Added flag for minimal group size.
This commit is contained in:
312
media/RESULTS.md
312
media/RESULTS.md
@ -286,16 +286,16 @@ Results of the model in various experiments on different datasets.
|
|||||||
"person_nums": {
|
"person_nums": {
|
||||||
"total_frames": 301,
|
"total_frames": 301,
|
||||||
"total_labels": 477,
|
"total_labels": 477,
|
||||||
"total_preds": 888,
|
"total_preds": 814,
|
||||||
"considered_empty": 0,
|
"considered_empty": 0,
|
||||||
"valid_preds": 477,
|
"valid_preds": 477,
|
||||||
"invalid_preds": 411,
|
"invalid_preds": 337,
|
||||||
"missing": 0,
|
"missing": 0,
|
||||||
"invalid_fraction": 0.46284,
|
"invalid_fraction": 0.414,
|
||||||
"precision": 0.53716,
|
"precision": 0.586,
|
||||||
"recall": 1.0,
|
"recall": 1.0,
|
||||||
"f1": 0.6989,
|
"f1": 0.73896,
|
||||||
"non_empty": 888
|
"non_empty": 814
|
||||||
},
|
},
|
||||||
"mpjpe": {
|
"mpjpe": {
|
||||||
"count": 477,
|
"count": 477,
|
||||||
@ -313,11 +313,11 @@ Results of the model in various experiments on different datasets.
|
|||||||
"recall-0.5": 1.0,
|
"recall-0.5": 1.0,
|
||||||
"num_labels": 477,
|
"num_labels": 477,
|
||||||
"ap-0.025": 0.0,
|
"ap-0.025": 0.0,
|
||||||
"ap-0.05": 0.340331,
|
"ap-0.05": 0.345013,
|
||||||
"ap-0.1": 0.693196,
|
"ap-0.1": 0.702867,
|
||||||
"ap-0.15": 0.704408,
|
"ap-0.15": 0.714372,
|
||||||
"ap-0.25": 0.704408,
|
"ap-0.25": 0.714372,
|
||||||
"ap-0.5": 0.704408
|
"ap-0.5": 0.714372
|
||||||
},
|
},
|
||||||
"head": {
|
"head": {
|
||||||
"count": 477,
|
"count": 477,
|
||||||
@ -1569,56 +1569,56 @@ Results of the model in various experiments on different datasets.
|
|||||||
(10 cameras)
|
(10 cameras)
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"avg_time_2d": 0.20488240776992425,
|
"avg_time_2d": 0.20779247690991656,
|
||||||
"avg_time_3d": 0.0016675780459148128,
|
"avg_time_3d": 0.0016487220438515268,
|
||||||
"avg_fps": 4.841443082410108
|
"avg_fps": 4.774609794994247
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
"person_nums": {
|
"person_nums": {
|
||||||
"total_frames": 420,
|
"total_frames": 420,
|
||||||
"total_labels": 1466,
|
"total_labels": 1466,
|
||||||
"total_preds": 1735,
|
"total_preds": 1527,
|
||||||
"considered_empty": 0,
|
"considered_empty": 0,
|
||||||
"valid_preds": 1465,
|
"valid_preds": 1465,
|
||||||
"invalid_preds": 270,
|
"invalid_preds": 62,
|
||||||
"missing": 1,
|
"missing": 1,
|
||||||
"invalid_fraction": 0.15562,
|
"invalid_fraction": 0.0406,
|
||||||
"precision": 0.84438,
|
"precision": 0.9594,
|
||||||
"recall": 0.99932,
|
"recall": 0.99932,
|
||||||
"f1": 0.91534,
|
"f1": 0.97895,
|
||||||
"non_empty": 1735
|
"non_empty": 1527
|
||||||
},
|
},
|
||||||
"mpjpe": {
|
"mpjpe": {
|
||||||
"count": 1465,
|
"count": 1465,
|
||||||
"mean": 0.037085,
|
"mean": 0.037082,
|
||||||
"median": 0.032344,
|
"median": 0.032321,
|
||||||
"std": 0.017223,
|
"std": 0.017242,
|
||||||
"sem": 0.00045,
|
"sem": 0.000451,
|
||||||
"min": 0.013848,
|
"min": 0.013848,
|
||||||
"max": 0.136363,
|
"max": 0.136363,
|
||||||
"recall-0.025": 0.186903,
|
"recall-0.025": 0.188267,
|
||||||
"recall-0.05": 0.85266,
|
"recall-0.05": 0.851978,
|
||||||
"recall-0.1": 0.989086,
|
"recall-0.1": 0.989086,
|
||||||
"recall-0.15": 0.999318,
|
"recall-0.15": 0.999318,
|
||||||
"recall-0.25": 0.999318,
|
"recall-0.25": 0.999318,
|
||||||
"recall-0.5": 0.999318,
|
"recall-0.5": 0.999318,
|
||||||
"num_labels": 1466,
|
"num_labels": 1466,
|
||||||
"ap-0.025": 0.085997,
|
"ap-0.025": 0.087846,
