Moved detector pre/post-processing into onnx graph.
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
import numpy as np
|
||||
import onnx
|
||||
from onnx import TensorProto, helper, numpy_helper
|
||||
from onnx import TensorProto, compose, helper, numpy_helper
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
@ -97,6 +97,37 @@ def add_steps_to_onnx(model_path):
|
||||
for i, j in enumerate([0, 3, 1, 2]):
|
||||
input_shape[j].dim_value = dims[i]
|
||||
|
||||
if "det" in model_path:
|
||||
# Add preprocess model to main network
|
||||
pp1_model = onnx.load(base_path + "det_preprocess.onnx")
|
||||
model = compose.add_prefix(model, prefix="main_")
|
||||
pp1_model = compose.add_prefix(pp1_model, prefix="preprocess_")
|
||||
model = compose.merge_models(
|
||||
pp1_model,
|
||||
model,
|
||||
io_map=[(pp1_model.graph.output[0].name, model.graph.input[0].name)],
|
||||
)
|
||||
|
||||
# Add postprocess model
|
||||
pp2_model = onnx.load(base_path + "det_postprocess.onnx")
|
||||
pp2_model = compose.add_prefix(pp2_model, prefix="postprocess_")
|
||||
model = compose.merge_models(
|
||||
model,
|
||||
pp2_model,
|
||||
io_map=[
|
||||
(model.graph.output[0].name, pp2_model.graph.input[1].name),
|
||||
],
|
||||
)
|
||||
|
||||
# Update nodes from postprocess model to use the input of the main network
|
||||
pp2_input_image_name = pp2_model.graph.input[0].name
|
||||
main_input_name = model.graph.input[0].name
|
||||
for node in model.graph.node:
|
||||
for idx, name in enumerate(node.input):
|
||||
if name == pp2_input_image_name:
|
||||
node.input[idx] = main_input_name
|
||||
model.graph.input.pop(1)
|
||||
|
||||
# Set input type to int8
|
||||
model.graph.input[0].type.tensor_type.elem_type = TensorProto.UINT8
|
||||
|
||||
|
||||
@ -3,3 +3,7 @@ _base_ = ["../_base_/base_static.py", "../../_base_/backends/onnxruntime.py"]
|
||||
onnx_config = dict(
|
||||
input_shape=[320, 320],
|
||||
)
|
||||
|
||||
codebase_config = dict(
|
||||
post_processing=dict(score_threshold=0.3, iou_threshold=0.3),
|
||||
)
|
||||
|
||||
@ -3,3 +3,7 @@ _base_ = ["../_base_/base_static.py", "../../_base_/backends/onnxruntime-fp16.py
|
||||
onnx_config = dict(
|
||||
input_shape=[320, 320],
|
||||
)
|
||||
|
||||
codebase_config = dict(
|
||||
post_processing=dict(score_threshold=0.3, iou_threshold=0.3),
|
||||
)
|
||||
|
||||
161
extras/mmdeploy/make_extra_graphs.py
Normal file
161
extras/mmdeploy/make_extra_graphs.py
Normal file
@ -0,0 +1,161 @@
|
||||
import cv2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/"
|
||||
det_target_size = (320, 320)
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class Letterbox(nn.Module):
|
||||
def __init__(self, target_size, fill_value=128):
|
||||
"""Resize and pad image while keeping aspect ratio"""
|
||||
super(Letterbox, self).__init__()
|
||||
|
||||
self.target_size = target_size
|
||||
self.fill_value = fill_value
|
||||
|
||||
def calc_params(self, img):
|
||||
ih, iw = img.shape[1:3]
|
||||
th, tw = self.target_size
|
||||
|
||||
scale = torch.min(tw / iw, th / ih)
|
||||
nw = torch.round(iw * scale)
|
||||
nh = torch.round(ih * scale)
|
||||
|
||||
pad_w = tw - nw
|
||||
pad_h = th - nh
|
||||
pad_left = pad_w // 2
|
||||
pad_top = pad_h // 2
|
||||
pad_right = pad_w - pad_left
|
||||
pad_bottom = pad_h - pad_top
|
||||
paddings = (pad_left, pad_right, pad_top, pad_bottom)
|
||||
|
||||
return paddings, scale, (nw, nh)
|
||||
|
||||
def forward(self, img):
