Use fp32 model for whole-body poses.
This commit is contained in:
@ -190,9 +190,11 @@ eval_joints = [
|
|||||||
"ankle_left",
|
"ankle_left",
|
||||||
"ankle_right",
|
"ankle_right",
|
||||||
]
|
]
|
||||||
if dataset_use in ["human36m", "panoptic"]:
|
if dataset_use == "human36m":
|
||||||
eval_joints[eval_joints.index("head")] = "nose"
|
eval_joints[eval_joints.index("head")] = "nose"
|
||||||
if dataset_use.endswith("_wb"):
|
if dataset_use == "panoptic":
|
||||||
|
eval_joints[eval_joints.index("head")] = "nose"
|
||||||
|
if dataset_use == "human36m_wb":
|
||||||
if any((test_triangulate.whole_body.values())):
|
if any((test_triangulate.whole_body.values())):
|
||||||
eval_joints = list(joint_names_2d)
|
eval_joints = list(joint_names_2d)
|
||||||
else:
|
else:
|
||||||
|
|||||||
@ -482,9 +482,10 @@ def load_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
|
|||||||
def load_wb_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
|
def load_wb_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
|
||||||
print("Loading 2D-WB model ...")
|
print("Loading 2D-WB model ...")
|
||||||
|
|
||||||
|
# The FP16 pose model is much worse than the FP32 for whole-body keypoints
|
||||||
model = TopDown(
|
model = TopDown(
|
||||||
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx",
|
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx",
|
||||||
f"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-l_wb_{'B' if batch_poses else '1'}x384x288x3_fp16_extra-steps.onnx",
|
f"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-l_wb_{'B' if batch_poses else '1'}x384x288x3_extra-steps.onnx",
|
||||||
box_conf_threshold=min_bbox_score,
|
box_conf_threshold=min_bbox_score,
|
||||||
box_min_area=min_bbox_area,
|
box_min_area=min_bbox_area,
|
||||||
warmup=30,
|
warmup=30,
|
||||||
|
|||||||
Reference in New Issue
Block a user