|
||||||
"ap-0.05": 0.802543,
|
"ap-0.05": 0.807698,
|
||||||
"ap-0.1": 0.967268,
|
"ap-0.1": 0.975275,
|
||||||
"ap-0.15": 0.978621,
|
"ap-0.15": 0.986743,
|
||||||
"ap-0.25": 0.978621,
|
"ap-0.25": 0.986743,
|
||||||
"ap-0.5": 0.978621
|
"ap-0.5": 0.986743
|
||||||
},
|
},
|
||||||
"nose": {
|
"nose": {
|
||||||
"count": 1462,
|
"count": 1462,
|
||||||
"mean": 0.012376,
|
"mean": 0.012384,
|
||||||
"median": 0.010938,
|
"median": 0.010912,
|
||||||
"std": 0.007779,
|
"std": 0.007797,
|
||||||
"sem": 0.000204,
|
"sem": 0.000204,
|
||||||
"min": 0.001275,
|
"min": 0.001275,
|
||||||
"max": 0.124831,
|
"max": 0.124831,
|
||||||
"recall-0.025": 0.957621,
|
"recall-0.025": 0.956254,
|
||||||
"recall-0.05": 0.993165,
|
"recall-0.05": 0.993165,
|
||||||
"recall-0.1": 0.998633,
|
"recall-0.1": 0.998633,
|
||||||
"recall-0.15": 0.999316,
|
"recall-0.15": 0.999316,
|
||||||
@ -1628,13 +1628,13 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"shoulder_left": {
|
"shoulder_left": {
|
||||||
"count": 1465,
|
"count": 1465,
|
||||||
"mean": 0.018742,
|
"mean": 0.018746,
|
||||||
"median": 0.016661,
|
"median": 0.016641,
|
||||||
"std": 0.00976,
|
"std": 0.009717,
|
||||||
"sem": 0.000255,
|
"sem": 0.000254,
|
||||||
"min": 0.001103,
|
"min": 0.001103,
|
||||||
"max": 0.11138,
|
"max": 0.11138,
|
||||||
"recall-0.025": 0.800136,
|
"recall-0.025": 0.798772,
|
||||||
"recall-0.05": 0.991132,
|
"recall-0.05": 0.991132,
|
||||||
"recall-0.1": 0.998636,
|
"recall-0.1": 0.998636,
|
||||||
"recall-0.15": 0.999318,
|
"recall-0.15": 0.999318,
|
||||||
@ -1644,13 +1644,13 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"shoulder_right": {
|
"shoulder_right": {
|
||||||
"count": 1464,
|
"count": 1464,
|
||||||
"mean": 0.02051,
|
"mean": 0.020464,
|
||||||
"median": 0.019186,
|
"median": 0.019186,
|
||||||
"std": 0.008943,
|
"std": 0.008812,
|
||||||
"sem": 0.000234,
|
"sem": 0.00023,
|
||||||
"min": 0.002013,
|
"min": 0.002013,
|
||||||
"max": 0.093441,
|
"max": 0.087963,
|
||||||
"recall-0.025": 0.768601,
|
"recall-0.025": 0.769966,
|
||||||
"recall-0.05": 0.990444,
|
"recall-0.05": 0.990444,
|
||||||
"recall-0.1": 0.999317,
|
"recall-0.1": 0.999317,
|
||||||
"recall-0.15": 0.999317,
|
"recall-0.15": 0.999317,
|
||||||
@ -1660,15 +1660,15 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"elbow_left": {
|
"elbow_left": {
|
||||||
"count": 1464,
|
"count": 1464,
|
||||||
"mean": 0.020864,
|
"mean": 0.021041,
|
||||||
"median": 0.018441,
|
"median": 0.018392,
|
||||||
"std": 0.011938,
|
"std": 0.012619,
|
||||||
"sem": 0.000312,
|
"sem": 0.00033,
|
||||||
"min": 0.002104,
|
"min": 0.002104,
|
||||||
"max": 0.095363,
|
"max": 0.147682,
|
||||||
"recall-0.025": 0.711945,
|
"recall-0.025": 0.709215,
|
||||||
"recall-0.05": 0.974744,
|
"recall-0.05": 0.972696,
|
||||||
"recall-0.1": 0.999317,
|
"recall-0.1": 0.998635,
|
||||||
"recall-0.15": 0.999317,
|
"recall-0.15": 0.999317,
|
||||||
"recall-0.25": 0.999317,
|
"recall-0.25": 0.999317,
|
||||||
"recall-0.5": 0.999317,
|
"recall-0.5": 0.999317,
|
||||||
@ -1676,14 +1676,14 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"elbow_right": {
|
"elbow_right": {
|
||||||
"count": 1462,
|
"count": 1462,
|
||||||
"mean": 0.019564,
|
"mean": 0.019468,
|
||||||
"median": 0.017384,
|
"median": 0.017347,
|
||||||
"std": 0.011529,
|
"std": 0.011368,
|
||||||
"sem": 0.000302,
|
"sem": 0.000297,
|
||||||
"min": 0.001927,
|
"min": 0.001927,
|
||||||
"max": 0.132247,
|
"max": 0.132247,
