Renamed ros packages.

This commit is contained in:
Daniel
2025-01-21 18:11:49 +01:00
parent 9778c75bf0
commit 9ce51f90b3
15 changed files with 23 additions and 23 deletions

View File

@ -0,0 +1,65 @@
cmake_minimum_required(VERSION 3.5)
project(rpt2d_wrapper_cpp)
# Default to C99
if(NOT CMAKE_C_STANDARD)
set(CMAKE_C_STANDARD 99)
endif()
# Default to C++17
if(NOT CMAKE_CXX_STANDARD)
set(CMAKE_CXX_STANDARD 17)
endif()
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
add_compile_options(-Wall -Wextra -Wpedantic)
endif()
# find dependencies
find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)
find_package(std_msgs REQUIRED)
find_package(sensor_msgs REQUIRED)
find_package(cv_bridge REQUIRED)
find_package(OpenCV REQUIRED)
### 3) ONNX Runtime
include_directories(/onnxruntime/include/
/onnxruntime/include/onnxruntime/core/session/
/onnxruntime/include/onnxruntime/core/providers/tensorrt/)
link_directories(/onnxruntime/build/Linux/Release/)
add_executable(rpt2d_wrapper src/rpt2d_wrapper.cpp)
ament_target_dependencies(rpt2d_wrapper rclcpp std_msgs sensor_msgs cv_bridge)
target_include_directories(rpt2d_wrapper PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
target_link_libraries(rpt2d_wrapper
${OpenCV_LIBS}
onnxruntime_providers_tensorrt
onnxruntime_providers_shared
onnxruntime_providers_cuda
onnxruntime
)
set_target_properties(rpt2d_wrapper PROPERTIES
BUILD_WITH_INSTALL_RPATH TRUE
INSTALL_RPATH "/onnxruntime/build/Linux/Release"
)
install(TARGETS rpt2d_wrapper
DESTINATION lib/${PROJECT_NAME})
if(BUILD_TESTING)
find_package(ament_lint_auto REQUIRED)
# the following line skips the linter which checks for copyrights
# uncomment the line when a copyright and license is not present in all source files
#set(ament_cmake_copyright_FOUND TRUE)
# the following line skips cpplint (only works in a git repo)
# uncomment the line when this package is not in a git repo
#set(ament_cmake_cpplint_FOUND TRUE)
ament_lint_auto_find_test_dependencies()
endif()
ament_package()

View File

@ -0,0 +1,25 @@
<?xml version="1.0"?>
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
<package format="3">
<name>rpt2d_wrapper_cpp</name>
<version>0.0.0</version>
<description>TODO: Package description</description>
<maintainer email="root@todo.todo">root</maintainer>
<license>TODO: License declaration</license>
<buildtool_depend>ament_cmake</buildtool_depend>
<depend>rclcpp</depend>
<depend>std_msgs</depend>
<depend>sensor_msgs</depend>
<depend>cv_bridge</depend>
<depend>OpenCV</depend>
<test_depend>ament_lint_auto</test_depend>
<test_depend>ament_lint_common</test_depend>
<export>
<build_type>ament_cmake</build_type>
</export>
</package>

