Renamed new wrapper script.

This commit is contained in:
Daniel
2024-12-19 14:23:41 +01:00
parent 7b073249d6
commit b483269697
3 changed files with 2 additions and 4 deletions

515
scripts/utils_2d_pose.py Normal file
View File

@ -0,0 +1,515 @@
import math
import os
from abc import ABC, abstractmethod
from typing import List
import cv2
import numpy as np
import onnxruntime as ort
from tqdm import tqdm
# ==================================================================================================
class BaseModel(ABC):
def __init__(self, model_path: str, warmup: int):
self.model_path = model_path
self.runtime = ""
if not os.path.exists(model_path):
raise FileNotFoundError("File not found:", model_path)
if model_path.endswith(".onnx"):
self.init_onnxruntime(model_path)
self.runtime = "ort"
else:
raise ValueError("Unsupported model format:", model_path)
if warmup > 0:
print("Running warmup for '{}' ...".format(self.__class__.__name__))
self.warmup(warmup // 2)
self.warmup(warmup // 2)
def init_onnxruntime(self, model_path):
usetrt = True
usegpu = True
self.opt = ort.SessionOptions()
providers = ort.get_available_providers()
# ort.set_default_logger_severity(1)
self.providers = []
if usetrt and "TensorrtExecutionProvider" in providers:
self.providers.append(
(
"TensorrtExecutionProvider",
{
"trt_engine_cache_enable": True,
"trt_engine_cache_path": "/RapidPoseTriangulation/data/trt_cache/",
},
)
)
elif usegpu and "CUDAExecutionProvider" in providers:
self.providers.append("CUDAExecutionProvider")
else:
self.providers.append("CPUExecutionProvider")
print("Using providers:", self.providers)
self.session = ort.InferenceSession(
model_path, providers=self.providers, sess_options=self.opt
)
self.input_names = [input.name for input in self.session.get_inputs()]
self.input_shapes = [input.shape for input in self.session.get_inputs()]
input_types = [input.type for input in self.session.get_inputs()]
self.input_types = []
for i in range(len(input_types)):
input_type = input_types[i]
if input_type == "tensor(float32)":
itype = np.float32
elif input_type == "tensor(float16)":
itype = np.float16
elif input_type == "tensor(int32)":
itype = np.int32
elif input_type == "tensor(uint8)":
itype = np.uint8
else:
raise ValueError("Undefined input type:", input_type)
self.input_types.append(itype)
@abstractmethod
def preprocess(self, **kwargs):
pass
@abstractmethod
def postprocess(self, **kwargs):
pass
def warmup(self, epoch: int):
np.random.seed(42)
for _ in tqdm(range(epoch)):
inputs = {}
for i in range(len(self.input_names)):
iname = self.input_names[i]
if "image" in iname:
ishape = list(self.input_shapes[i])
if "batch_size" in ishape:
max_batch_size = 10
ishape[0] = np.random.choice(list(range(1, max_batch_size + 1)))
tensor = np.random.random(ishape)
tensor = tensor * 255
else:
raise ValueError("Undefined input type:", iname)
tensor = tensor.astype(self.input_types[i])
inputs[iname] = tensor
self.call_model_ort(list(inputs.values()))
def call_model_ort(self, tensor):
inputs = {}
for i in range(len(self.input_names)):
iname = self.input_names[i]
inputs[iname] = tensor[i]
result = self.session.run(None, inputs)
return result
def __call__(self, **kwargs):
tensor = self.preprocess(**kwargs)
result = self.call_model_ort(tensor)
output = self.postprocess(result=result, **kwargs)
return output
# ==================================================================================================
class LetterBox:
def __init__(self, target_size, fill_value=0):
self.target_size = target_size
self.fill_value = fill_value
def calc_params(self, ishape):
img_h, img_w = ishape[:2]
target_h, target_w = self.target_size
scale = min(target_w / img_w, target_h / img_h)
new_w = round(img_w * scale)
new_h = round(img_h * scale)
pad_w = target_w - new_w
pad_h = target_h - new_h
pad_left = pad_w // 2
pad_top = pad_h // 2
pad_right = pad_w - pad_left
pad_bottom = pad_h - pad_top
paddings = (pad_left, pad_right, pad_top, pad_bottom)
return paddings, scale, (new_w, new_h)
def resize_image(self, image):
paddings, _, new_size = self.calc_params(image.shape)
# Resize the image
new_w, new_h = new_size
resized_img = cv2.resize(
image,
(new_w, new_h),
interpolation=cv2.INTER_NEAREST,
)
# Optionally pad the image
pad_left, pad_right, pad_top, pad_bottom = paddings
if pad_left == 0 and pad_right == 0 and pad_top == 0 and pad_bottom == 0:
final_img = resized_img
else:
final_img = cv2.copyMakeBorder(
resized_img,
pad_top,
pad_bottom,
pad_left,
pad_right,
borderType=cv2.BORDER_CONSTANT,
value=[self.fill_value, self.fill_value, self.fill_value],
)
return final_img
# ==================================================================================================
class BoxCrop:
def __init__(self, target_size, padding_scale=1.0, fill_value=0):
self.target_size = target_size
self.padding_scale = padding_scale
self.fill_value = fill_value
def calc_params(self, ishape, bbox):
start_x, start_y, end_x, end_y = bbox[0], bbox[1], bbox[2], bbox[3]
target_h, target_w = self.target_size
# Calculate original bounding box center
center_x = (start_x + end_x) / 2.0
center_y = (start_y + end_y) / 2.0
# Scale the bounding box by the padding_scale
bbox_w = end_x - start_x
bbox_h = end_y - start_y
scaled_w = bbox_w * self.padding_scale
scaled_h = bbox_h * self.padding_scale
# Calculate the aspect ratios
bbox_aspect = scaled_w / scaled_h
target_aspect = target_w / target_h
# Adjust the scaled bounding box to match the target aspect ratio
if bbox_aspect > target_aspect:
adjusted_h = scaled_w / target_aspect
adjusted_w = scaled_w
else:
adjusted_w = scaled_h * target_aspect
adjusted_h = scaled_h
# Calculate scaled bounding box coordinates
bbox_w = adjusted_w
bbox_h = adjusted_h
new_start_x = center_x - bbox_w / 2.0
new_start_y = center_y - bbox_h / 2.0
new_end_x = center_x + bbox_w / 2.0
new_end_y = center_y + bbox_h / 2.0
# Round the box coordinates
start_x = int(math.floor(new_start_x))
start_y = int(math.floor(new_start_y))
end_x = int(math.ceil(new_end_x))
end_y = int(math.ceil(new_end_y))
# Define the new box coordinates
new_start_x = max(0, start_x)
new_start_y = max(0, start_y)
new_end_x = min(ishape[1] - 1, end_x)
new_end_y = min(ishape[0] - 1, end_y)
new_box = [new_start_x, new_start_y, new_end_x, new_end_y]
# Calculate resized crop size
bbox_w = new_box[2] - new_box[0]
bbox_h = new_box[3] - new_box[1]
scale = min(target_w / bbox_w, target_h / bbox_h)
new_w = round(bbox_w * scale)
new_h = round(bbox_h * scale)
# Calculate paddings
pad_w = target_w - new_w
pad_h = target_h - new_h
pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
if pad_w > 0:
if start_x < 0:
pad_left = pad_w
pad_right = 0
elif end_x > ishape[1]:
pad_left = 0
pad_right = pad_w
else:
# Can be caused by bbox rounding
pad_left = pad_w // 2
pad_right = pad_w - pad_left
if pad_h > 0:
if start_y < 0:
pad_top = pad_h
pad_bottom = 0
elif end_y > ishape[0]:
pad_top = 0
pad_bottom = pad_h
else:
# Can be caused by bbox rounding
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
paddings = (pad_left, pad_right, pad_top, pad_bottom)
return paddings, scale, new_box, (new_w, new_h)
def crop_resize_box(self, image, bbox):
paddings, _, new_box, new_size = self.calc_params(image.shape, bbox)
# Extract the bounding box
cropped_img = image[new_box[1] : new_box[3], new_box[0] : new_box[2]]
# Resize the image
new_w, new_h = new_size
resized_img = cv2.resize(
cropped_img,
(new_w, new_h),
interpolation=cv2.INTER_NEAREST,
)
# Optionally pad the image
pad_left, pad_right, pad_top, pad_bottom = paddings
if pad_left == 0 and pad_right == 0 and pad_top == 0 and pad_bottom == 0:
final_img = resized_img
else:
final_img = cv2.copyMakeBorder(
resized_img,
pad_top,
pad_bottom,
pad_left,
pad_right,
borderType=cv2.BORDER_CONSTANT,
value=[self.fill_value, self.fill_value, self.fill_value],
)
return final_img
# ==================================================================================================
class RTMDet(BaseModel):
def __init__(
self,
model_path: str,
conf_threshold: float,
min_area_fraction: float,
warmup: int = 30,
):
super(RTMDet, self).__init__(model_path, warmup)
self.target_size = (320, 320)
self.conf_threshold = conf_threshold
self.letterbox = LetterBox(self.target_size, fill_value=114)
img_area = self.target_size[0] * self.target_size[1]
self.min_area = img_area * min_area_fraction
def preprocess(self, image: np.ndarray):
image = self.letterbox.resize_image(image)
tensor = np.asarray(image).astype(self.input_types[0], copy=False)
tensor = np.expand_dims(tensor, axis=0)
tensor = [tensor]
return tensor
def postprocess(self, result: List[np.ndarray], image: np.ndarray):
boxes = np.squeeze(result[0], axis=0)
classes = np.squeeze(result[1], axis=0)
human_class = classes[:] == 0
boxes = boxes[human_class]
keep = boxes[:, 4] > self.conf_threshold
