Reset with index jumps.
This commit is contained in:
188
media/RESULTS.md
188
media/RESULTS.md
@ -6006,48 +6006,48 @@ Results of the model in various experiments on different datasets.
|
||||
"person_nums": {
|
||||
"total_frames": 121,
|
||||
"total_labels": 484,
|
||||
"total_preds": 634,
|
||||
"total_preds": 638,
|
||||
"considered_empty": 0,
|
||||
"valid_preds": 483,
|
||||
"invalid_preds": 151,
|
||||
"invalid_preds": 155,
|
||||
"missing": 1,
|
||||
"invalid_fraction": 0.23817,
|
||||
"precision": 0.76183,
|
||||
"invalid_fraction": 0.24295,
|
||||
"precision": 0.75705,
|
||||
"recall": 0.99793,
|
||||
"f1": 0.86404,
|
||||
"non_empty": 634
|
||||
"f1": 0.86096,
|
||||
"non_empty": 638
|
||||
},
|
||||
"mpjpe": {
|
||||
"count": 483,
|
||||
"mean": 0.03745,
|
||||
"median": 0.035063,
|
||||
"std": 0.014194,
|
||||
"sem": 0.000647,
|
||||
"mean": 0.037486,
|
||||
"median": 0.034783,
|
||||
"std": 0.014406,
|
||||
"sem": 0.000656,
|
||||
"min": 0.01794,
|
||||
"max": 0.136715,
|
||||
"recall-0.025": 0.163223,
|
||||
"recall-0.05": 0.842975,
|
||||
"recall-0.025": 0.165289,
|
||||
"recall-0.05": 0.840909,
|
||||
"recall-0.1": 0.991736,
|
||||
"recall-0.15": 0.997934,
|
||||
"recall-0.25": 0.997934,
|
||||
"recall-0.5": 0.997934,
|
||||
"num_labels": 484,
|
||||
"ap-0.025": 0.023957,
|
||||
"ap-0.05": 0.580664,
|
||||
"ap-0.1": 0.79534,
|
||||
"ap-0.15": 0.804355,
|
||||
"ap-0.25": 0.804355,
|
||||
"ap-0.5": 0.804355
|
||||
"ap-0.025": 0.024574,
|
||||
"ap-0.05": 0.576818,
|
||||
"ap-0.1": 0.794001,
|
||||
"ap-0.15": 0.803006,
|
||||
"ap-0.25": 0.803006,
|
||||
"ap-0.5": 0.803006
|
||||
},
|
||||
"head": {
|
||||
"count": 483,
|
||||
"mean": 0.037576,
|
||||
"median": 0.030619,
|
||||
"std": 0.023474,
|
||||
"sem": 0.001069,
|
||||
"mean": 0.037728,
|
||||
"median": 0.030655,
|
||||
"std": 0.023551,
|
||||
"sem": 0.001073,
|
||||
"min": 0.004382,
|
||||
"max": 0.136584,
|
||||
"recall-0.025": 0.378099,
|
||||
"recall-0.025": 0.371901,
|
||||
"recall-0.05": 0.721074,
|
||||
"recall-0.1": 0.977273,
|
||||
"recall-0.15": 0.997934,
|
||||
@ -6057,13 +6057,13 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"shoulder_left": {
|
||||
"count": 483,
|
||||
"mean": 0.039129,
|
||||
"median": 0.032213,
|
||||
"std": 0.022975,
|
||||
"sem": 0.001047,
|
||||
"mean": 0.039183,
|
||||
"median": 0.032414,
|
||||
"std": 0.022945,
|
||||
"sem": 0.001045,
|
||||
"min": 0.004214,
|
||||
"max": 0.142662,
|
||||
"recall-0.025": 0.31405,
|
||||
"recall-0.025": 0.311983,
|
||||
"recall-0.05": 0.745868,
|
||||
"recall-0.1": 0.979339,
|
||||
"recall-0.15": 0.997934,
|
||||
@ -6073,13 +6073,13 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"shoulder_right": {
|
||||
"count": 483,
|
||||
"mean": 0.035508,
|
||||
"median": 0.030929,
|
||||
"std": 0.021175,
|
||||
"sem": 0.000965,
|
||||
"mean": 0.035627,
|
||||
"median": 0.031518,
|
||||
"std": 0.021128,
|
||||
"sem": 0.000962,
|
||||
"min": 0.003681,
|
||||
"max": 0.180338,
|
||||
"recall-0.025": 0.384298,
|
||||
"recall-0.025": 0.378099,
|
||||
"recall-0.05": 0.778926,
|
||||
"recall-0.1": 0.987603,
|
||||
"recall-0.15": 0.995868,
|
||||
@ -6089,14 +6089,14 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"elbow_left": {
|
||||
"count": 483,
|
||||
"mean": 0.039093,
|
||||
"median": 0.031479,
|
||||
"std": 0.027871,
|
||||
"sem": 0.001269,
|
||||
"mean": 0.039216,
|
||||
"median": 0.031488,
