Reimplemented wrapper in cpp.

This commit is contained in:
Daniel
2025-01-17 16:42:05 +01:00
parent 8a249a2f16
commit 99368e5216
21 changed files with 26448 additions and 10 deletions

View File

@ -0,0 +1,191 @@
import json
import os
import sys
import threading
import time
import numpy as np
import rclpy
from cv_bridge import CvBridge
from rclpy.qos import QoSHistoryPolicy, QoSProfile, QoSReliabilityPolicy
from sensor_msgs.msg import Image
from std_msgs.msg import String
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
sys.path.append(filepath + "../../../scripts/")
import test_triangulate
import utils_2d_pose
# ==================================================================================================
bridge = CvBridge()
node = None
publisher_pose = None
cam_id = "camera01"
img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw"
pose_out_topic = "/poses/" + cam_id
last_input_image = None
kpt_model = None
joint_names_2d = test_triangulate.joint_names_2d
lock = threading.Lock()
stop_flag = False
# Model config
min_bbox_score = 0.4
min_bbox_area = 0.1 * 0.1
batch_poses = False
# ==================================================================================================
def callback_images(image_data):
global last_input_image, lock
# Convert into cv images from image string
if image_data.encoding == "bayer_rggb8":
bayer_image = bridge.imgmsg_to_cv2(image_data, "bayer_rggb8")
elif image_data.encoding == "mono8":
bayer_image = bridge.imgmsg_to_cv2(image_data, "mono8")
elif image_data.encoding == "rgb8":
color_image = bridge.imgmsg_to_cv2(image_data, "rgb8")
bayer_image = test_triangulate.rgb2bayer(color_image)
else:
raise ValueError("Unknown image encoding:", image_data.encoding)
time_stamp = image_data.header.stamp.sec + image_data.header.stamp.nanosec / 1.0e9
with lock:
last_input_image = (bayer_image, time_stamp)
# ==================================================================================================
def callback_model():
global last_input_image, kpt_model, lock
ptime = time.time()
if last_input_image is None:
time.sleep(0.001)
return
# Collect inputs
images_2d = []
timestamps = []
with lock:
img = np.copy(last_input_image[0])
ts = last_input_image[1]
images_2d.append(img)
timestamps.append(ts)
last_input_image = None
# Predict 2D poses
images_2d = [test_triangulate.bayer2rgb(img) for img in images_2d]
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
poses_2d = poses_2d[0]
# Drop persons with no joints
poses_2d = np.asarray(poses_2d)
mask = np.sum(poses_2d[..., 2], axis=1) > 0
poses_2d = poses_2d[mask]
# Round poses
poses2D = [np.array(p).round(3).tolist() for p in poses_2d]
# Publish poses
ts_pose = time.time()
poses = {
"bodies2D": poses2D,
"joints": joint_names_2d,
"num_persons": len(poses2D),
"timestamps": {
"image": timestamps[0],
"pose": ts_pose,
"z-images-pose": ts_pose - timestamps[0],
},
}
publish(poses)
msg = "Detected persons: {} - Prediction time: {:.4f}s"
print(msg.format(poses["num_persons"], time.time() - ptime))
# ==================================================================================================
def callback_wrapper():
global stop_flag
while not stop_flag:
callback_model()
time.sleep(0.001)
# ==================================================================================================
def publish(data):
# Publish json data
msg = String()
msg.data = json.dumps(data)
publisher_pose.publish(msg)
# ==================================================================================================
def main():
global node, publisher_pose, kpt_model, stop_flag
# Start node
rclpy.init(args=sys.argv)
node = rclpy.create_node("rpt2D_wrapper")
# Quality of service settings
qos_profile = QoSProfile(
reliability=QoSReliabilityPolicy.RELIABLE,
history=QoSHistoryPolicy.KEEP_LAST,
depth=1,
)
# Create subscribers
_ = node.create_subscription(
Image,
img_input_topic,
callback_images,
qos_profile,
)
# Create publishers
publisher_pose = node.create_publisher(String, pose_out_topic, qos_profile)
# Load 2D pose model
whole_body = test_triangulate.whole_body
if any((whole_body[k] for k in whole_body)):
kpt_model = utils_2d_pose.load_wb_model()
else:
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
node.get_logger().info("Finished initialization of pose estimator")
# Start prediction thread
p1 = threading.Thread(target=callback_wrapper)
p1.start()
# Run ros update thread
rclpy.spin(node)
stop_flag = True
p1.join()
node.destroy_node()
rclpy.shutdown()
# ==================================================================================================
if __name__ == "__main__":
main()