Moved detector pre/post-processing into onnx graph.
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
import numpy as np
|
||||
import onnx
|
||||
from onnx import TensorProto, helper, numpy_helper
|
||||
from onnx import TensorProto, compose, helper, numpy_helper
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
@ -97,6 +97,37 @@ def add_steps_to_onnx(model_path):
|
||||
for i, j in enumerate([0, 3, 1, 2]):
|
||||
input_shape[j].dim_value = dims[i]
|
||||
|
||||
if "det" in model_path:
|
||||
# Add preprocess model to main network
|
||||
pp1_model = onnx.load(base_path + "det_preprocess.onnx")
|
||||
model = compose.add_prefix(model, prefix="main_")
|
||||
pp1_model = compose.add_prefix(pp1_model, prefix="preprocess_")
|
||||
model = compose.merge_models(
|
||||
pp1_model,
|
||||
model,
|
||||
io_map=[(pp1_model.graph.output[0].name, model.graph.input[0].name)],
|
||||
)
|
||||
|
||||
# Add postprocess model
|
||||
pp2_model = onnx.load(base_path + "det_postprocess.onnx")
|
||||
pp2_model = compose.add_prefix(pp2_model, prefix="postprocess_")
|
||||
model = compose.merge_models(
|
||||
model,
|
||||
pp2_model,
|
||||
io_map=[
|
||||
(model.graph.output[0].name, pp2_model.graph.input[1].name),
|
||||
],
|
||||
)
|
||||
|
||||
# Update nodes from postprocess model to use the input of the main network
|
||||
pp2_input_image_name = pp2_model.graph.input[0].name
|
||||
main_input_name = model.graph.input[0].name
|
||||
for node in model.graph.node:
|
||||
for idx, name in enumerate(node.input):
|
||||
if name == pp2_input_image_name:
|
||||
node.input[idx] = main_input_name
|
||||
model.graph.input.pop(1)
|
||||
|
||||
# Set input type to int8
|
||||
model.graph.input[0].type.tensor_type.elem_type = TensorProto.UINT8
|
||||
|
||||
|
||||
@ -3,3 +3,7 @@ _base_ = ["../_base_/base_static.py", "../../_base_/backends/onnxruntime.py"]
|
||||
onnx_config = dict(
|
||||
input_shape=[320, 320],
|
||||
)
|
||||
|
||||
codebase_config = dict(
|
||||
post_processing=dict(score_threshold=0.3, iou_threshold=0.3),
|
||||
)
|
||||
|
||||
@ -3,3 +3,7 @@ _base_ = ["../_base_/base_static.py", "../../_base_/backends/onnxruntime-fp16.py
|
||||
onnx_config = dict(
|
||||
input_shape=[320, 320],
|
||||
)
|
||||
|
||||
codebase_config = dict(
|
||||
post_processing=dict(score_threshold=0.3, iou_threshold=0.3),
|
||||
)
|
||||
|
||||
161
extras/mmdeploy/make_extra_graphs.py
Normal file
161
extras/mmdeploy/make_extra_graphs.py
Normal file
@ -0,0 +1,161 @@
|
||||
import cv2
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/"
|
||||
det_target_size = (320, 320)
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class Letterbox(nn.Module):
|
||||
def __init__(self, target_size, fill_value=128):
|
||||
"""Resize and pad image while keeping aspect ratio"""
|
||||