View File

@ -0,0 +1,230 @@
#include <atomic>
#include <chrono>
#include <cmath>
#include <iostream>
#include <memory>
#include <string>
#include <vector>
// ROS2
#include <rclcpp/rclcpp.hpp>
#include <sensor_msgs/msg/image.hpp>
#include <std_msgs/msg/string.hpp>
// OpenCV / cv_bridge
#include <cv_bridge/cv_bridge.h>
#include <opencv2/opencv.hpp>
// JSON library
#include "/RapidPoseTriangulation/extras/include/nlohmann/json.hpp"
using json = nlohmann::json;
#include "/RapidPoseTriangulation/scripts/utils_2d_pose.hpp"
#include "/RapidPoseTriangulation/scripts/utils_pipeline.hpp"
// =================================================================================================
static const std::string cam_id = "camera01";
static const std::string img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw";
static const std::string pose_out_topic = "/poses/" + cam_id;
static const float min_bbox_score = 0.4;
static const float min_bbox_area = 0.1 * 0.1;
static const bool batch_poses = true;
static const std::map<std::string, bool> whole_body = {
{"foots", true},
{"face", true},
{"hands", true},
};
// =================================================================================================
// =================================================================================================
class Rpt2DWrapperNode : public rclcpp::Node
{
public:
Rpt2DWrapperNode(const std::string &node_name)
: Node(node_name)
{
this->is_busy = false;
// QoS
rclcpp::QoS qos_profile(1);
qos_profile.reliable();
qos_profile.keep_last(1);
// Setup subscriber
image_sub_ = this->create_subscription<sensor_msgs::msg::Image>(
img_input_topic, qos_profile,
std::bind(&Rpt2DWrapperNode::callback_images, this, std::placeholders::_1));
// Setup publisher
pose_pub_ = this->create_publisher<std_msgs::msg::String>(pose_out_topic, qos_profile);
// Load model
bool use_wb = utils_pipeline::use_whole_body(whole_body);
this->kpt_model = std::make_unique<utils_2d_pose::PosePredictor>(
use_wb, min_bbox_score, min_bbox_area, batch_poses);
RCLCPP_INFO(this->get_logger(), "Finished initialization of pose estimator.");
}
private:
rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr image_sub_;
rclcpp::Publisher<std_msgs::msg::String>::SharedPtr pose_pub_;
std::atomic<bool> is_busy;
// Pose model pointer
std::unique_ptr<utils_2d_pose::PosePredictor> kpt_model;
const std::vector<std::string> joint_names_2d = utils_pipeline::get_joint_names(whole_body);
void callback_images(const sensor_msgs::msg::Image::SharedPtr msg);
std::vector<std::vector<std::array<float, 3>>> call_model(const cv::Mat &image);
void publish(const json &data)
{
std_msgs::msg::String msg;
msg.data = data.dump();
pose_pub_->publish(msg);
}
};
// =================================================================================================
void Rpt2DWrapperNode::callback_images(const sensor_msgs::msg::Image::SharedPtr msg)
{
if (this->is_busy)
{
RCLCPP_WARN(this->get_logger(), "Skipping frame, still processing...");
return;
}
this->is_busy = true;
auto ts_image = std::chrono::high_resolution_clock::now();
// Load or convert image to Bayer format
cv::Mat bayer_image;
try
{
if (msg->encoding == "mono8")
{
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, msg->encoding);
bayer_image = cv_ptr->image;
}
else if (msg->encoding == "bayer_rggb8")
{
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, msg->encoding);
bayer_image = cv_ptr->image;
}
else if (msg->encoding == "rgb8")
{
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, "rgb8");
cv::Mat color_image = cv_ptr->image;
bayer_image = utils_pipeline::rgb2bayer(color_image);
}
else
{
throw std::runtime_error("Unknown image encoding: " + msg->encoding);
}
}
catch (const std::exception &e)
{
RCLCPP_ERROR(this->get_logger(), "cv_bridge exception: %s", e.what());
return;
}
// Call model
const auto &valid_poses = this->call_model(bayer_image);
// Calculate timings
double time_stamp = msg->header.stamp.sec + msg->header.stamp.nanosec / 1.0e9;
auto ts_image_sec = std::chrono::duration<double>(ts_image.time_since_epoch()).count();
auto ts_pose = std::chrono::high_resolution_clock::now();
double ts_pose_sec = std::chrono::duration<double>(ts_pose.time_since_epoch()).count();
double z_trigger_image = ts_image_sec - time_stamp;
double z_trigger_pose = ts_pose_sec - time_stamp;
double z_image_pose = ts_pose_sec - ts_image_sec;
// Build JSON
json poses_msg;
poses_msg["bodies2D"] = valid_poses; // shape: persons x keypoints x 3
poses_msg["joints"] = joint_names_2d;
poses_msg["num_persons"] = valid_poses.size();
poses_msg["timestamps"] = {
{"trigger", time_stamp},
{"image", ts_image_sec},
{"pose", ts_pose_sec},
{"z-trigger-image", z_trigger_image},
{"z-image-pose", z_image_pose},
{"z-trigger-pose", z_trigger_pose}};
// Publish
publish(poses_msg);
// Print info
double elapsed_time = std::chrono::duration<double>(
std::chrono::high_resolution_clock::now() - ts_image)
.count();
std::cout << "Detected persons: " << valid_poses.size()
<< " - Prediction time: " << elapsed_time << "s" << std::endl;
this->is_busy = false;
}
// =================================================================================================
std::vector<std::vector<std::array<float, 3>>> Rpt2DWrapperNode::call_model(const cv::Mat &image)
{
// Create image vector
cv::Mat rgb_image = utils_pipeline::bayer2rgb(image);
std::vector<cv::Mat> images_2d = {rgb_image};
// Predict 2D poses
auto poses_2d_all = kpt_model->predict(images_2d);
auto poses_2d_upd = utils_pipeline::update_keypoints(
poses_2d_all, joint_names_2d, whole_body);
auto &poses_2d = poses_2d_upd[0];
// Drop persons with no joints
std::vector<std::vector<std::array<float, 3>>> valid_poses;
for (auto &person : poses_2d)
{
float sum_conf = 0.0;
for (auto &kp : person)
{
sum_conf += kp[2];
}
if (sum_conf > 0.0)
{
valid_poses.push_back(person);
}
}
// Round poses to 3 decimal places
for (auto &person : valid_poses)
{
for (auto &kp : person)
{
kp[0] = std::round(kp[0] * 1000.0) / 1000.0;
kp[1] = std::round(kp[1] * 1000.0) / 1000.0;
kp[2] = std::round(kp[2] * 1000.0) / 1000.0;
}
}
return valid_poses;
}
// =================================================================================================
// =================================================================================================
int main(int argc, char **argv)
{
rclcpp::init(argc, argv);
auto node = std::make_shared<Rpt2DWrapperNode>("rpt2d_wrapper");
rclcpp::spin(node);
rclcpp::shutdown();
return 0;
}