|
||||
"std": 0.027873,
|
||||
"sem": 0.00127,
|
||||
"min": 0.005996,
|
||||
"max": 0.237523,
|
||||
"recall-0.025": 0.347107,
|
||||
"recall-0.05": 0.737603,
|
||||
"recall-0.025": 0.345041,
|
||||
"recall-0.05": 0.735537,
|
||||
"recall-0.1": 0.966942,
|
||||
"recall-0.15": 0.987603,
|
||||
"recall-0.25": 0.997934,
|
||||
@ -6105,13 +6105,13 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"elbow_right": {
|
||||
"count": 483,
|
||||
"mean": 0.041455,
|
||||
"median": 0.033784,
|
||||
"std": 0.038189,
|
||||
"sem": 0.001739,
|
||||
"mean": 0.041639,
|
||||
"median": 0.033826,
|
||||
"std": 0.038231,
|
||||
"sem": 0.001741,
|
||||
"min": 0.003944,
|
||||
"max": 0.443462,
|
||||
"recall-0.025": 0.367769,
|
||||
"recall-0.025": 0.363636,
|
||||
"recall-0.05": 0.741736,
|
||||
"recall-0.1": 0.954545,
|
||||
"recall-0.15": 0.979339,
|
||||
@ -6121,47 +6121,47 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"wrist_left": {
|
||||
"count": 483,
|
||||
"mean": 0.04895,
|
||||
"median": 0.039104,
|
||||
"std": 0.036788,
|
||||
"sem": 0.001676,
|
||||
"mean": 0.048731,
|
||||
"median": 0.038931,
|
||||
"std": 0.036668,
|
||||
"sem": 0.00167,
|
||||
"min": 0.002618,
|
||||
"max": 0.309556,
|
||||
"recall-0.025": 0.258264,
|
||||
"recall-0.05": 0.650826,
|
||||
"recall-0.025": 0.262397,
|
||||
"recall-0.05": 0.654959,
|
||||
"recall-0.1": 0.913223,
|
||||
"recall-0.15": 0.977273,
|
||||
"recall-0.15": 0.979339,
|
||||
"recall-0.25": 0.995868,
|
||||
"recall-0.5": 0.997934,
|
||||
"num_labels": 484
|
||||
},
|
||||
"wrist_right": {
|
||||
"count": 481,
|
||||
"mean": 0.050009,
|
||||
"median": 0.040081,
|
||||
"std": 0.040668,
|
||||
"sem": 0.001856,
|
||||
"mean": 0.050653,
|
||||
"median": 0.039122,
|
||||
"std": 0.044513,
|
||||
"sem": 0.002032,
|
||||
"min": 0.003069,
|
||||
"max": 0.35488,
|
||||
"recall-0.025": 0.262397,
|
||||
"max": 0.445609,
|
||||
"recall-0.025": 0.268595,
|
||||
"recall-0.05": 0.63843,
|
||||
"recall-0.1": 0.900826,
|
||||
"recall-0.15": 0.964876,
|
||||
"recall-0.25": 0.987603,
|
||||
"recall-0.15": 0.96281,
|
||||
"recall-0.25": 0.985537,
|
||||
"recall-0.5": 0.993802,
|
||||
"num_labels": 484
|
||||
},
|
||||
"hip_left": {
|
||||
"count": 483,
|
||||
"mean": 0.040026,
|
||||
"mean": 0.039765,
|
||||
"median": 0.036626,
|
||||
"std": 0.021724,
|
||||
"sem": 0.00099,
|
||||
"std": 0.02136,
|
||||
"sem": 0.000973,
|
||||
"min": 0.004385,
|
||||
"max": 0.191835,
|
||||
"recall-0.025": 0.231405,
|
||||
"recall-0.05": 0.756198,
|
||||
"recall-0.1": 0.979339,
|
||||
"recall-0.025": 0.235537,
|
||||
"recall-0.05": 0.758264,
|
||||
"recall-0.1": 0.981405,
|
||||
"recall-0.15": 0.995868,
|
||||
"recall-0.25": 0.997934,
|
||||
"recall-0.5": 0.997934,
|
||||
@ -6169,15 +6169,15 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"hip_right": {
|
||||
"count": 483,
|
||||
"mean": 0.042645,
|
||||
"median": 0.034828,
|
||||
"std": 0.027596,
|
||||
"sem": 0.001257,
|
||||
"mean": 0.042641,
|
||||
"median": 0.03475,
|
||||
"std": 0.027897,
|
||||
"sem": 0.001271,
|
||||
"min": 0.004215,
|
||||
"max": 0.149838,
|
||||
"recall-0.025": 0.27686,
|
||||
"recall-0.05": 0.71281,
|
||||
"recall-0.1": 0.948347,
|
||||
"recall-0.025": 0.28719,
|
||||
"recall-0.05": 0.714876,
|
||||
"recall-0.1": 0.946281,
|
||||
"recall-0.15": 0.997934,
|
||||
"recall-0.25": 0.997934,
|
||||
"recall-0.5": 0.997934,
|
||||