super(Letterbox, self).__init__()
|
||||
|
||||
self.target_size = target_size
|
||||
self.fill_value = fill_value
|
||||
|
||||
def calc_params(self, img):
|
||||
ih, iw = img.shape[1:3]
|
||||
th, tw = self.target_size
|
||||
|
||||
scale = torch.min(tw / iw, th / ih)
|
||||
nw = torch.round(iw * scale)
|
||||
nh = torch.round(ih * scale)
|
||||
|
||||
pad_w = tw - nw
|
||||
pad_h = th - nh
|
||||
pad_left = pad_w // 2
|
||||
pad_top = pad_h // 2
|
||||
pad_right = pad_w - pad_left
|
||||
pad_bottom = pad_h - pad_top
|
||||
paddings = (pad_left, pad_right, pad_top, pad_bottom)
|
||||
|
||||
return paddings, scale, (nw, nh)
|
||||
|
||||
def forward(self, img):
|
||||
paddings, _, (nw, nh) = self.calc_params(img)
|
||||
|
||||
# Resize the image
|
||||
img = img.to(torch.float32)
|
||||
img = F.interpolate(
|
||||
img.permute(0, 3, 1, 2), size=(nh, nw), mode="bilinear", align_corners=False
|
||||
)
|
||||
img = img.permute(0, 2, 3, 1)
|
||||
img = img.round()
|
||||
|
||||
# Pad the image
|
||||
img = F.pad(
|
||||
img.permute(0, 3, 1, 2),
|
||||
pad=paddings,
|
||||
mode="constant",
|
||||
value=self.fill_value,
|
||||
)
|
||||
img = img.permute(0, 2, 3, 1)
|
||||
canvas = img
|
||||
|
||||
return canvas
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class DetPreprocess(nn.Module):
|
||||
def __init__(self, target_size, fill_value=114):
|
||||
super(DetPreprocess, self).__init__()
|
||||
self.letterbox = Letterbox(target_size, fill_value)
|
||||
|
||||
def forward(self, img):
|
||||
# img: torch.Tensor of shape [batch, H, W, C], dtype=torch.uint8
|
||||
img = self.letterbox(img)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class DetPostprocess(nn.Module):
|
||||
def __init__(self, target_size):
|
||||
super(DetPostprocess, self).__init__()
|
||||
self.letterbox = Letterbox(target_size)
|
||||
|
||||
def forward(self, img, boxes):
|
||||
paddings, scale, _ = self.letterbox.calc_params(img)
|
||||
|
||||
boxes = boxes.float()
|
||||
boxes[:, :, 0] -= paddings[0]
|
||||
boxes[:, :, 2] -= paddings[0]
|
||||
boxes[:, :, 1] -= paddings[2]
|
||||
boxes[:, :, 3] -= paddings[2]
|
||||
boxes[:, :, 0:4] /= scale
|
||||
|
||||
ih, iw = img.shape[1:3]
|
||||
boxes = torch.max(boxes, torch.tensor(0))
|
||||
b0 = boxes[:, :, 0]
|
||||
b1 = boxes[:, :, 1]
|
||||
b2 = boxes[:, :, 2]
|
||||
b3 = boxes[:, :, 3]
|
||||
b0 = torch.min(b0, iw - 1)
|
||||
b1 = torch.min(b1, ih - 1)
|
||||
b2 = torch.min(b2, iw - 1)
|
||||
b3 = torch.min(b3, ih - 1)
|
||||
boxes = torch.stack((b0, b1, b2, b3, boxes[:, :, 4]), dim=2)
|
||||
|
||||
return boxes
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
img_path = "/RapidPoseTriangulation/scripts/../data/h1/54138969-img_003201.jpg"
|
||||
image = cv2.imread(img_path, 3)
|
||||
|
||||
# Initialize the DetPreprocess module
|
||||
