Fixed running custom onnx models.
This commit is contained in:
@ -21,18 +21,27 @@ class RTMDet(BaseModel):
|
||||
|
||||
def preprocess(self, image: np.ndarray):
|
||||
th, tw = self.input_shape[2:]
|
||||
image, self.dx, self.dy, self.scale = letterbox(image, (tw, th))
|
||||
tensor = (image - np.array((103.53, 116.28, 123.675))) / np.array((57.375, 57.12, 58.395))
|
||||
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
tensor, self.dx, self.dy, self.scale = letterbox(
|
||||
image, (tw, th), fill_value=114
|
||||
)
|
||||
tensor -= np.array((123.675, 116.28, 103.53))
|
||||
tensor /= np.array((58.395, 57.12, 57.375))
|
||||
tensor = tensor[..., ::-1]
|
||||
tensor = (
|
||||
np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
)
|
||||
return tensor
|
||||
|
||||
def postprocess(self, tensor: List[np.ndarray]):
|
||||
boxes = tensor[0]
|
||||
classes = tensor[1]
|
||||
boxes = np.squeeze(boxes, axis=0)
|
||||
boxes[..., [4, 5]] = boxes[..., [5, 4]]
|
||||
classes = np.squeeze(classes, axis=0)
|
||||
classes = np.expand_dims(classes, axis=-1)
|
||||
boxes = np.concatenate([boxes, classes], axis=-1)
|
||||
|
||||
boxes = nms(boxes, self.iou_threshold, self.conf_threshold)
|
||||
|
||||
|
||||
if boxes.shape[0] == 0:
|
||||
return boxes
|
||||
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from easypose import model
|
||||
@ -23,6 +24,87 @@ def get_det_model(det_model_path, model_type, conf_thre, iou_thre, device, warmu
|
||||
return det_model
|
||||
|
||||
|
||||
def region_of_interest_warped(
|
||||
image: np.ndarray,
|
||||
box: np.ndarray,
|
||||
target_size=(288, 384),
|
||||
padding_scale: float = 1.25,
|
||||
):
|
||||
start_x, start_y, end_x, end_y = box
|
||||
target_w, target_h = target_size
|
||||
|
||||
# Calculate original bounding box width and height
|
||||
bbox_w = end_x - start_x
|
||||
bbox_h = end_y - start_y
|
||||
|
||||
if bbox_w <= 0 or bbox_h <= 0:
|
||||
raise ValueError("Invalid bounding box!")
|
||||
|
||||
# Calculate the aspect ratios
|
||||
bbox_aspect = bbox_w / bbox_h
|
||||
target_aspect = target_w / target_h
|
||||
|
||||
# Adjust the scaled bounding box to match the target aspect ratio
|
||||
if bbox_aspect > target_aspect:
|
||||
adjusted_h = bbox_w / target_aspect
|
||||
adjusted_w = bbox_w
|
||||
else:
|
||||
adjusted_w = bbox_h * target_aspect
|
||||
adjusted_h = bbox_h
|
||||
|
||||
# Scale the bounding box by the padding_scale
|
||||
scaled_bbox_w = adjusted_w * padding_scale
|
||||
scaled_bbox_h = adjusted_h * padding_scale
|
||||
|
||||
# Calculate the center of the original box
|
||||
center_x = (start_x + end_x) / 2.0
|
||||
center_y = (start_y + end_y) / 2.0
|
||||
|
||||
# Calculate scaled bounding box coordinates
|
||||
new_start_x = center_x - scaled_bbox_w / 2.0
|
||||
new_start_y = center_y - scaled_bbox_h / 2.0
|
||||
new_end_x = center_x + scaled_bbox_w / 2.0
|
||||
new_end_y = center_y + scaled_bbox_h / 2.0
|
||||
|
||||
# Define the new box coordinates
|
||||
new_box = np.array(
|
||||
[new_start_x, new_start_y, new_end_x, new_end_y], dtype=np.float32
|
||||
)
|
||||
scale = target_w / scaled_bbox_w
|
||||
|
||||
# Define source and destination points for affine transformation
|
||||
# See: /mmpose/structures/bbox/transforms.py
|
||||
src_pts = np.array(
|
||||
[
|
||||
[center_x, center_y],
|
||||
[new_start_x, center_y],
|
||||
[new_start_x, center_y + (center_x - new_start_x)],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
dst_pts = np.array(
|
||||
[
|
||||
[target_w * 0.5, target_h * 0.5],
|
||||
[0, target_h * 0.5],
|
||||