|
||||||
"recall-0.025": 0.802461,
|
"recall-0.025": 0.805878,
|
||||||
"recall-0.05": 0.970608,
|
"recall-0.05": 0.971975,
|
||||||
"recall-0.1": 0.997949,
|
"recall-0.1": 0.997949,
|
||||||
"recall-0.15": 0.999316,
|
"recall-0.15": 0.999316,
|
||||||
"recall-0.25": 0.999316,
|
"recall-0.25": 0.999316,
|
||||||
@ -1692,13 +1692,13 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"wrist_left": {
|
"wrist_left": {
|
||||||
"count": 1433,
|
"count": 1433,
|
||||||
"mean": 0.020859,
|
"mean": 0.020901,
|
||||||
"median": 0.015088,
|
"median": 0.015088,
|
||||||
"std": 0.021069,
|
"std": 0.021121,
|
||||||
"sem": 0.000557,
|
"sem": 0.000558,
|
||||||
"min": 0.001506,
|
"min": 0.001506,
|
||||||
"max": 0.194344,
|
"max": 0.194344,
|
||||||
"recall-0.025": 0.767085,
|
"recall-0.025": 0.763598,
|
||||||
"recall-0.05": 0.937936,
|
"recall-0.05": 0.937936,
|
||||||
"recall-0.1": 0.982566,
|
"recall-0.1": 0.982566,
|
||||||
"recall-0.15": 0.994421,
|
"recall-0.15": 0.994421,
|
||||||
@ -1708,14 +1708,14 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"wrist_right": {
|
"wrist_right": {
|
||||||
"count": 1456,
|
"count": 1456,
|
||||||
"mean": 0.020392,
|
"mean": 0.020303,
|
||||||
"median": 0.0137,
|
"median": 0.013717,
|
||||||
"std": 0.020859,
|
"std": 0.020686,
|
||||||
"sem": 0.000547,
|
"sem": 0.000542,
|
||||||
"min": 0.000284,
|
"min": 0.000284,
|
||||||
"max": 0.212342,
|
"max": 0.212342,
|
||||||
"recall-0.025": 0.770604,
|
"recall-0.025": 0.773352,
|
||||||
"recall-0.05": 0.933379,
|
"recall-0.05": 0.934753,
|
||||||
"recall-0.1": 0.984203,
|
"recall-0.1": 0.984203,
|
||||||
"recall-0.15": 0.997253,
|
"recall-0.15": 0.997253,
|
||||||
"recall-0.25": 1.0,
|
"recall-0.25": 1.0,
|
||||||
@ -1724,15 +1724,15 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"hip_left": {
|
"hip_left": {
|
||||||
"count": 1464,
|
"count": 1464,
|
||||||
"mean": 0.050256,
|
"mean": 0.050265,
|
||||||
"median": 0.048397,
|
"median": 0.048338,
|
||||||
"std": 0.01907,
|
"std": 0.019008,
|
||||||
"sem": 0.000499,
|
"sem": 0.000497,
|
||||||
"min": 0.008094,
|
"min": 0.008094,
|
||||||
"max": 0.148516,
|
"max": 0.148516,
|
||||||
"recall-0.025": 0.049829,
|
"recall-0.025": 0.049147,
|
||||||
"recall-0.05": 0.546075,
|
"recall-0.05": 0.54744,
|
||||||
"recall-0.1": 0.975427,
|
"recall-0.1": 0.976109,
|
||||||
"recall-0.15": 0.999317,
|
"recall-0.15": 0.999317,
|
||||||
"recall-0.25": 0.999317,
|
"recall-0.25": 0.999317,
|
||||||
"recall-0.5": 0.999317,
|
"recall-0.5": 0.999317,
|
||||||
@ -1740,14 +1740,14 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"hip_right": {
|
"hip_right": {
|
||||||
"count": 1465,
|
"count": 1465,
|
||||||
"mean": 0.050045,
|
"mean": 0.050041,
|
||||||
"median": 0.048856,
|
"median": 0.048863,
|
||||||
"std": 0.016859,
|
"std": 0.016842,
|
||||||
"sem": 0.000441,
|
"sem": 0.00044,
|
||||||
"min": 0.007258,
|
"min": 0.007258,
|
||||||
"max": 0.138747,
|
"max": 0.138747,
|
||||||
"recall-0.025": 0.051842,
|
"recall-0.025": 0.05116,
|
||||||
"recall-0.05": 0.521146,
|
"recall-0.05": 0.520464,
|
||||||
"recall-0.1": 0.988404,
|
"recall-0.1": 0.988404,
|
||||||
"recall-0.15": 0.999318,
|
"recall-0.15": 0.999318,
|
||||||
"recall-0.25": 0.999318,
|
"recall-0.25": 0.999318,
|
||||||
@ -1756,13 +1756,13 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"knee_left": {
|
"knee_left": {
|
||||||
"count": 1464,
|
"count": 1464,
|
||||||
"mean": 0.038364,
|
"mean": 0.038353,
|
||||||
"median": 0.032286,
|