preprocess_model = DetPreprocess(target_size=det_target_size)
|
||||
det_dummy_input_a0 = torch.from_numpy(image).unsqueeze(0)
|
||||
|
||||
# Export to ONNX
|
||||
torch.onnx.export(
|
||||
preprocess_model,
|
||||
det_dummy_input_a0,
|
||||
base_path + "det_preprocess.onnx",
|
||||
opset_version=11,
|
||||
input_names=["input_image"],
|
||||
output_names=["preprocessed_image"],
|
||||
dynamic_axes={
|
||||
"input_image": {0: "batch_size", 1: "height", 2: "width"},
|
||||
"preprocessed_image": {0: "batch_size"},
|
||||
},
|
||||
)
|
||||
|
||||
# Initialize the DetPostprocess module
|
||||
postprocess_model = DetPostprocess(target_size=det_target_size)
|
||||
det_dummy_input_b0 = torch.from_numpy(image).unsqueeze(0)
|
||||
det_dummy_input_b1 = torch.rand(1, 10, 5)
|
||||
|
||||
# Export to ONNX
|
||||
torch.onnx.export(
|
||||
postprocess_model,
|
||||
(det_dummy_input_b0, det_dummy_input_b1),
|
||||
base_path + "det_postprocess.onnx",
|
||||
opset_version=11,
|
||||
input_names=["input_image", "boxes"],
|
||||
output_names=["output_boxes"],
|
||||
dynamic_axes={
|
||||
"input_image": {0: "batch_size", 1: "height", 2: "width"},
|
||||
"boxes": {0: "batch_size", 1: "num_boxes"},
|
||||
"output_boxes": {0: "batch_size", 1: "num_boxes"},
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -31,6 +31,8 @@ class BaseModel(ABC):
|
||||
|
||||
self.input_name = self.session.get_inputs()[0].name
|
||||
self.input_shape = self.session.get_inputs()[0].shape
|
||||
if "batch_size" in self.input_shape:
|
||||
self.input_shape = [1, 500, 500, 3]
|
||||
|
||||
input_type = self.session.get_inputs()[0].type
|
||||
if input_type == "tensor(float16)":
|
||||
@ -72,116 +74,25 @@ class RTMDet(BaseModel):
|
||||
self,
|
||||
model_path: str,
|
||||
conf_threshold: float,
|
||||
iou_threshold: float,
|
||||
warmup: int = 30,
|
||||
):
|
||||
super(RTMDet, self).__init__(model_path, warmup)
|
||||
self.conf_threshold = conf_threshold
|
||||
self.iou_threshold = iou_threshold
|
||||
self.dx = 0
|
||||
self.dy = 0
|
||||
self.scale = 0
|
||||
|
||||
def letterbox(self, img: np.ndarray, target_size: List[int], fill_value: int = 128):
|
||||
h, w = img.shape[:2]
|
||||
tw, th = target_size
|
||||
|
||||
scale = min(tw / w, th / h)
|
||||
nw, nh = int(w * scale), int(h * scale)
|
||||
dx, dy = (tw - nw) // 2, (th - nh) // 2
|
||||
|
||||
canvas = np.full((th, tw, img.shape[2]), fill_value, dtype=img.dtype)
|
||||
canvas[dy : dy + nh, dx : dx + nw, :] = cv2.resize(
|
||||
img, (nw, nh), interpolation=cv2.INTER_LINEAR
|
||||
)
|
||||
|
||||
return canvas, dx, dy, scale
|
||||
|
||||
def nms_optimized(
|
||||
self, boxes: np.ndarray, iou_threshold: float, conf_threshold: float
|
||||
):
|
||||
"""
|
||||
Perform Non-Maximum Suppression (NMS) on bounding boxes for a single class.
