Copied whole body and skelda scripts.

This commit is contained in:
Daniel
2024-06-27 17:12:33 +02:00
parent 000e0f804b
commit 140b13a72c
2 changed files with 557 additions and 1 deletions

View File

@ -0,0 +1,417 @@
import json
import os
import time
import cv2
import matplotlib
import numpy as np
import tqdm
import test_triangulate
import triangulate_poses
import utils_2d_pose
from skelda import evals, utils_pose
# ==================================================================================================
# dataset_use = "panoptic"
dataset_use = "human36m"
# dataset_use = "mvor"
# dataset_use = "shelf"
# dataset_use = "campus"
# dataset_use = "ikeaasm"
# dataset_use = "tsinghua"
# dataset_use = "human36m_wb"
datasets = {
"panoptic": {
"path": "/datasets/panoptic/skelda/test.json",
"cams": ["00_03", "00_06", "00_12", "00_13", "00_23"],
"take_interval": 3,
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
},
"human36m": {
"path": "/datasets/human36m/skelda/pose_test.json",
"take_interval": 5,
},
"mvor": {
"path": "/datasets/mvor/skelda/all.json",
"take_interval": 1,
"with_depth": False,
},
"ikeaasm": {
"path": "/datasets/ikeaasm/skelda/test.json",
"take_interval": 2,
},
"campus": {
"path": "/datasets/campus/skelda/test.json",
"take_interval": 1,
},
"shelf": {
"path": "/datasets/shelf/skelda/test.json",
"take_interval": 1,
},
"tsinghua": {
"path": "/datasets/tsinghua/skelda/test.json",
"take_interval": 3,
},
"human36m_wb": {
"path": "/datasets/human36m/skelda/wb/test.json",
"take_interval": 100,
},
}
joint_names_2d = test_triangulate.joint_names_2d
joint_names_3d = list(joint_names_2d)
eval_joints = [
"head",
"shoulder_left",
"shoulder_right",
"elbow_left",
"elbow_right",
"wrist_left",
"wrist_right",
"hip_left",
"hip_right",
"knee_left",
"knee_right",
"ankle_left",
"ankle_right",
]
if dataset_use in ["human36m", "panoptic"]:
eval_joints[eval_joints.index("head")] = "nose"
if dataset_use.endswith("_wb"):
# eval_joints[eval_joints.index("head")] = "nose"
eval_joints = list(joint_names_2d)
# output_dir = "/SimplePoseTriangulation/data/testoutput/"
output_dir = ""
# ==================================================================================================
def load_json(path: str):
with open(path, "r", encoding="utf-8") as file:
data = json.load(file)
return data
# ==================================================================================================
def load_labels(dataset: dict):
"""Load labels by dataset description"""
if "panoptic" in dataset:
labels = load_json(dataset["panoptic"]["path"])
labels = [lb for i, lb in enumerate(labels) if i % 1500 < 90]
# Filter by maximum number of persons
labels = [l for l in labels if len(l["bodies3D"]) <= 10]
# Filter scenes
if "use_scenes" in dataset["panoptic"]:
labels = [
l for l in labels if l["scene"] in dataset["panoptic"]["use_scenes"]
]
# Filter cameras
if not "cameras_depth" in labels[0]:
for label in labels:
for i, cam in reversed(list(enumerate(label["cameras"]))):
if cam["name"] not in dataset["panoptic"]["cams"]:
label["cameras"].pop(i)
label["imgpaths"].pop(i)
elif "human36m" in dataset:
labels = load_json(dataset["human36m"]["path"])
labels = [lb for lb in labels if lb["subject"] == "S9"]
labels = [lb for i, lb in enumerate(labels) if i % 4000 < 150]
for label in labels:
label.pop("action")
label.pop("frame")
elif "mvor" in dataset:
labels = load_json(dataset["mvor"]["path"])
# Rename keys
for label in labels:
label["cameras_color"] = label["cameras"]
label["imgpaths_color"] = label["imgpaths"]
elif "ikeaasm" in dataset:
labels = load_json(dataset["ikeaasm"]["path"])
labels = [lb for i, lb in enumerate(labels) if i % 300 < 72]
elif "shelf" in dataset:
labels = load_json(dataset["shelf"]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
elif "campus" in dataset:
labels = load_json(dataset["campus"]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
elif "tsinghua" in dataset:
labels = load_json(dataset["tsinghua"]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
labels = [lb for i, lb in enumerate(labels) if i % 800 < 90]
for label in labels:
