Optional batched pose processing.
This commit is contained in:
@ -5,7 +5,7 @@ onnx_config = dict(
|
||||
)
|
||||
|
||||
codebase_config = dict(
|
||||
# For later TensorRT inference, the number of output boxes needs to be as stable as possible,
|
||||
# For later TensorRT inference, the number of output boxes needs to be as stable as possible,
|
||||
# because a drop in the box count leads to a re-optimization which takes a lot of time,
|
||||
# therefore reduce the maximum number of output boxes to the smallest usable value and sort out
|
||||
# low confidence boxes outside the model.
|
||||
|
||||
@ -5,7 +5,7 @@ onnx_config = dict(
|
||||
)
|
||||
|
||||
codebase_config = dict(
|
||||
# For later TensorRT inference, the number of output boxes needs to be as stable as possible,
|
||||
# For later TensorRT inference, the number of output boxes needs to be as stable as possible,
|
||||
# because a drop in the box count leads to a re-optimization which takes a lot of time,
|
||||
# therefore reduce the maximum number of output boxes to the smallest usable value and sort out
|
||||
# low confidence boxes outside the model.
|
||||
|
||||
@ -0,0 +1,19 @@
|
||||
_base_ = ["./pose-detection_static.py", "../_base_/backends/onnxruntime.py"]
|
||||
|
||||
onnx_config = dict(
|
||||
input_shape=[288, 384],
|
||||
output_names=["kpts", "scores"],
|
||||
dynamic_axes={
|
||||
"input": {
|
||||
0: "batch",
|
||||
},
|
||||
"kpts": {
|
||||
0: "batch",
|
||||
},
|
||||
"scores": {
|
||||
0: "batch",
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
codebase_config = dict(export_postprocess=True) # export get_simcc_maximum
|
||||
@ -0,0 +1,19 @@
|
||||
_base_ = ["./pose-detection_static.py", "../_base_/backends/onnxruntime-fp16.py"]
|
||||
|
||||
onnx_config = dict(
|
||||
input_shape=[288, 384],
|
||||
output_names=["kpts", "scores"],
|
||||
dynamic_axes={
|
||||
"input": {
|
||||
0: "batch",
|
||||
},
|
||||
"kpts": {
|
||||
0: "batch",
|
||||
},
|
||||
"scores": {
|
||||
0: "batch",
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
codebase_config = dict(export_postprocess=True) # export get_simcc_maximum
|
||||
Reference in New Issue
Block a user