boxes = boxes[keep]
if len(boxes) == 0:
return np.array([])
# Drop boxes with too small area
boxes = boxes.astype(np.float32)
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
keep = areas >= self.min_area
boxes = boxes[keep]
if len(boxes) == 0:
return np.array([])
paddings, scale, _ = self.letterbox.calc_params(image.shape)
boxes[:, 0] -= paddings[0]
boxes[:, 2] -= paddings[0]
boxes[:, 1] -= paddings[2]
boxes[:, 3] -= paddings[2]
boxes = np.maximum(boxes, 0)
th, tw = self.target_size
pad_w = paddings[0] + paddings[1]
pad_h = paddings[2] + paddings[3]
max_w = tw - pad_w - 1
max_h = th - pad_h - 1
boxes[:, 0] = np.minimum(boxes[:, 0], max_w)
boxes[:, 1] = np.minimum(boxes[:, 1], max_h)
boxes[:, 2] = np.minimum(boxes[:, 2], max_w)
boxes[:, 3] = np.minimum(boxes[:, 3], max_h)
boxes[:, 0:4] /= scale
return boxes
# ==================================================================================================
class RTMPose(BaseModel):
def __init__(self, model_path: str, warmup: int = 30):
super(RTMPose, self).__init__(model_path, warmup)
self.target_size = (384, 288)
self.boxcrop = BoxCrop(self.target_size, padding_scale=1.25, fill_value=0)
def preprocess(self, image: np.ndarray, bboxes: np.ndarray):
cutouts = []
for i in range(len(bboxes)):
bbox = np.asarray(bboxes[i])[0:4]
bbox += np.array([-0.5, -0.5, 0.5 - 1e-8, 0.5 - 1e-8])
bbox = bbox.round().astype(np.int32)
region = self.boxcrop.crop_resize_box(image, bbox)
tensor = np.asarray(region).astype(self.input_types[0], copy=False)
cutouts.append(tensor)
if len(bboxes) == 1:
cutouts = np.expand_dims(cutouts[0], axis=0)
else:
cutouts = np.stack(cutouts, axis=0)
tensor = [cutouts]
return tensor
def postprocess(
self, result: List[np.ndarray], image: np.ndarray, bboxes: np.ndarray
):
kpts = []
for i in range(len(bboxes)):
scores = np.clip(result[1][i], 0, 1)
kp = np.concatenate(
[result[0][i], np.expand_dims(scores, axis=-1)], axis=-1
)
paddings, scale, bbox, _ = self.boxcrop.calc_params(image.shape, bboxes[i])
kp[:, 0] -= paddings[0]
kp[:, 1] -= paddings[2]
kp[:, 0:2] /= scale
kp[:, 0] += bbox[0]
kp[:, 1] += bbox[1]
kp[:, 0:2] = np.maximum(kp[:, 0:2], 0)
max_w = image.shape[1] - 1
max_h = image.shape[0] - 1
kp[:, 0] = np.minimum(kp[:, 0], max_w)
kp[:, 1] = np.minimum(kp[:, 1], max_h)
kpts.append(kp)
return kpts
# ==================================================================================================
class TopDown:
def __init__(
self,
det_model_path: str,
pose_model_path: str,
box_conf_threshold: float,
box_min_area: float,
warmup: int = 30,
):
self.batch_poses = bool("Bx" in pose_model_path)
self.det_model = RTMDet(
det_model_path, box_conf_threshold, box_min_area, warmup
)
self.pose_model = RTMPose(pose_model_path, warmup)
def predict(self, image):
boxes = self.det_model(image=image)
if len(boxes) == 0:
return []
results = []
if self.batch_poses:
results = self.pose_model(image=image, bboxes=boxes)
else:
for i in range(boxes.shape[0]):
kp = self.pose_model(image=image, bboxes=[boxes[i]])
results.append(kp[0])
return results
# ==================================================================================================
def load_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
print("Loading 2D model ...")
model = TopDown(
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx",
f"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_{'B' if batch_poses else '1'}x384x288x3_fp16_extra-steps.onnx",
box_conf_threshold=min_bbox_score,
box_min_area=min_bbox_area,
warmup=30,
)
print("Loaded 2D model")
return model
def load_wb_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
print("Loading 2D-WB model ...")
# The FP16 pose model is much worse than the FP32 for whole-body keypoints
model = TopDown(
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx",
f"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-l_wb_{'B' if batch_poses else '1'}x384x288x3_extra-steps.onnx",
box_conf_threshold=min_bbox_score,
box_min_area=min_bbox_area,
warmup=30,
)
print("Loaded 2D-WB model")
return model
# ==================================================================================================
def get_2d_pose(model, imgs, num_joints=17):
new_poses = []
for i in range(len(imgs)):
img = imgs[i]
dets = model.predict(img)
if len(dets) == 0:
poses = np.zeros([1, num_joints, 3], dtype=float)
else:
poses = np.asarray(dets, dtype=float)
new_poses.append(poses)
return new_poses