"median": 0.032352,
|
||||||
"std": 0.027217,
|
"std": 0.027187,
|
||||||
"sem": 0.000712,
|
"sem": 0.000711,
|
||||||
"min": 0.002051,
|
"min": 0.002051,
|
||||||
"max": 0.275419,
|
"max": 0.275419,
|
||||||
"recall-0.025": 0.333106,
|
"recall-0.025": 0.331058,
|
||||||
"recall-0.05": 0.759727,
|
"recall-0.05": 0.759727,
|
||||||
"recall-0.1": 0.970648,
|
"recall-0.1": 0.970648,
|
||||||
"recall-0.15": 0.990444,
|
"recall-0.15": 0.990444,
|
||||||
@ -1772,59 +1772,59 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"knee_right": {
|
"knee_right": {
|
||||||
"count": 1458,
|
"count": 1458,
|
||||||
"mean": 0.041819,
|
"mean": 0.041659,
|
||||||
"median": 0.035897,
|
"median": 0.035863,
|
||||||
"std": 0.026627,
|
"std": 0.026298,
|
||||||
"sem": 0.000698,
|
"sem": 0.000689,
|
||||||
"min": 0.004598,
|
"min": 0.004598,
|
||||||
"max": 0.242773,
|
"max": 0.242773,
|
||||||
"recall-0.025": 0.242632,
|
"recall-0.025": 0.243317,
|
||||||
"recall-0.05": 0.731323,
|
"recall-0.05": 0.732008,
|
||||||
"recall-0.1": 0.963674,
|
"recall-0.1": 0.964359,
|
||||||
"recall-0.15": 0.989034,
|
"recall-0.15": 0.990404,
|
||||||
"recall-0.25": 0.999315,
|
"recall-0.25": 0.999315,
|
||||||
"recall-0.5": 0.999315,
|
"recall-0.5": 0.999315,
|
||||||
"num_labels": 1459
|
"num_labels": 1459
|
||||||
},
|
},
|
||||||
"ankle_left": {
|
"ankle_left": {
|
||||||
"count": 1457,
|
"count": 1457,
|
||||||
"mean": 0.085272,
|
"mean": 0.085318,
|
||||||
"median": 0.043075,
|
"median": 0.04279,
|
||||||
"std": 0.101395,
|
"std": 0.101384,
|
||||||
"sem": 0.002657,
|
"sem": 0.002657,
|
||||||
"min": 0.000814,
|
"min": 0.000814,
|
||||||
"max": 0.494931,
|
"max": 0.494931,
|
||||||
"recall-0.025": 0.346548,
|
"recall-0.025": 0.347915,
|
||||||
"recall-0.05": 0.545455,
|
"recall-0.05": 0.546138,
|
||||||
"recall-0.1": 0.712919,
|
"recall-0.1": 0.712235,
|
||||||
"recall-0.15": 0.828435,
|
"recall-0.15": 0.827751,
|
||||||
"recall-0.25": 0.917293,
|
"recall-0.25": 0.917293,
|
||||||
"recall-0.5": 0.995899,
|
"recall-0.5": 0.995899,
|
||||||
"num_labels": 1463
|
"num_labels": 1463
|
||||||
},
|
},
|
||||||
"ankle_right": {
|
"ankle_right": {
|
||||||
"count": 1447,
|
"count": 1447,
|
||||||
"mean": 0.077062,
|
"mean": 0.077143,
|
||||||
"median": 0.042773,
|
"median": 0.042829,
|
||||||
"std": 0.096671,
|
"std": 0.096759,
|
||||||
"sem": 0.002542,
|
"sem": 0.002545,
|
||||||
"min": 0.001957,
|
"min": 0.001957,
|
||||||
"max": 0.49866,
|
"max": 0.49866,
|
||||||
"recall-0.025": 0.315753,
|
"recall-0.025": 0.315068,
|
||||||
"recall-0.05": 0.560274,
|
"recall-0.05": 0.560274,
|
||||||
"recall-0.1": 0.793151,
|
"recall-0.1": 0.791781,
|
||||||
"recall-0.15": 0.850685,
|
"recall-0.15": 0.85137,
|
||||||
"recall-0.25": 0.908219,
|
"recall-0.25": 0.908904,
|
||||||
"recall-0.5": 0.991096,
|
"recall-0.5": 0.991096,
|
||||||
"num_labels": 1460
|
"num_labels": 1460
|
||||||
},
|
},
|
||||||
"joint_recalls": {
|
"joint_recalls": {
|
||||||
"num_labels": 18990,
|
"num_labels": 18990,
|
||||||
"recall-0.025": 0.53133,
|
"recall-0.025": 0.53102,
|
||||||
"recall-0.05": 0.80379,
|
"recall-0.05": 0.80395,
|
||||||
"recall-0.1": 0.95082,
|
"recall-0.1": 0.95061,
|
||||||
"recall-0.15": 0.97241,
|
"recall-0.15": 0.97241,
|
||||||
"recall-0.25": 0.98562,
|
"recall-0.25": 0.98568,
|
||||||
"recall-0.5": 0.99816
|
"recall-0.5": 0.99816
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -2119,23 +2119,23 @@ Results of the model in various experiments on different datasets.
