Speed up preprocessing.
This commit is contained in:
@ -19,25 +19,26 @@ class RTMDet(BaseModel):
|
||||
self.dy = 0
|
||||
self.scale = 0
|
||||
|
||||
norm_mean = -1 * np.array([123.675, 116.28, 103.53])
|
||||
norm_std = 1.0 / np.array([58.395, 57.12, 57.375])
|
||||
self.norm_mean = np.reshape(norm_mean, (1, 1, 3)).astype(np.float32)
|
||||
self.norm_std = np.reshape(norm_std, (1, 1, 3)).astype(np.float32)
|
||||
|
||||
def preprocess(self, image: np.ndarray):
|
||||
th, tw = self.input_shape[2:]
|
||||
tensor, self.dx, self.dy, self.scale = letterbox(
|
||||
image, (tw, th), fill_value=114
|
||||
)
|
||||
tensor -= np.array((123.675, 116.28, 103.53))
|
||||
tensor /= np.array((58.395, 57.12, 57.375))
|
||||
tensor = tensor.astype(np.float32, copy=False)
|
||||
tensor += self.norm_mean
|
||||
tensor *= self.norm_std
|
||||
tensor = tensor[..., ::-1]
|
||||
tensor = (
|
||||
np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
)
|
||||
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2))
|
||||
return tensor
|
||||
|
||||
def postprocess(self, tensor: List[np.ndarray]):
|
||||
boxes = tensor[0]
|
||||
classes = tensor[1]
|
||||
boxes = np.squeeze(boxes, axis=0)
|
||||
classes = np.squeeze(classes, axis=0)
|
||||
classes = np.expand_dims(classes, axis=-1)
|
||||
boxes = np.squeeze(tensor[0], axis=0)
|
||||
classes = np.expand_dims(np.squeeze(tensor[1], axis=0), axis=-1)
|
||||
boxes = np.concatenate([boxes, classes], axis=-1)
|
||||
|
||||
boxes = nms(boxes, self.iou_threshold, self.conf_threshold)
|
||||
|
||||
Reference in New Issue
Block a user