + "../data/"
|
||||
|
||||
joint_names_2d = [
|
||||
"nose",
|
||||
"eye_left",
|
||||
"eye_right",
|
||||
"ear_left",
|
||||
"ear_right",
|
||||
"shoulder_left",
|
||||
"shoulder_right",
|
||||
"elbow_left",
|
||||
"elbow_right",
|
||||
"wrist_left",
|
||||
"wrist_right",
|
||||
"hip_left",
|
||||
"hip_right",
|
||||
"knee_left",
|
||||
"knee_right",
|
||||
"ankle_left",
|
||||
"ankle_right",
|
||||
]
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"hip_middle",
|
||||
"shoulder_middle",
|
||||
"head",
|
||||
]
|
||||
)
|
||||
joint_names_3d = list(joint_names_2d)
|
||||
|
||||
main_limbs = [
|
||||
("shoulder_left", "elbow_left"),
|
||||
("elbow_left", "wrist_left"),
|
||||
("shoulder_right", "elbow_right"),
|
||||
("elbow_right", "wrist_right"),
|
||||
("hip_left", "knee_left"),
|
||||
("knee_left", "ankle_left"),
|
||||
("hip_right", "knee_right"),
|
||||
("knee_right", "ankle_right"),
|
||||
]
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def update_sample(sample, new_dir=""):
|
||||
sample = copy.deepcopy(sample)
|
||||
|
||||
# Rename image paths
|
||||
sample["imgpaths"] = [
|
||||
os.path.join(new_dir, os.path.basename(v)) for v in sample["imgpaths"]
|
||||
]
|
||||
|
||||
# Add placeholders for missing keys
|
||||
sample["cameras_color"] = sample["cameras"]
|
||||
sample["imgpaths_color"] = sample["imgpaths"]
|
||||
sample["cameras_depth"] = []
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def load_image(path: str):
|
||||
image = cv2.imread(path, 3)
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
image = np.array(image, dtype=np.float32)
|
||||
return image
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def filter_poses(poses3D, poses2D, roomparams, joint_names, drop_few_limbs=True):
|
||||
drop = []
|
||||
for i, pose in enumerate(poses3D):
|
||||
pose = np.array(pose)
|
||||
valid_joints = [j for j in pose if j[-1] > 0.1]
|
||||
|
||||
# Drop persons with too few joints
|
||||
if np.sum(pose[..., -1] > 0.1) < 5:
|
||||
drop.append(i)
|
||||
continue
|
||||
|
||||
# Drop too large or too small persons
|
||||
mins = np.min(valid_joints, axis=0)
|
||||
maxs = np.max(valid_joints, axis=0)
|
||||
diff = maxs - mins
|
||||
if any(((d > 2.3) for d in diff)):
|
||||
drop.append(i)
|
||||
continue
|
||||
if all(((d < 0.4) for d in diff)):
|
||||
drop.append(i)
|
||||
continue
|
||||
if (
|
||||
(diff[0] < 0.2 and diff[1] < 0.2)
|
||||
or (diff[1] < 0.2 and diff[2] < 0.2)
|
||||
or (diff[2] < 0.2 and diff[0] < 0.2)
|
||||
):
|
||||
drop.append(i)
|
||||
continue
|
||||
|
||||
# Drop persons outside room
|
||||
mean = np.mean(valid_joints, axis=0)
|
||||
mins = np.min(valid_joints, axis=0)
|
||||
maxs = np.max(valid_joints, axis=0)
|
||||
rsize = [r / 2 for r in roomparams["room_size"]]
|
||||
rcent = roomparams["room_center"]
|
||||
if any(
|
||||
(
|
||||
# Center of mass outside room
|
||||
mean[j] > rsize[j] + rcent[j] or mean[j] < -rsize[j] + rcent[j]
|
||||
for j in range(3)
|
||||
)
|
||||
) or any(
|
||||
(
|
||||
# One limb more than 10cm outside room
|
||||