label["bodyids"] = list(range(len(label["bodies3D"])))
elif "human36m_wb" in dataset:
labels = load_json(dataset["human36m_wb"]["path"])
else:
raise ValueError("Dataset not available")
# Optionally drop samples to speed up train/eval
if "take_interval" in dataset:
take_interval = dataset["take_interval"]
if take_interval > 1:
labels = [l for i, l in enumerate(labels) if i % take_interval == 0]
# Filter joints
fj_func = lambda x: utils_pose.filter_joints_3d(x, eval_joints)
labels = list(map(fj_func, labels))
return labels
# ==================================================================================================
def add_extra_joints(poses3D, poses2D, joint_names_3d):
# Update "head" joint as average of "ear" joints
idx_h = joint_names_3d.index("head")
idx_el = joint_names_3d.index("ear_left")
idx_er = joint_names_3d.index("ear_right")
for i in range(len(poses3D)):
if poses3D[i, idx_h, 3] == 0:
ear_left = poses3D[i, idx_el]
ear_right = poses3D[i, idx_er]
if ear_left[3] > 0.1 and ear_right[3] > 0.1:
head = (ear_left + ear_right) / 2
head[3] = min(ear_left[3], ear_right[3])
poses3D[i, idx_h] = head
for j in range(len(poses2D)):
ear_left = poses2D[j][i, idx_el]
ear_right = poses2D[j][i, idx_er]
if ear_left[2] > 0.1 and ear_right[2] > 0.1:
head = (ear_left + ear_right) / 2
head[2] = min(ear_left[2], ear_right[2])
poses2D[j][i, idx_h] = head
return poses3D, poses2D
# ==================================================================================================
def add_missing_joints(poses3D, joint_names_3d):
"""Replace missing joints with their nearest adjacent joints"""
adjacents = {
"hip_right": ["hip_middle", "hip_left"],
"hip_left": ["hip_middle", "hip_right"],
"knee_right": ["hip_right", "knee_left"],
"knee_left": ["hip_left", "knee_right"],
"ankle_right": ["knee_right", "ankle_left"],
"ankle_left": ["knee_left", "ankle_right"],
"shoulder_right": ["shoulder_middle", "shoulder_left"],
"shoulder_left": ["shoulder_middle", "shoulder_right"],
"elbow_right": ["shoulder_right", "hip_right"],
"elbow_left": ["shoulder_left", "hip_left"],
"wrist_right": ["elbow_right"],
"wrist_left": ["elbow_left"],
"nose": ["shoulder_middle", "shoulder_right", "shoulder_left"],
"head": ["shoulder_middle", "shoulder_right", "shoulder_left"],
"foot_*_left_*": ["ankle_left"],
"foot_*_right_*": ["ankle_right"],
"face_*": ["nose"],
"hand_*_left_*": ["wrist_left"],
"hand_*_right_*": ["wrist_right"],
}
for i in range(len(poses3D)):
valid_joints = np.where(poses3D[i, :, 3] > 0.1)[0]
body_center = np.mean(poses3D[i, valid_joints, :3], axis=0)
for j in range(len(joint_names_3d)):
adname = ""
if joint_names_3d[j][0:5] == "foot_" and "_left" in joint_names_3d[j]:
adname = "foot_*_left_*"
elif joint_names_3d[j][0:5] == "foot_" and "_right" in joint_names_3d[j]:
adname = "foot_*_right_*"
elif joint_names_3d[j][0:5] == "face_":
adname = "face_*"
elif joint_names_3d[j][0:5] == "hand_" and "_left" in joint_names_3d[j]:
adname = "hand_*_left_*"
elif joint_names_3d[j][0:5] == "hand_" and "_right" in joint_names_3d[j]:
adname = "hand_*_right_*"
elif joint_names_3d[j] in adjacents:
adname = joint_names_3d[j]
if adname == "":
continue
if poses3D[i, j, 3] == 0:
if joint_names_3d[j] in adjacents or joint_names_3d[j][0:5] in [
"foot_",
"face_",
"hand_",
]:
adjacent_joints = [
poses3D[i, joint_names_3d.index(a), :]
for a in adjacents[adname]
]
adjacent_joints = [a[0:3] for a in adjacent_joints if a[3] > 0.1]
if len(adjacent_joints) > 0:
poses3D[i, j, :3] = np.mean(adjacent_joints, axis=0)
else:
poses3D[i, j, :3] = body_center
else:
poses3D[i, j, :3] = body_center
poses3D[i, j, 3] = 0.1
return poses3D
# ==================================================================================================
def main():
global joint_names_3d, eval_joints
whole_body = test_triangulate.whole_body
if any((whole_body[k] for k in whole_body)):
kpt_model = utils_2d_pose.load_wb_model()
else:
kpt_model = utils_2d_pose.load_model()
# Manually set matplotlib backend
try:
matplotlib.use("TkAgg")
except ImportError:
print("WARNING: Using headless mode, no visualizations will be shown.")