|
||||
"""
|
||||
|
||||
# Filter out boxes with low confidence scores
|
||||
scores = boxes[:, 4]
|
||||
keep = scores > conf_threshold
|
||||
boxes = boxes[keep]
|
||||
scores = scores[keep]
|
||||
|
||||
if boxes.shape[0] == 0:
|
||||
return np.empty((0, 5), dtype=boxes.dtype)
|
||||
|
||||
# Compute the area of the bounding boxes
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
|
||||
# Sort the boxes by scores in descending order
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep_indices = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep_indices.append(i)
|
||||
|
||||
# Compute IoU of the current box with the rest
|
||||
xx1 = np.maximum(x1[i], x1[order[1:]])
|
||||
yy1 = np.maximum(y1[i], y1[order[1:]])
|
||||
xx2 = np.minimum(x2[i], x2[order[1:]])
|
||||
yy2 = np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
# Compute width and height of the overlapping area
|
||||
w = np.maximum(0.0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0.0, yy2 - yy1 + 1)
|
||||
|
||||
# Compute the area of the intersection
|
||||
inter = w * h
|
||||
|
||||
# Compute the IoU
|
||||
iou = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
|
||||
# Keep boxes with IoU less than the threshold
|
||||
inds = np.where(iou <= iou_threshold)[0]
|
||||
|
||||
# Update the order array
|
||||
order = order[inds + 1]
|
||||
|
||||
# Return the boxes that are kept
|
||||
return boxes[keep_indices]
|
||||
|
||||
def preprocess(self, image: np.ndarray):
|
||||
th, tw = self.input_shape[1:3]
|
||||
image, self.dx, self.dy, self.scale = self.letterbox(
|
||||
image, (tw, th), fill_value=114
|
||||
)
|
||||
tensor = np.asarray(image).astype(self.input_type, copy=False)
|
||||
tensor = np.expand_dims(tensor, axis=0)
|
||||
return tensor
|
||||
|
||||
def postprocess(self, tensor: List[np.ndarray]):
|
||||
boxes = np.squeeze(tensor[0], axis=0)
|
||||
classes = np.expand_dims(np.squeeze(tensor[1], axis=0), axis=-1)
|
||||
boxes = np.concatenate([boxes, classes], axis=-1)
|
||||
boxes = np.squeeze(tensor[1], axis=0)
|
||||
classes = np.squeeze(tensor[0], axis=0)
|
||||
|
||||
boxes = self.nms_optimized(boxes, self.iou_threshold, self.conf_threshold)
|
||||
human_class = classes[:] == 0
|
||||
boxes = boxes[human_class]
|
||||
|
||||
if boxes.shape[0] == 0:
|
||||
return boxes
|
||||
|
||||
human_class = boxes[..., -1] == 0
|
||||
boxes = boxes[human_class][..., :4]
|
||||
|
||||
boxes[:, 0] -= self.dx
|
||||
boxes[:, 2] -= self.dx
|
||||
boxes[:, 1] -= self.dy
|
||||
boxes[:, 3] -= self.dy
|
||||
|
||||
boxes = np.clip(boxes, a_min=0, a_max=None)
|
||||
boxes[:, :4] /= self.scale
|
||||
keep = boxes[:, 4] > self.conf_threshold
|
||||
boxes = boxes[keep]
|
||||
|
||||
return boxes
|
||||
|
||||
@ -201,7 +112,7 @@ class RTMPose(BaseModel):
|
||||
target_size: List[int],
|
||||
padding_scale: float = 1.25,
|
||||
):
|
||||
start_x, start_y, end_x, end_y = box
|
||||
start_x, start_y, end_x, end_y = box[0:4]
|
||||
target_w, target_h = target_size
|
||||
|
||||
# Calculate original bounding box width and height
|
||||
@ -305,8 +216,7 @@ class TopDown:
|
||||
self,
|
||||
det_model_path,
|
||||
pose_model_path,
|
||||
conf_threshold=0.6,
|
||||
iou_threshold=0.6,
|
||||
box_conf_threshold=0.6,
|
||||
warmup=30,
|
||||
):
|
||||
if (not det_model_path.endswith(".onnx")) or (
|
||||
@ -314,7 +224,7 @@ class TopDown:
|
||||
):
|
||||
raise ValueError("Only ONNX models are supported.")
|
||||
|
||||
self.det_model = RTMDet(det_model_path, conf_threshold, iou_threshold, warmup)
|
||||
self.det_model = RTMDet(det_model_path, box_conf_threshold, warmup)
|
||||
self.pose_model = RTMPose(pose_model_path, warmup)
|
||||
|
||||
def predict(self, image):
|
||||
@ -337,8 +247,7 @@ def load_model():
|
||||
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_320x320_fp16_extra-steps.onnx",
|
||||
# "/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_384x288_extra-steps.onnx",
|
||||
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_384x288_fp16_extra-steps.onnx",
|
||||
conf_threshold=0.3,
|
||||
iou_threshold=0.3,
|
||||
box_conf_threshold=0.3,
|
||||
warmup=30,
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user