|
|||||||
"person_nums": {
|
"person_nums": {
|
||||||
"total_frames": 210,
|
"total_frames": 210,
|
||||||
"total_labels": 630,
|
"total_labels": 630,
|
||||||
"total_preds": 632,
|
"total_preds": 631,
|
||||||
"considered_empty": 0,
|
"considered_empty": 0,
|
||||||
"valid_preds": 630,
|
"valid_preds": 630,
|
||||||
"invalid_preds": 2,
|
"invalid_preds": 1,
|
||||||
"missing": 0,
|
"missing": 0,
|
||||||
"invalid_fraction": 0.00316,
|
"invalid_fraction": 0.00158,
|
||||||
"precision": 0.99684,
|
"precision": 0.99842,
|
||||||
"recall": 1.0,
|
"recall": 1.0,
|
||||||
"f1": 0.99842,
|
"f1": 0.99921,
|
||||||
"non_empty": 632
|
"non_empty": 631
|
||||||
},
|
},
|
||||||
"mpjpe": {
|
"mpjpe": {
|
||||||
"count": 630,
|
"count": 630,
|
||||||
"mean": 0.056116,
|
"mean": 0.056111,
|
||||||
"median": 0.051456,
|
"median": 0.051456,
|
||||||
"std": 0.018382,
|
"std": 0.018368,
|
||||||
"sem": 0.000733,
|
"sem": 0.000732,
|
||||||
"min": 0.028965,
|
"min": 0.028965,
|
||||||
"max": 0.14306,
|
"max": 0.14306,
|
||||||
"recall-0.025": 0.0,
|
"recall-0.025": 0.0,
|
||||||
@ -2146,18 +2146,18 @@ Results of the model in various experiments on different datasets.
|
|||||||
"recall-0.5": 1.0,
|
"recall-0.5": 1.0,
|
||||||
"num_labels": 630,
|
"num_labels": 630,
|
||||||
"ap-0.025": 0.0,
|
"ap-0.025": 0.0,
|
||||||
"ap-0.05": 0.223916,
|
"ap-0.05": 0.223683,
|
||||||
"ap-0.1": 0.928562,
|
"ap-0.1": 0.928267,
|
||||||
"ap-0.15": 0.999816,
|
"ap-0.15": 0.999816,
|
||||||
"ap-0.25": 0.999816,
|
"ap-0.25": 0.999816,
|
||||||
"ap-0.5": 0.999816
|
"ap-0.5": 0.999816
|
||||||
},
|
},
|
||||||
"head": {
|
"head": {
|
||||||
"count": 598,
|
"count": 598,
|
||||||
"mean": 0.040794,
|
"mean": 0.040764,
|
||||||
"median": 0.039496,
|
"median": 0.039496,
|
||||||
"std": 0.01381,
|
"std": 0.01374,
|
||||||
"sem": 0.000565,
|
"sem": 0.000562,
|
||||||
"min": 0.011364,
|
"min": 0.011364,
|
||||||
"max": 0.102955,
|
"max": 0.102955,
|
||||||
"recall-0.025": 0.125418,
|
"recall-0.025": 0.125418,
|
||||||
@ -2170,15 +2170,15 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"shoulder_left": {
|
"shoulder_left": {
|
||||||
"count": 630,
|
"count": 630,
|
||||||
"mean": 0.062854,
|
"mean": 0.062839,
|
||||||
"median": 0.060457,
|
"median": 0.060457,
|
||||||
"std": 0.01943,
|
"std": 0.019404,
|
||||||
"sem": 0.000775,
|
"sem": 0.000774,
|
||||||
"min": 0.018922,
|
"min": 0.018922,
|
||||||
"max": 0.132634,
|
"max": 0.132634,
|
||||||
"recall-0.025": 0.003175,
|
"recall-0.025": 0.003175,
|
||||||
"recall-0.05": 0.273016,
|
"recall-0.05": 0.273016,
|
||||||
"recall-0.1": 0.974603,
|
"recall-0.1": 0.97619,
|
||||||
"recall-0.15": 1.0,
|
"recall-0.15": 1.0,
|
||||||
"recall-0.25": 1.0,
|
"recall-0.25": 1.0,
|
||||||
"recall-0.5": 1.0,
|
"recall-0.5": 1.0,
|
||||||
@ -2202,10 +2202,10 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"elbow_left": {
|
"elbow_left": {
|
||||||
"count": 630,
|
"count": 630,
|
||||||
"mean": 0.052412,
|
"mean": 0.05237,
|
||||||
"median": 0.049508,
|
"median": 0.049508,
|
||||||
"std": 0.020244,
|
"std": 0.020206,
|
||||||
"sem": 0.000807,
|
"sem": 0.000806,
|
||||||
"min": 0.010131,
|
"min": 0.010131,
|
||||||
"max": 0.140634,
|
"max": 0.140634,
|
||||||
"recall-0.025": 0.05873,
|
"recall-0.025": 0.05873,
|
||||||