print("Loading dataset ...")
labels = load_labels(
{
dataset_use: datasets[dataset_use],
"take_interval": datasets[dataset_use]["take_interval"],
}
)
# Print a dataset sample for debugging
print(labels[0])
print("\nRunning predictions ...")
all_poses = []
all_ids = []
all_paths = []
times = []
for label in tqdm.tqdm(labels):
images_2d = []
try:
start = time.time()
for i in range(len(label["imgpaths"])):
imgpath = label["imgpaths"][i]
img = test_triangulate.load_image(imgpath)
images_2d.append(img)
print("IMG time:", time.time() - start)
except cv2.error:
print("One of the paths not found:", label["imgpaths"])
continue
if dataset_use == "human36m":
for i in range(len(images_2d)):
# Since the images don't have the same shape, rescale some of them
img = images_2d[i]
ishape = img.shape
if ishape != (1000, 1000, 3):
cam = label["cameras"][i]
cam["K"][1][1] = cam["K"][1][1] * (1000 / ishape[0])
cam["K"][1][2] = cam["K"][1][2] * (1000 / ishape[0])
cam["K"][0][0] = cam["K"][0][0] * (1000 / ishape[1])
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
images_2d[i] = cv2.resize(img, (1000, 1000))
roomparams = {
"room_size": label["room_size"],
"room_center": label["room_center"],
}
start = time.time()
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
time_2d = time.time() - start
print("2D time:", time_2d)
start = time.time()
if sum(np.sum(p) for p in poses_2d) == 0:
poses3D = np.zeros([1, len(joint_names_3d), 4])
poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3])
else:
poses3D = triangulate_poses.get_3d_pose(poses_2d, label["cameras"], joint_names_2d)
poses2D = []
for cam in label["cameras"]:
poses_2d, _ = utils_pose.project_poses(poses3D, cam)
poses2D.append(poses_2d)
poses3D, poses2D = add_extra_joints(poses3D, poses2D, joint_names_3d)
poses3D, poses2D = test_triangulate.filter_poses(
poses3D,
poses2D,
roomparams,
joint_names_3d,
drop_few_limbs=(dataset_use != "mvor"),
)
poses3D = add_missing_joints(poses3D, joint_names_3d)
time_3d = time.time() - start
print("3D time:", time_3d)
all_poses.append(poses3D)
all_ids.append(label["id"])
all_paths.append(label["imgpaths"])
times.append((time_2d, time_3d))
warmup_iters = 10
if len(times) > warmup_iters:
times = times[warmup_iters:]
avg_time_2d = np.mean([t[0] for t in times])
avg_time_3d = np.mean([t[1] for t in times])
tstats = {
"avg_time_2d": avg_time_2d,
"avg_time_3d": avg_time_3d,
"avg_fps": 1.0 / (avg_time_2d + avg_time_3d),
}
print("\nMetrics:")
print(json.dumps(tstats, indent=2))
_ = evals.mpjpe.run_eval(
labels,
all_poses,
all_ids,
joint_names_net=joint_names_3d,
joint_names_use=eval_joints,
save_error_imgs=output_dir,
)
_ = evals.pcp.run_eval(
labels,
all_poses,
all_ids,
joint_names_net=joint_names_3d,
joint_names_use=eval_joints,
replace_head_with_nose=True,
)
# ==================================================================================================
if __name__ == "__main__":
main()

View File

@ -16,6 +16,11 @@ from skelda import utils_pose
filepath = os.path.dirname(os.path.realpath(__file__)) + "/" filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
test_img_dir = filepath + "../data/" test_img_dir = filepath + "../data/"
whole_body = {
"foots": False,
"face": False,
"hands": False,
}
joint_names_2d = [ joint_names_2d = [