[0, target_h * 0.5 + (target_w * 0.5 - 0)],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
# Compute the affine transformation matrix
|
||||
M = cv2.getAffineTransform(src_pts, dst_pts)
|
||||
|
||||
# Apply affine transformation with border filling
|
||||
extracted_region = cv2.warpAffine(
|
||||
image,
|
||||
M,
|
||||
target_size,
|
||||
flags=cv2.INTER_LINEAR,
|
||||
)
|
||||
|
||||
return extracted_region, new_box, scale
|
||||
|
||||
|
||||
class TopDown:
|
||||
def __init__(self,
|
||||
pose_model_name,
|
||||
@ -32,21 +114,24 @@ class TopDown:
|
||||
iou_threshold=0.6,
|
||||
device='CUDA',
|
||||
warmup=30):
|
||||
if pose_model_name not in AvailablePoseModels.POSE_MODELS:
|
||||
if not pose_model_name.endswith('.onnx') and pose_model_name not in AvailablePoseModels.POSE_MODELS:
|
||||
raise ValueError(
|
||||
'The {} human pose estimation model is not in the model repository.'.format(pose_model_name))
|
||||
if pose_model_decoder not in AvailablePoseModels.POSE_MODELS[pose_model_name]:
|
||||
if not pose_model_name.endswith('.onnx') and pose_model_decoder not in AvailablePoseModels.POSE_MODELS[pose_model_name]:
|
||||
raise ValueError(
|
||||
'No {} decoding head for the {} model was found in the model repository.'.format(pose_model_decoder,
|
||||
pose_model_name))
|
||||
if det_model_name not in AvailableDetModels.DET_MODELS:
|
||||
if not pose_model_name.endswith('.onnx') and det_model_name not in AvailableDetModels.DET_MODELS:
|
||||
raise ValueError(
|
||||
'The {} detection model is not in the model repository.'.format(det_model_name))
|
||||
|
||||
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
|
||||
detection_model=False)
|
||||
pose_model_path = os.path.join(pose_model_dir,
|
||||
AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder])
|
||||
if not pose_model_name.endswith('.onnx'):
|
||||
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
|
||||
detection_model=False)
|
||||
pose_model_path = os.path.join(pose_model_dir,
|
||||
AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder])
|
||||
else:
|
||||
pose_model_path = pose_model_name
|
||||
|
||||
if os.path.exists(pose_model_path):
|
||||
try:
|
||||
@ -62,11 +147,17 @@ class TopDown:
|
||||
download(url, pose_model_dir)
|
||||
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
|
||||
|
||||
det_model_dir = get_model_path(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
|
||||
detection_model=True)
|
||||
det_model_path = os.path.join(det_model_dir,
|
||||
AvailableDetModels.DET_MODELS[det_model_name]['file_name'])
|
||||
det_model_type = AvailableDetModels.DET_MODELS[det_model_name]['model_type']
|
||||
if not det_model_name.endswith('.onnx'):
|
||||
det_model_dir = get_model_path(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
|
||||
detection_model=True)
|
||||
det_model_path = os.path.join(det_model_dir,
|
||||
AvailableDetModels.DET_MODELS[det_model_name]['file_name'])
|
||||
det_model_type = AvailableDetModels.DET_MODELS[det_model_name]['model_type']
|
||||
else:
|
||||
det_model_path = det_model_name
|
||||
if "rtmdet" in det_model_name:
|
||||
det_model_type = 'RTMDet'
|
||||
|
||||
if os.path.exists(det_model_path):
|
||||
try:
|
||||
self.det_model = get_det_model(det_model_path,
|
||||
@ -102,9 +193,17 @@ class TopDown:
|
||||
for i in range(boxes.shape[0]):
|
||||
p = Person()
|
||||
p.box = boxes[i]
|
||||
region = region_of_interest(image, p.box)
|
||||
region, p.box, _ = region_of_interest_warped(image, p.box)
|
||||
kp = self.pose_model(region)
|
||||
p.keypoints = restore_keypoints(p.box, kp)
|
||||
|
||||
# See: /mmpose/models/pose_estimators/topdown.py - add_pred_to_datasample()
|