@ -2234,10 +2234,10 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"wrist_left": {
|
"wrist_left": {
|
||||||
"count": 630,
|
"count": 630,
|
||||||
"mean": 0.048082,
|
"mean": 0.048071,
|
||||||
"median": 0.041989,
|
"median": 0.041989,
|
||||||
"std": 0.026744,
|
"std": 0.026751,
|
||||||
"sem": 0.001066,
|
"sem": 0.001067,
|
||||||
"min": 0.007895,
|
"min": 0.007895,
|
||||||
"max": 0.191578,
|
"max": 0.191578,
|
||||||
"recall-0.025": 0.134921,
|
"recall-0.025": 0.134921,
|
||||||
@ -2250,7 +2250,7 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"wrist_right": {
|
"wrist_right": {
|
||||||
"count": 625,
|
"count": 625,
|
||||||
"mean": 0.05271,
|
"mean": 0.052705,
|
||||||
"median": 0.047416,
|
"median": 0.047416,
|
||||||
"std": 0.025887,
|
"std": 0.025887,
|
||||||
"sem": 0.001036,
|
"sem": 0.001036,
|
||||||
@ -2266,10 +2266,10 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"hip_left": {
|
"hip_left": {
|
||||||
"count": 630,
|
"count": 630,
|
||||||
"mean": 0.057316,
|
"mean": 0.057311,
|
||||||
"median": 0.054171,
|
"median": 0.054171,
|
||||||
"std": 0.020591,
|
"std": 0.020577,
|
||||||
"sem": 0.000821,
|
"sem": 0.00082,
|
||||||
"min": 0.014001,
|
"min": 0.014001,
|
||||||
"max": 0.17071,
|
"max": 0.17071,
|
||||||
"recall-0.025": 0.025397,
|
"recall-0.025": 0.025397,
|
||||||
@ -2282,9 +2282,9 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"hip_right": {
|
"hip_right": {
|
||||||
"count": 629,
|
"count": 629,
|
||||||
"mean": 0.055242,
|
"mean": 0.055245,
|
||||||
"median": 0.050996,
|
"median": 0.050996,
|
||||||
"std": 0.02309,
|
"std": 0.023089,
|
||||||
"sem": 0.000921,
|
"sem": 0.000921,
|
||||||
"min": 0.004999,
|
"min": 0.004999,
|
||||||
"max": 0.145424,
|
"max": 0.145424,
|
||||||
@ -2298,9 +2298,9 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"knee_left": {
|
"knee_left": {
|
||||||
"count": 628,
|
"count": 628,
|
||||||
"mean": 0.045694,
|
"mean": 0.045693,
|
||||||
"median": 0.034743,
|
"median": 0.034743,
|
||||||
"std": 0.04608,
|
"std": 0.046075,
|
||||||
"sem": 0.00184,
|
"sem": 0.00184,
|
||||||
"min": 0.003593,
|
"min": 0.003593,
|
||||||
"max": 0.364064,
|
"max": 0.364064,
|
||||||
@ -2314,14 +2314,14 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"knee_right": {
|
"knee_right": {
|
||||||
"count": 629,
|
"count": 629,
|
||||||
"mean": 0.053707,
|
"mean": 0.053711,
|
||||||
"median": 0.036065,
|
"median": 0.036065,
|
||||||
"std": 0.072302,
|
"std": 0.072301,
|
||||||
"sem": 0.002885,
|
"sem": 0.002885,
|
||||||
"min": 0.002669,
|
"min": 0.002669,
|
||||||
"max": 0.496679,
|
"max": 0.496679,
|
||||||
"recall-0.025": 0.252782,
|
"recall-0.025": 0.252782,
|
||||||
"recall-0.05": 0.73132,
|
"recall-0.05": 0.72973,
|
||||||
"recall-0.1": 0.934817,
|
"recall-0.1": 0.934817,
|
||||||
"recall-0.15": 0.952305,
|
"recall-0.15": 0.952305,
|
||||||
"recall-0.25": 0.958665,
|
"recall-0.25": 0.958665,
|
||||||
@ -2330,10 +2330,10 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"ankle_left": {
|
"ankle_left": {
|
||||||
"count": 619,
|
"count": 619,
|
||||||
"mean": 0.065828,
|
"mean": 0.065864,
|
||||||
"median": 0.050491,
|
"median": 0.050491,
|
||||||
"std": 0.072587,
|
"std": 0.072779,
|
||||||
"sem": 0.00292,
|
"sem": 0.002928,
|
||||||
"min": 0.012793,
|
"min": 0.012793,
|
||||||
"max": 0.493666,
|
"max": 0.493666,