maxs[j] > rsize[j] + rcent[j] + 0.1
|
||||
or mins[j] < -rsize[j] + rcent[j] - 0.1
|
||||
for j in range(3)
|
||||
)
|
||||
):
|
||||
drop.append(i)
|
||||
continue
|
||||
|
||||
if drop_few_limbs:
|
||||
# Drop persons with less than 3 limbs
|
||||
found_limbs = 0
|
||||
for limb in main_limbs:
|
||||
start_idx = joint_names.index(limb[0])
|
||||
end_idx = joint_names.index(limb[1])
|
||||
if pose[start_idx, -1] > 0.1 and pose[end_idx, -1] > 0.1:
|
||||
found_limbs += 1
|
||||
if found_limbs < 3:
|
||||
drop.append(i)
|
||||
continue
|
||||
|
||||
# Drop persons with too small average limb length
|
||||
total_length = 0
|
||||
for limb in main_limbs:
|
||||
start_idx = joint_names.index(limb[0])
|
||||
end_idx = joint_names.index(limb[1])
|
||||
limb_length = np.linalg.norm(pose[end_idx, :3] - pose[start_idx, :3])
|
||||
total_length += limb_length
|
||||
average_length = total_length / len(main_limbs)
|
||||
if average_length < 0.1:
|
||||
drop.append(i)
|
||||
continue
|
||||
|
||||
new_poses3D = []
|
||||
new_poses2D = [[] for _ in range(len(poses2D))]
|
||||
for i in range(len(poses3D)):
|
||||
if len(poses3D[i]) != len(joint_names):
|
||||
# Sometimes some joints of a poor detection are missing
|
||||
continue
|
||||
|
||||
if i not in drop:
|
||||
new_poses3D.append(poses3D[i])
|
||||
for j in range(len(poses2D)):
|
||||
new_poses2D[j].append(poses2D[j][i])
|
||||
else:
|
||||
new_pose = np.array(poses3D[i])
|
||||
new_pose[..., -1] = 0.001
|
||||
new_poses3D.append(new_pose)
|
||||
for j in range(len(poses2D)):
|
||||
new_pose = np.array(poses2D[j][i])
|
||||
new_pose[..., -1] = 0.001
|
||||
new_poses2D[j].append(new_pose)
|
||||
|
||||
new_poses3D = np.array(new_poses3D)
|
||||
new_poses2D = np.array(new_poses2D)
|
||||
if new_poses3D.size == 0:
|
||||
new_poses3D = np.zeros([1, len(joint_names), 4])
|
||||
new_poses2D = np.zeros([len(poses2D), 1, len(joint_names), 3])
|
||||
|
||||
return new_poses3D, new_poses2D
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def update_keypoints(poses_2d: list, joint_names: List[str]) -> list:
|
||||
new_views = []
|
||||
for view in poses_2d:
|
||||
new_bodies = []
|
||||
for body in view:
|
||||
body = body.tolist()
|
||||
|
||||
new_body = body[:17]
|
||||
if whole_body["foots"]:
|
||||
new_body.extend(body[17:22])
|
||||
if whole_body["face"]:
|
||||
new_body.extend(body[22:90])
|
||||
if whole_body["hands"]:
|
||||
new_body.extend(body[90:])
|
||||
body = new_body
|
||||
|
||||
hlid = joint_names.index("hip_left")
|
||||
hrid = joint_names.index("hip_right")
|
||||
mid_hip = [
|
||||
float(((body[hlid][0] + body[hrid][0]) / 2.0)),
|
||||
float(((body[hlid][1] + body[hrid][1]) / 2.0)),
|
||||
min(body[hlid][2], body[hrid][2]),
|
||||
]
|
||||
body.append(mid_hip)
|
||||
|
||||
slid = joint_names.index("shoulder_left")
|
||||
srid = joint_names.index("shoulder_right")
|
||||
mid_shoulder = [
|
||||
float(((body[slid][0] + body[srid][0]) / 2.0)),
|
||||
float(((body[slid][1] + body[srid][1]) / 2.0)),
|
||||
min(body[slid][2], body[srid][2]),
|
||||
]
