Cache onnx-trt models, they are faster than using two trt-engines. Removed trt-runtime again.

This commit is contained in:
Daniel
2024-12-18 12:33:43 +01:00
parent b26ec998b3
commit 7b8d209601
2 changed files with 15 additions and 95 deletions

View File

@ -6,9 +6,6 @@ from typing import List
import cv2
import numpy as np
import onnxruntime as ort
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
from tqdm import tqdm
# ==================================================================================================
@ -22,10 +19,7 @@ class BaseModel(ABC):
if not os.path.exists(model_path):
raise FileNotFoundError("File not found:", model_path)
if model_path.endswith(".engine"):
self.init_trt_engine(model_path)
self.runtime = "trt"
elif model_path.endswith(".onnx"):
if model_path.endswith(".onnx"):
self.init_onnxruntime(model_path)
self.runtime = "ort"
else:
@ -46,7 +40,15 @@ class BaseModel(ABC):
self.providers = []
if usetrt and "TensorrtExecutionProvider" in providers:
self.providers.append("TensorrtExecutionProvider")
self.providers.append(
(
"TensorrtExecutionProvider",
{
"trt_engine_cache_enable": True,
"trt_engine_cache_path": "/RapidPoseTriangulation/data/trt_cache/",
},
)
)
if usegpu and "CUDAExecutionProvider" in providers:
self.providers.append("CUDAExecutionProvider")
self.providers.append("CPUExecutionProvider")
@ -75,51 +77,6 @@ class BaseModel(ABC):
raise ValueError("Undefined input type:", input_type)
self.input_types.append(itype)
def init_trt_engine(self, engine_path):
# https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#python_topics
# https://stackoverflow.com/a/79076885
self.trt_logger = trt.Logger(trt.Logger.WARNING)
with open(engine_path, "rb") as f:
runtime = trt.Runtime(self.trt_logger)
self.engine = runtime.deserialize_cuda_engine(f.read())
self.context = self.engine.create_execution_context()
self.stream = cuda.Stream()
self.inputs, self.outputs, self.bindings = [], [], []
self.input_names = []
self.input_shapes = []
self.input_types = []
for i in range(self.engine.num_io_tensors):
tensor_name = self.engine.get_tensor_name(i)
shape = self.engine.get_tensor_shape(tensor_name)
dtype = trt.nptype(self.engine.get_tensor_dtype(tensor_name))
if -1 in shape:
print("WARNING: Replacing dynamic shape with fixed for:", tensor_name)
shape[list(shape).index(-1)] = 10
# Allocate host and device buffers
size = trt.volume(shape)
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
self.bindings.append(int(device_mem))
# Append to the appropriate input/output list
if self.engine.get_tensor_mode(tensor_name) == trt.TensorIOMode.INPUT:
self.inputs.append((host_mem, device_mem, shape))
self.input_names.append(tensor_name)
self.input_shapes.append(shape)
self.input_types.append(dtype)
else:
self.outputs.append((host_mem, device_mem, shape))
# Set tensor address
self.context.set_tensor_address(
self.engine.get_tensor_name(i), self.bindings[i]
)
@abstractmethod
def preprocess(self, **kwargs):
pass
@ -168,7 +125,7 @@ class BaseModel(ABC):
tensor = tensor.astype(self.input_types[i])
inputs[iname] = tensor
self.call_model(list(inputs.values()))
self.call_model_ort(list(inputs.values()))
def call_model_ort(self, tensor):
inputs = {}
@ -178,45 +135,9 @@ class BaseModel(ABC):
result = self.session.run(None, inputs)
return result
def call_model_trt(self, tensor):
# Transfer input data to device
for i, input_data in enumerate(tensor):
np.copyto(self.inputs[i][0], input_data.ravel())
cuda.memcpy_htod_async(self.inputs[i][1], self.inputs[i][0], self.stream)
# Empty the output buffers
for i in range(len(self.outputs)):
self.outputs[i][0].fill(0)
cuda.memcpy_htod_async(self.outputs[i][1], self.outputs[i][0], self.stream)
# Run inference
self.context.execute_async_v3(stream_handle=self.stream.handle)
# Transfer predictions back
for i in range(len(self.outputs)):
cuda.memcpy_dtoh_async(self.outputs[i][0], self.outputs[i][1], self.stream)
# Synchronize the stream
self.stream.synchronize()
# Un-flatten the outputs
outputs = []
for i in range(len(self.outputs)):
output = self.outputs[i][0].reshape(self.outputs[i][2])
outputs.append(output)
return outputs
def call_model(self, tensor):
if self.runtime == "trt":
result = self.call_model_trt(tensor)
elif self.runtime == "ort":
result = self.call_model_ort(tensor)
return result
def __call__(self, **kwargs):
tensor = self.preprocess(**kwargs)
result = self.call_model(tensor)
result = self.call_model_ort(tensor)
output = self.postprocess(result=result, **kwargs)
return output
@ -544,10 +465,8 @@ def load_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1):
print("Loading 2D model ...")
model = TopDown(
# "/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_320x320_fp16_extra-steps.onnx",
# "/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_384x288_fp16_extra-steps.onnx",
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.engine",
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_1x384x288x3_fp16_extra-steps.engine",
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_320x320_fp16_extra-steps.onnx",
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_384x288_fp16_extra-steps.onnx",
box_conf_threshold=min_bbox_score,
box_min_area=min_bbox_area,
warmup=30,