|
||||||
"recall-0.025": 0.035541,
|
"recall-0.025": 0.035541,
|
||||||
@ -2346,7 +2346,7 @@ Results of the model in various experiments on different datasets.
|
|||||||
},
|
},
|
||||||
"ankle_right": {
|
"ankle_right": {
|
||||||
"count": 601,
|
"count": 601,
|
||||||
"mean": 0.054042,
|
"mean": 0.054043,
|
||||||
"median": 0.047411,
|
"median": 0.047411,
|
||||||
"std": 0.042559,
|
"std": 0.042559,
|
||||||
"sem": 0.001737,
|
"sem": 0.001737,
|
||||||
@ -2363,8 +2363,8 @@ Results of the model in various experiments on different datasets.
|
|||||||
"joint_recalls": {
|
"joint_recalls": {
|
||||||
"num_labels": 8129,
|
"num_labels": 8129,
|
||||||
"recall-0.025": 0.09583,
|
"recall-0.025": 0.09583,
|
||||||
"recall-0.05": 0.52749,
|
"recall-0.05": 0.52737,
|
||||||
"recall-0.1": 0.95079,
|
"recall-0.1": 0.95092,
|
||||||
"recall-0.15": 0.98155,
|
"recall-0.15": 0.98155,
|
||||||
"recall-0.25": 0.98905,
|
"recall-0.25": 0.98905,
|
||||||
"recall-0.5": 0.99742
|
"recall-0.5": 0.99742
|
||||||
|
|||||||
@ -333,13 +333,22 @@ def main():
|
|||||||
"koarob": 0.91,
|
"koarob": 0.91,
|
||||||
}
|
}
|
||||||
minscore = minscores.get(dataset_use, 0.95)
|
minscore = minscores.get(dataset_use, 0.95)
|
||||||
|
min_group_sizes = {
|
||||||
|
# If the number of cameras is high, and the views are not occluded, use a higher value
|
||||||
|
"panoptic": 1,
|
||||||
|
"shelf": 2,
|
||||||
|
"tsinghua": 2,
|
||||||
|
}
|
||||||
|
min_group_size = min_group_sizes.get(dataset_use, 1)
|
||||||
|
if dataset_use == "panoptic" and len(datasets["panoptic"]["cams"]) == 10:
|
||||||
|
min_group_size = 5
|
||||||
|
|
||||||
print("\nRunning predictions ...")
|
print("\nRunning predictions ...")
|
||||||
all_poses = []
|
all_poses = []
|
||||||
all_ids = []
|
all_ids = []
|
||||||
all_paths = []
|
all_paths = []
|
||||||
times = []
|
times = []
|
||||||
triangulator = spt.Triangulator(min_score=minscore)
|
triangulator = spt.Triangulator(min_score=minscore, min_group_size=min_group_size)
|
||||||
old_scene = ""
|
old_scene = ""
|
||||||
for label in tqdm.tqdm(labels):
|
for label in tqdm.tqdm(labels):
|
||||||
images_2d = []
|
images_2d = []
|
||||||
|
|||||||
@ -4,9 +4,9 @@
|
|||||||
// =================================================================================================
|
// =================================================================================================
|
||||||
// =================================================================================================
|
// =================================================================================================
|
||||||
|
|
||||||
Triangulator::Triangulator(float min_score)
|
Triangulator::Triangulator(float min_score, size_t min_group_size)
|
||||||
{
|
{
|
||||||
this->triangulator = new TriangulatorInternal(min_score);
|
this->triangulator = new TriangulatorInternal(min_score, min_group_size);
|
||||||
}
|
}
|
||||||
|
|
||||||
// =================================================================================================
|
// =================================================================================================
|
||||||
|
|||||||
@ -20,9 +20,11 @@ public:
|
|||||||
*
|
*
|
||||||
*
|
*
|
||||||
* @param min_score Minimum score to consider a triangulated joint as valid.