|
||||
body.append(mid_shoulder)
|
||||
|
||||
elid = joint_names.index("ear_left")
|
||||
erid = joint_names.index("ear_right")
|
||||
head = [
|
||||
float(((body[elid][0] + body[erid][0]) / 2.0)),
|
||||
float(((body[elid][1] + body[erid][1]) / 2.0)),
|
||||
min(body[elid][2], body[erid][2]),
|
||||
]
|
||||
body.append(head)
|
||||
|
||||
new_bodies.append(body)
|
||||
new_views.append(new_bodies)
|
||||
|
||||
return new_views
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
kpt_model = utils_2d_pose.load_model()
|
||||
|
||||
# Manually set matplotlib backend
|
||||
matplotlib.use("TkAgg")
|
||||
|
||||
for dirname in sorted(os.listdir(test_img_dir)):
|
||||
dirpath = os.path.join(test_img_dir, dirname)
|
||||
|
||||
if not os.path.isdir(dirpath):
|
||||
continue
|
||||
|
||||
if (dirname[0] not in ["p", "h"]) or len(dirname) != 2:
|
||||
continue
|
||||
|
||||
# Load sample infos
|
||||
with open(os.path.join(dirpath, "sample.json"), "r", encoding="utf-8") as file:
|
||||
sample = json.load(file)
|
||||
sample = update_sample(sample, dirpath)
|
||||
|
||||
camparams = sample["cameras_color"]
|
||||
roomparams = {
|
||||
"room_size": sample["room_size"],
|
||||
"room_center": sample["room_center"],
|
||||
}
|
||||
|
||||
# Load color images
|
||||
images_2d = []
|
||||
for i in range(len(sample["cameras_color"])):
|
||||
imgpath = sample["imgpaths_color"][i]
|
||||
img = load_image(imgpath)
|
||||
images_2d.append(img)
|
||||
|
||||
# Get 2D poses
|
||||
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
||||
poses_2d = update_keypoints(poses_2d, joint_names_2d)
|
||||
|
||||
fig1 = draw_utils.show_poses2d(
|
||||
poses_2d, np.array(images_2d), joint_names_2d, "2D detections"
|
||||
)
|
||||
fig1.savefig(os.path.join(dirpath, "2d-k.png"), dpi=fig1.dpi)
|
||||
# draw_utils.utils_view.show_plots()
|
||||
|
||||
if len(images_2d) == 1:
|
||||
draw_utils.utils_view.show_plots()
|
||||
continue
|
||||
|
||||
# Get 3D poses
|
||||
if sum(np.sum(p) for p in poses_2d) == 0:
|
||||
poses3D = np.zeros([1, len(joint_names_3d), 4])
|
||||
poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3])
|
||||
else:
|
||||
poses3D = triangulate_poses.get_3d_pose(poses_2d, camparams, joint_names_2d)
|
||||
poses2D = []
|
||||
for cam in camparams:
|
||||
poses_2d, _ = utils_pose.project_poses(poses3D, cam)
|
||||
poses2D.append(poses_2d)
|
||||
poses3D, poses2D = filter_poses(
|
||||
poses3D,
|
||||
poses2D,
|
||||
roomparams,
|
||||
joint_names_3d,
|
||||
)
|
||||
|
||||
print("\n" + dirpath)
|
||||
print(poses3D)
|
||||
# print(poses2D)
|
||||
|
||||
fig2 = draw_utils.utils_view.show_poses3d(
|
||||
poses3D, joint_names_3d, roomparams, camparams
|
||||
)
|
||||
fig3 = draw_utils.show_poses2d(
|
||||
poses2D, np.array(images_2d), joint_names_3d, "2D reprojections"
|
||||
)
|
||||
fig2.savefig(os.path.join(dirpath, "3d-p.png"), dpi=fig2.dpi)
|
||||
fig3.savefig(os.path.join(dirpath, "2d-p.png"), dpi=fig3.dpi)
|
||||
draw_utils.utils_view.show_plots()
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user