Speed up preprocessing.
This commit is contained in:
@ -19,25 +19,26 @@ class RTMDet(BaseModel):
|
||||
self.dy = 0
|
||||
self.scale = 0
|
||||
|
||||
norm_mean = -1 * np.array([123.675, 116.28, 103.53])
|
||||
norm_std = 1.0 / np.array([58.395, 57.12, 57.375])
|
||||
self.norm_mean = np.reshape(norm_mean, (1, 1, 3)).astype(np.float32)
|
||||
self.norm_std = np.reshape(norm_std, (1, 1, 3)).astype(np.float32)
|
||||
|
||||
def preprocess(self, image: np.ndarray):
|
||||
th, tw = self.input_shape[2:]
|
||||
tensor, self.dx, self.dy, self.scale = letterbox(
|
||||
image, (tw, th), fill_value=114
|
||||
)
|
||||
tensor -= np.array((123.675, 116.28, 103.53))
|
||||
tensor /= np.array((58.395, 57.12, 57.375))
|
||||
tensor = tensor.astype(np.float32, copy=False)
|
||||
tensor += self.norm_mean
|
||||
tensor *= self.norm_std
|
||||
tensor = tensor[..., ::-1]
|
||||
tensor = (
|
||||
np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
)
|
||||
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2))
|
||||
return tensor
|
||||
|
||||
def postprocess(self, tensor: List[np.ndarray]):
|
||||
boxes = tensor[0]
|
||||
classes = tensor[1]
|
||||
boxes = np.squeeze(boxes, axis=0)
|
||||
classes = np.squeeze(classes, axis=0)
|
||||
classes = np.expand_dims(classes, axis=-1)
|
||||
boxes = np.squeeze(tensor[0], axis=0)
|
||||
classes = np.expand_dims(np.squeeze(tensor[1], axis=0), axis=-1)
|
||||
boxes = np.concatenate([boxes, classes], axis=-1)
|
||||
|
||||
boxes = nms(boxes, self.iou_threshold, self.conf_threshold)
|
||||
|
||||
@ -199,7 +199,8 @@ class TopDown:
|
||||
# See: /mmpose/models/pose_estimators/topdown.py - add_pred_to_datasample()
|
||||
th, tw = region.shape[:2]
|
||||
bw, bh = [p.box[2] - p.box[0], p.box[3] - p.box[1]]
|
||||
kp[:, :2] = kp[:, :2] / np.array([tw, th]) * np.array([bw, bh])
|
||||
kp[:, :2] /= np.array([tw, th])
|
||||
kp[:, :2] *= np.array([bw, bh])
|
||||
kp[:, :2] += np.array([p.box[0] + bw / 2, p.box[1] + bh / 2])
|
||||
kp[:, :2] -= 0.5 * np.array([bw, bh])
|
||||
|
||||
|
||||
@ -43,13 +43,17 @@ class SimCC(BaseModel):
|
||||
self.dy = 0
|
||||
self.scale = 0
|
||||
|
||||
norm_mean = -1 * np.array([123.675, 116.28, 103.53])
|
||||
norm_std = 1.0 / np.array([58.395, 57.12, 57.375])
|
||||
self.norm_mean = np.reshape(norm_mean, (1, 1, 3)).astype(np.float32)
|
||||
self.norm_std = np.reshape(norm_std, (1, 1, 3)).astype(np.float32)
|
||||
|
||||
def preprocess(self, image: np.ndarray):
|
||||
tensor, self.dx, self.dy, self.scale = image, 0, 0, 1
|
||||
tensor -= np.array((123.675, 116.28, 103.53))
|
||||
tensor /= np.array((58.395, 57.12, 57.375))
|
||||
tensor = (
|
||||
np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
)
|
||||
tensor = tensor.astype(np.float32, copy=False)
|
||||
tensor += self.norm_mean
|
||||
tensor *= self.norm_std
|
||||
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2))
|
||||
return tensor
|
||||
|
||||
def postprocess(self, tensor: List[np.ndarray]):
|
||||
|
||||
@ -11,13 +11,10 @@ def letterbox(img: np.ndarray, target_size: Sequence[int], fill_value: int = 128
|
||||
|
||||
scale = min(tw / w, th / h)
|
||||
nw, nh = int(w * scale), int(h * scale)
|
||||
|
||||
resized_img = cv2.resize(img, (nw, nh))
|
||||
dx, dy = (tw - nw) // 2, (th - nh) // 2
|
||||
|
||||
canvas = np.full((th, tw, img.shape[2]), fill_value, dtype=img.dtype)
|
||||
|
||||
dx, dy = (tw - nw) // 2, (th - nh) // 2
|
||||
canvas[dy:dy + nh, dx:dx + nw, :] = resized_img
|
||||
canvas[dy:dy + nh, dx:dx + nw, :] = cv2.resize(img, (nw, nh))
|
||||
|
||||
return canvas, dx, dy, scale
|
||||
|
||||
|
||||
Reference in New Issue
Block a user