Small speed improvements.
This commit is contained in:
@ -7,9 +7,9 @@ Results of the model in various experiments on different datasets.
|
||||
(duration 00:01:20)
|
||||
```json
|
||||
{
|
||||
"avg_time_2d": 0.07095112719778288,
|
||||
"avg_time_3d": 0.0030404001979504602,
|
||||
"avg_fps": 13.515060915713226
|
||||
"avg_time_2d": 0.0706314975932493,
|
||||
"avg_time_3d": 0.002891659332534014,
|
||||
"avg_fps": 13.6011569934277
|
||||
}
|
||||
{
|
||||
"person_nums": {
|
||||
@ -278,9 +278,9 @@ Results of the model in various experiments on different datasets.
|
||||
(duration 00:00:56)
|
||||
```json
|
||||
{
|
||||
"avg_time_2d": 0.10204474868643325,
|
||||
"avg_time_3d": 0.017180594382007506,
|
||||
"avg_fps": 8.38747848623052
|
||||
"avg_time_2d": 0.10373067446181045,
|
||||
"avg_time_3d": 0.01558385436067876,
|
||||
"avg_fps": 8.381208976551004
|
||||
}
|
||||
{
|
||||
"person_nums": {
|
||||
@ -549,9 +549,9 @@ Results of the model in various experiments on different datasets.
|
||||
(duration 00:00:29)
|
||||
```json
|
||||
{
|
||||
"avg_time_2d": 0.05710376546068011,
|
||||
"avg_time_3d": 0.005011487681910677,
|
||||
"avg_fps": 16.09910528263349
|
||||
"avg_time_2d": 0.059855266562047996,
|
||||
"avg_time_3d": 0.004884123802185059,
|
||||
"avg_fps": 15.446546443731663
|
||||
}
|
||||
{
|
||||
"person_nums": {
|
||||
@ -820,9 +820,9 @@ Results of the model in various experiments on different datasets.
|
||||
(duration 00:02:31)
|
||||
```json
|
||||
{
|
||||
"avg_time_2d": 0.05584677240189905,
|
||||
"avg_time_3d": 0.0030521013817609993,
|
||||
"avg_fps": 16.978253330837436
|
||||
"avg_time_2d": 0.05529122129203044,
|
||||
"avg_time_3d": 0.0028780115247735685,
|
||||
"avg_fps": 17.191218649029846
|
||||
}
|
||||
{
|
||||
"person_nums": {
|
||||
@ -858,8 +858,8 @@ Results of the model in various experiments on different datasets.
|
||||
"ap-0.05": 9.5e-05,
|
||||
"ap-0.1": 0.257803,
|
||||
"ap-0.15": 0.500043,
|
||||
"ap-0.25": 0.610092,
|
||||
"ap-0.5": 0.638299
|
||||
"ap-0.25": 0.610091,
|
||||
"ap-0.5": 0.638298
|
||||
},
|
||||
"head": {
|
||||
"count": 753,
|
||||
@ -1031,9 +1031,9 @@ Results of the model in various experiments on different datasets.
|
||||
(duration 00:02:28)
|
||||
```json
|
||||
{
|
||||
"avg_time_2d": 0.10889388700810874,
|
||||
"avg_time_3d": 0.02615876488569306,
|
||||
"avg_fps": 7.404519540914655
|
||||
"avg_time_2d": 0.10983607013051103,
|
||||
"avg_time_3d": 0.023344272520483995,
|
||||
"avg_fps": 7.508615611693869
|
||||
}
|
||||
{
|
||||
"person_nums": {
|
||||
|
||||
@ -46,7 +46,7 @@ def undistort_points(points: np.ndarray, caminfo: dict):
|
||||
points = cv2.undistortPoints(points, K, DC, P=newK)
|
||||
points = points.reshape(pshape)
|
||||
|
||||
return points
|
||||
return points, caminfo
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
@ -104,9 +104,7 @@ def calc_pose_scored(pose1, pose2, cam1, cam2, roomparams):
|
||||
# Triangulate points
|
||||
points1 = pose1[mask, 0:2].T
|
||||
points2 = pose2[mask, 0:2].T
|
||||
P1 = get_camera_P(cam1)
|
||||
P2 = get_camera_P(cam2)
|
||||
points3d = cv2.triangulatePoints(P1, P2, points1, points2)
|
||||
points3d = cv2.triangulatePoints(cam1["P"], cam2["P"], points1, points2)
|
||||
points3d = (points3d / points3d[3, :])[0:3, :].T
|
||||
pose3d = np.zeros([len(pose1), 4])
|
||||
pose3d[mask] = np.concatenate([points3d, np.ones([points3d.shape[0], 1])], axis=-1)
|
||||
@ -295,14 +293,26 @@ def get_3d_pose(poses_2d, camparams, roomparams, joint_names_2d, min_score=0.95)
|
||||
camparams[i]["K"] = np.array(camparams[i]["K"])
|
||||
camparams[i]["R"] = np.array(camparams[i]["R"])
|
||||
camparams[i]["T"] = np.array(camparams[i]["T"])
|
||||
camparams[i]["DC"] = np.array(camparams[i]["DC"][0:5])
|
||||
camparams[i]["DC"] = np.array(camparams[i]["DC"])
|
||||
|
||||
# Undistort 2D points
|
||||
for i in range(len(camparams)):
|
||||
poses = poses_2d[i]
|
||||
cam = camparams[i]
|
||||
poses[:, :, 0:2] = undistort_points(poses[:, :, 0:2], cam)
|
||||
poses[:, :, 0:2], cam = undistort_points(poses[:, :, 0:2], cam)
|
||||
# Mask out points that are far outside the image (points slightly outside are still valid)
|
||||
offset = (cam["width"] + cam["height"]) / 40
|
||||
mask = (
|
||||
(poses[:, :, 0] >= 0 - offset)
|
||||
& (poses[:, :, 0] < cam["width"] + offset)
|
||||
& (poses[:, :, 1] >= 0 - offset)
|
||||
& (poses[:, :, 1] < cam["height"] + offset)
|
||||
)
|
||||
poses = poses * np.expand_dims(mask, axis=-1)
|
||||
poses_2d[i] = poses
|
||||
# Calc projection matrix with updated camera parameters
|
||||
cam["P"] = get_camera_P(cam)
|
||||
camparams[i] = cam
|
||||
|
||||
# Create pairs of persons
|
||||
num_persons = [len(p) for p in poses_2d]
|
||||
|
||||
Reference in New Issue
Block a user