@ -6185,9 +6185,9 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"knee_left": {
|
||||
"count": 483,
|
||||
"mean": 0.025053,
|
||||
"median": 0.021076,
|
||||
"std": 0.018987,
|
||||
"mean": 0.024984,
|
||||
"median": 0.020915,
|
||||
"std": 0.018998,
|
||||
"sem": 0.000865,
|
||||
"min": 0.001403,
|
||||
"max": 0.27912,
|
||||
@ -6201,14 +6201,14 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"knee_right": {
|
||||
"count": 483,
|
||||
"mean": 0.026099,
|
||||
"median": 0.022868,
|
||||
"std": 0.015211,
|
||||
"sem": 0.000693,
|
||||
"mean": 0.026066,
|
||||
"median": 0.022746,
|
||||
"std": 0.015356,
|
||||
"sem": 0.000699,
|
||||
"min": 0.001415,
|
||||
"max": 0.094234,
|
||||
"recall-0.025": 0.557851,
|
||||
"recall-0.05": 0.919421,
|
||||
"recall-0.025": 0.559917,
|
||||
"recall-0.05": 0.917355,
|
||||
"recall-0.1": 0.997934,
|
||||
"recall-0.15": 0.997934,
|
||||
"recall-0.25": 0.997934,
|
||||
@ -6217,9 +6217,9 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"ankle_left": {
|
||||
"count": 483,
|
||||
"mean": 0.029784,
|
||||
"mean": 0.029662,
|
||||
"median": 0.023999,
|
||||
"std": 0.034378,
|
||||
"std": 0.034381,
|
||||
"sem": 0.001566,
|
||||
"min": 0.002215,
|
||||
"max": 0.497796,
|
||||
@ -6233,14 +6233,14 @@ Results of the model in various experiments on different datasets.
|
||||
},
|
||||
"ankle_right": {
|
||||
"count": 483,
|
||||
"mean": 0.029202,
|
||||
"mean": 0.029111,
|
||||
"median": 0.026139,
|
||||
"std": 0.017443,
|
||||
"sem": 0.000795,
|
||||
"std": 0.017356,
|
||||
"sem": 0.000791,
|
||||
"min": 0.001964,
|
||||
"max": 0.103825,
|
||||
"recall-0.025": 0.464876,
|
||||
"recall-0.05": 0.880165,
|
||||
"recall-0.025": 0.466942,
|
||||
"recall-0.05": 0.882231,
|
||||
"recall-0.1": 0.993802,
|
||||
"recall-0.15": 0.997934,
|
||||
"recall-0.25": 0.997934,
|
||||
@ -6250,17 +6250,17 @@ Results of the model in various experiments on different datasets.
|
||||
"joint_recalls": {
|
||||
"num_labels": 6292,
|
||||
"recall-0.025": 0.38207,
|
||||
"recall-0.05": 0.77718,
|
||||
"recall-0.1": 0.96615,
|
||||
"recall-0.15": 0.99031,
|
||||
"recall-0.25": 0.99603,
|
||||
"recall-0.05": 0.77765,
|
||||
"recall-0.1": 0.96631,
|
||||
"recall-0.15": 0.99046,
|
||||
"recall-0.25": 0.99587,
|
||||
"recall-0.5": 0.99762
|
||||
}
|
||||
}
|
||||
{
|
||||
"total_parts": 6776,
|
||||
"correct_parts": 6729,
|
||||
"pcp": 0.993064
|
||||
"correct_parts": 6727,
|
||||
"pcp": 0.992769
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
@ -277,10 +277,13 @@ def main():
|
||||
times = []
|
||||
triangulator = spt.Triangulator(min_score=minscore, min_group_size=min_group_size)
|
||||
old_scene = ""
|
||||
old_index = -1
|
||||
for label in tqdm.tqdm(labels):
|
||||
images_2d = []
|
||||
|
||||
if old_scene != label.get("scene", "") or dataset_use == "human36m_wb":
|
||||
if old_scene != label.get("scene", "") or (
|
||||
old_index + datasets[dataset_use]["take_interval"] < label["index"]
|
||||
):
|
||||
# Reset last poses if scene changes
|
||||
old_scene = label.get("scene", "")
|
||||
triangulator.reset()
|
||||
@ -328,6 +331,7 @@ def main():
|
||||
time_3d = time.time() - start
|
||||
print("3D time:", time_3d)
|
||||
|
||||
old_index = label["index"]
|
||||
all_poses.append(np.array(poses3D))
|
||||
all_ids.append(label["id"])
|
||||
all_paths.append(label["imgpaths"])
|
||||
|
||||
Reference in New Issue
Block a user