Optional batched pose processing.
This commit is contained in:
@ -53,6 +53,9 @@ default_min_match_score = 0.94
|
||||
# If the number of cameras is high, and the views are not occluded, use a higher value
|
||||
default_min_group_size = 1
|
||||
|
||||
# Batch poses per image for faster processing
|
||||
# If most of the time only one person is in a image, disable it, because it is slightly slower then
|
||||
default_batch_poses = True
|
||||
|
||||
datasets = {
|
||||
"human36m": {
|
||||
@ -62,6 +65,7 @@ datasets = {
|
||||
"min_group_size": 1,
|
||||
"min_bbox_score": 0.4,
|
||||
"min_bbox_area": 0.1 * 0.1,
|
||||
"batch_poses": False,
|
||||
},
|
||||
"panoptic": {
|
||||
"path": "/datasets/panoptic/skelda/test.json",
|
||||
@ -310,13 +314,14 @@ def main():
|
||||
min_group_size = datasets[dataset_use].get("min_group_size", default_min_group_size)
|
||||
min_bbox_score = datasets[dataset_use].get("min_bbox_score", default_min_bbox_score)
|
||||
min_bbox_area = datasets[dataset_use].get("min_bbox_area", default_min_bbox_area)
|
||||
batch_poses = datasets[dataset_use].get("batch_poses", default_batch_poses)
|
||||
|
||||
# Load 2D pose model
|
||||
whole_body = test_triangulate.whole_body
|
||||
if any((whole_body[k] for k in whole_body)):
|
||||
kpt_model = utils_2d_pose.load_wb_model()
|
||||
else:
|
||||
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area)
|
||||
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
|
||||
|
||||
# Manually set matplotlib backend
|
||||
try:
|
||||
|
||||
Reference in New Issue
Block a user