||||
th, tw = region.shape[:2]
|
||||
bw, bh = [p.box[2] - p.box[0], p.box[3] - p.box[1]]
|
||||
kp[:, :2] = kp[:, :2] / np.array([tw, th]) * np.array([bw, bh])
|
||||
kp[:, :2] += np.array([p.box[0] + bw / 2, p.box[1] + bh / 2])
|
||||
kp[:, :2] -= 0.5 * np.array([bw, bh])
|
||||
|
||||
p.keypoints = kp
|
||||
results.append(p)
|
||||
return results
|
||||
|
||||
|
||||
@ -44,10 +44,12 @@ class SimCC(BaseModel):
|
||||
self.scale = 0
|
||||
|
||||
def preprocess(self, image: np.ndarray):
|
||||
th, tw = self.input_shape[2:]
|
||||
image, self.dx, self.dy, self.scale = letterbox(image, (tw, th))
|
||||
tensor = (image - np.array((103.53, 116.28, 123.675))) / np.array((57.375, 57.12, 58.395))
|
||||
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
tensor, self.dx, self.dy, self.scale = image, 0, 0, 1
|
||||
tensor -= np.array((123.675, 116.28, 103.53))
|
||||
tensor /= np.array((58.395, 57.12, 57.375))
|
||||
tensor = (
|
||||
np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
|
||||
)
|
||||
return tensor
|
||||
|
||||
def postprocess(self, tensor: List[np.ndarray]):
|
||||
|
||||
@ -4,8 +4,12 @@ xhost +
|
||||
docker run --privileged --rm --network host -it \
|
||||
--gpus all --shm-size=16g --ulimit memlock=-1 --ulimit stack=67108864 \
|
||||
--volume "$(pwd)"/:/RapidPoseTriangulation/ \
|
||||
--volume "$(pwd)"/extras/easypose/pipeline.py:/EasyPose/easypose/pipeline.py \
|
||||
--volume "$(pwd)"/extras/easypose/detection.py:/EasyPose/easypose/model/detection.py \
|
||||
--volume "$(pwd)"/extras/easypose/pose.py:/EasyPose/easypose/model/pose.py \
|
||||
--volume "$(pwd)"/extras/easypose/utils.py:/EasyPose/easypose/model/utils.py \
|
||||
--volume "$(pwd)"/../datasets/:/datasets/ \
|
||||
--volume "$(pwd)"/../skelda/:/skelda/ \
|
||||
--volume "$(pwd)"/skelda/:/skelda/ \
|
||||
--volume /tmp/.X11-unix:/tmp/.X11-unix \
|
||||
--env DISPLAY --env QT_X11_NO_MITSHM=1 \
|
||||
rpt_easypose
|
||||
|
||||
@ -177,18 +177,22 @@ def get_real_keypoints(keypoints: np.ndarray, heatmaps: np.ndarray, img_size: Se
|
||||
return keypoints
|
||||
|
||||
|
||||
def simcc_decoder(simcc_x: np.ndarray,
|
||||
simcc_y: np.ndarray,
|
||||
input_size: Sequence[int],
|
||||
dx: int,
|
||||
dy: int,
|
||||
scale: float):
|
||||
def simcc_decoder(
|
||||
simcc_x: np.ndarray,
|
||||
simcc_y: np.ndarray,
|
||||
input_size: Sequence[int],
|
||||
dx: int,
|
||||
dy: int,
|
||||
scale: float,
|
||||
):
|
||||
# See: /mmpose/codecs/utils/post_processing.py - get_simcc_maximum()
|
||||
|
||||
x = np.argmax(simcc_x, axis=-1, keepdims=True).astype(np.float32)
|
||||
y = np.argmax(simcc_y, axis=-1, keepdims=True).astype(np.float32)
|
||||
|
||||
x_conf = np.max(simcc_x, axis=-1, keepdims=True)
|
||||
y_conf = np.max(simcc_y, axis=-1, keepdims=True)
|
||||
conf = (x_conf + y_conf) / 2
|
||||
conf = np.minimum(x_conf, y_conf)
|
||||
|
||||
x /= simcc_x.shape[-1]
|
||||
y /= simcc_y.shape[-1]
|
||||
|
||||
@ -14,7 +14,15 @@ filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||
def load_model():
|
||||
print("Loading mmpose model ...")
|
||||
|
||||
model = ep.TopDown("rtmpose_m", "SimCC", "rtmdet_s")
|
||||
# model = ep.TopDown("rtmpose_m", "SimCC", "rtmdet_s")
|
||||
model = ep.TopDown(
|
||||
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_384.onnx",
|
||||
"SimCC",
|
||||
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet_nano_320.onnx",
|
||||
conf_threshold=0.3,
|
||||
iou_threshold=0.3,
|
||||
warmup=10,
|
||||
)
|
||||
|
||||
print("Loaded mmpose model")
|
||||
return model
|
||||
|
||||
Reference in New Issue
Block a user