"nose", "nose",
@ -36,6 +41,137 @@ joint_names_2d = [
"ankle_left", "ankle_left",
"ankle_right", "ankle_right",
] ]
if whole_body["foots"]:
joint_names_2d.extend(
[
"foot_toe_big_left",
"foot_toe_small_left",
"foot_heel_left",
"foot_toe_big_right",
"foot_toe_small_right",
"foot_heel_right",
]
)
if whole_body["face"]:
joint_names_2d.extend(
[
"face_jaw_right_1",
"face_jaw_right_2",
"face_jaw_right_3",
"face_jaw_right_4",
"face_jaw_right_5",
"face_jaw_right_6",
"face_jaw_right_7",
"face_jaw_right_8",
"face_jaw_middle",
"face_jaw_left_1",
"face_jaw_left_2",
"face_jaw_left_3",
"face_jaw_left_4",
"face_jaw_left_5",
"face_jaw_left_6",
"face_jaw_left_7",
"face_jaw_left_8",
"face_eyebrow_right_1",
"face_eyebrow_right_2",
"face_eyebrow_right_3",
"face_eyebrow_right_4",
"face_eyebrow_right_5",
"face_eyebrow_left_1",
"face_eyebrow_left_2",
"face_eyebrow_left_3",
"face_eyebrow_left_4",
"face_eyebrow_left_5",
"face_nose_1",
"face_nose_2",
"face_nose_3",
"face_nose_4",
"face_nose_5",
"face_nose_6",
"face_nose_7",
"face_nose_8",
"face_nose_9",
"face_eye_right_1",
"face_eye_right_2",
"face_eye_right_3",
"face_eye_right_4",
"face_eye_right_5",
"face_eye_right_6",
"face_eye_left_1",
"face_eye_left_2",
"face_eye_left_3",
"face_eye_left_4",
"face_eye_left_5",
"face_eye_left_6",
"face_mouth_1",
"face_mouth_2",
"face_mouth_3",
"face_mouth_4",
"face_mouth_5",
"face_mouth_6",
"face_mouth_7",
"face_mouth_8",
"face_mouth_9",
"face_mouth_10",
"face_mouth_11",
"face_mouth_12",
"face_mouth_13",
"face_mouth_14",
"face_mouth_15",
"face_mouth_16",
"face_mouth_17",
"face_mouth_18",
"face_mouth_19",
"face_mouth_20",
]
)
if whole_body["hands"]:
joint_names_2d.extend(
[
"hand_wrist_left",
"hand_finger_thumb_left_1",
"hand_finger_thumb_left_2",
"hand_finger_thumb_left_3",
"hand_finger_thumb_left_4",
"hand_finger_index_left_1",
"hand_finger_index_left_2",
"hand_finger_index_left_3",
"hand_finger_index_left_4",
"hand_finger_middle_left_1",
"hand_finger_middle_left_2",
"hand_finger_middle_left_3",
"hand_finger_middle_left_4",
"hand_finger_ring_left_1",
"hand_finger_ring_left_2",
"hand_finger_ring_left_3",
"hand_finger_ring_left_4",
"hand_finger_pinky_left_1",
"hand_finger_pinky_left_2",
"hand_finger_pinky_left_3",
"hand_finger_pinky_left_4",
"hand_wrist_right",
"hand_finger_thumb_right_1",
"hand_finger_thumb_right_2",
"hand_finger_thumb_right_3",
"hand_finger_thumb_right_4",
"hand_finger_index_right_1",
"hand_finger_index_right_2",
"hand_finger_index_right_3",
"hand_finger_index_right_4",
"hand_finger_middle_right_1",
"hand_finger_middle_right_2",
"hand_finger_middle_right_3",
"hand_finger_middle_right_4",
"hand_finger_ring_right_1",
"hand_finger_ring_right_2",
"hand_finger_ring_right_3",
"hand_finger_ring_right_4",
"hand_finger_pinky_right_1",
"hand_finger_pinky_right_2",
"hand_finger_pinky_right_3",
"hand_finger_pinky_right_4",
]
)
joint_names_2d.extend( joint_names_2d.extend(
[ [
"hip_middle", "hip_middle",
@ -249,6 +385,9 @@ def update_keypoints(poses_2d: list, joint_names: List[str]) -> list:
def main(): def main():
if any((whole_body[k] for k in whole_body)):
kpt_model = utils_2d_pose.load_wb_model()
else:
kpt_model = utils_2d_pose.load_model() kpt_model = utils_2d_pose.load_model()
# Manually set matplotlib backend # Manually set matplotlib backend