|
||||
paddings, _, (nw, nh) = self.calc_params(img)
|
||||
|
||||
# Resize the image
|
||||
img = img.to(torch.float32)
|
||||
img = F.interpolate(
|
||||
img.permute(0, 3, 1, 2), size=(nh, nw), mode="bilinear", align_corners=False
|
||||
)
|
||||
img = img.permute(0, 2, 3, 1)
|
||||
img = img.round()
|
||||
|
||||
# Pad the image
|
||||
img = F.pad(
|
||||
img.permute(0, 3, 1, 2),
|
||||
pad=paddings,
|
||||
mode="constant",
|
||||
value=self.fill_value,
|
||||
)
|
||||
img = img.permute(0, 2, 3, 1)
|
||||
canvas = img
|
||||
|
||||
return canvas
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class DetPreprocess(nn.Module):
|
||||
def __init__(self, target_size, fill_value=114):
|
||||
super(DetPreprocess, self).__init__()
|
||||
self.letterbox = Letterbox(target_size, fill_value)
|
||||
|
||||
def forward(self, img):
|
||||
# img: torch.Tensor of shape [batch, H, W, C], dtype=torch.uint8
|
||||
img = self.letterbox(img)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class DetPostprocess(nn.Module):
|
||||
def __init__(self, target_size):
|
||||
super(DetPostprocess, self).__init__()
|
||||
self.letterbox = Letterbox(target_size)
|
||||
|
||||
def forward(self, img, boxes):
|
||||
paddings, scale, _ = self.letterbox.calc_params(img)
|
||||
|
||||
boxes = boxes.float()
|
||||
boxes[:, :, 0] -= paddings[0]
|
||||
boxes[:, :, 2] -= paddings[0]
|
||||
boxes[:, :, 1] -= paddings[2]
|
||||
boxes[:, :, 3] -= paddings[2]
|
||||
boxes[:, :, 0:4] /= scale
|
||||
|
||||
ih, iw = img.shape[1:3]
|
||||
boxes = torch.max(boxes, torch.tensor(0))
|
||||
b0 = boxes[:, :, 0]
|
||||
b1 = boxes[:, :, 1]
|
||||
b2 = boxes[:, :, 2]
|
||||
b3 = boxes[:, :, 3]
|
||||
b0 = torch.min(b0, iw - 1)
|
||||
b1 = torch.min(b1, ih - 1)
|
||||
b2 = torch.min(b2, iw - 1)
|
||||
b3 = torch.min(b3, ih - 1)
|
||||
boxes = torch.stack((b0, b1, b2, b3, boxes[:, :, 4]), dim=2)
|
||||
|
||||
return boxes
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
img_path = "/RapidPoseTriangulation/scripts/../data/h1/54138969-img_003201.jpg"
|
||||
image = cv2.imread(img_path, 3)
|
||||
|
||||
# Initialize the DetPreprocess module
|
||||
preprocess_model = DetPreprocess(target_size=det_target_size)
|
||||
det_dummy_input_a0 = torch.from_numpy(image).unsqueeze(0)
|
||||
|
||||
# Export to ONNX
|
||||
torch.onnx.export(
|
||||
preprocess_model,
|
||||
det_dummy_input_a0,
|
||||
base_path + "det_preprocess.onnx",
|
||||
opset_version=11,
|
||||
input_names=["input_image"],
|
||||
output_names=["preprocessed_image"],
|
||||
dynamic_axes={
|
||||
"input_image": {0: "batch_size", 1: "height", 2: "width"},
|
||||
"preprocessed_image": {0: "batch_size"},
|
||||
},
|
||||
)
|
||||
|
||||
# Initialize the DetPostprocess module
|
||||
postprocess_model = DetPostprocess(target_size=det_target_size)
|
||||
det_dummy_input_b0 = torch.from_numpy(image).unsqueeze(0)
|
||||
det_dummy_input_b1 = torch.rand(1, 10, 5)
|
||||
|
||||
# Export to ONNX
|
||||
torch.onnx.export(
|
||||
postprocess_model,
|
||||
(det_dummy_input_b0, det_dummy_input_b1),
|
||||
base_path + "det_postprocess.onnx",
|
||||
opset_version=11,
|
||||
input_names=["input_image", "boxes"],
|
||||
output_names=["output_boxes"],
|
||||
dynamic_axes={
|
||||
"input_image": {0: "batch_size", 1: "height", 2: "width"},
|
||||
"boxes": {0: "batch_size", 1: "num_boxes"},
|
||||
"output_boxes": {0: "batch_size", 1: "num_boxes"},
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user