|
* @param min_score Minimum score to consider a triangulated joint as valid.
|
||||||
|
* @param min_group_size Minimum number of camera pairs that need to see a person.
|
||||||
*/
|
*/
|
||||||
Triangulator(
|
Triangulator(
|
||||||
float min_score = 0.95);
|
float min_score = 0.95,
|
||||||
|
size_t min_group_size = 1);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculate a triangulation.
|
* Calculate a triangulation.
|
||||||
|
|||||||
@ -102,9 +102,10 @@ void CameraInternal::update_projection_matrix()
|
|||||||
// =================================================================================================
|
// =================================================================================================
|
||||||
// =================================================================================================
|
// =================================================================================================
|
||||||
|
|
||||||
TriangulatorInternal::TriangulatorInternal(float min_score)
|
TriangulatorInternal::TriangulatorInternal(float min_score, size_t min_group_size)
|
||||||
{
|
{
|
||||||
this->min_score = min_score;
|
this->min_score = min_score;
|
||||||
|
this->min_group_size = min_group_size;
|
||||||
}
|
}
|
||||||
|
|
||||||
// =================================================================================================
|
// =================================================================================================
|
||||||
@ -443,20 +444,13 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
|
|||||||
stime = std::chrono::high_resolution_clock::now();
|
stime = std::chrono::high_resolution_clock::now();
|
||||||
|
|
||||||
// Drop low scoring poses
|
// Drop low scoring poses
|
||||||
std::vector<size_t> drop_indices;
|
size_t num_poses = all_scored_poses.size();
|
||||||
for (size_t i = 0; i < all_scored_poses.size(); ++i)
|
for (size_t i = num_poses; i > 0; --i)
|
||||||
{
|
{
|
||||||
if (all_scored_poses[i].second < min_score)
|
if (all_scored_poses[i - 1].second < min_score)
|
||||||
{
|
{
|
||||||
drop_indices.push_back(i);
|
all_scored_poses.erase(all_scored_poses.begin() + i - 1);
|
||||||
}
|
all_pairs.erase(all_pairs.begin() + i - 1);
|
||||||
}
|
|
||||||
if (!drop_indices.empty())
|
|
||||||
{
|
|
||||||
for (size_t i = drop_indices.size(); i > 0; --i)
|
|
||||||
{
|
|
||||||
all_scored_poses.erase(all_scored_poses.begin() + drop_indices[i - 1]);
|
|
||||||
all_pairs.erase(all_pairs.begin() + drop_indices[i - 1]);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -464,6 +458,16 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
|
|||||||
std::vector<std::tuple<cv::Point3d, cv::Mat, std::vector<int>>> groups;
|
std::vector<std::tuple<cv::Point3d, cv::Mat, std::vector<int>>> groups;
|
||||||
groups = calc_grouping(all_pairs, all_scored_poses, min_score);
|
groups = calc_grouping(all_pairs, all_scored_poses, min_score);
|
||||||
|
|
||||||
|
// Drop groups with too few matches
|
||||||
|
size_t num_groups = groups.size();
|
||||||
|
for (size_t i = num_groups; i > 0; --i)
|
||||||
|
{
|
||||||
|
if (std::get<2>(groups[i - 1]).size() < this->min_group_size)
|
||||||
|
{
|
||||||
|
groups.erase(groups.begin() + i - 1);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
elapsed = std::chrono::high_resolution_clock::now() - stime;
|
elapsed = std::chrono::high_resolution_clock::now() - stime;
|
||||||
grouping_time += elapsed.count();
|
grouping_time += elapsed.count();
|
||||||
stime = std::chrono::high_resolution_clock::now();
|
stime = std::chrono::high_resolution_clock::now();
|
||||||
|
|||||||
@ -31,7 +31,7 @@ public:
|
|||||||
class TriangulatorInternal
|
class TriangulatorInternal
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
TriangulatorInternal(float min_score);
|
TriangulatorInternal(float min_score, size_t min_group_size);
|
||||||
|
|
||||||
std::vector<std::vector<std::array<float, 4>>> triangulate_poses(
|
std::vector<std::vector<std::array<float, 4>>> triangulate_poses(
|
||||||
const std::vector<std::vector<std::vector<std::array<float, 3>>>> &poses_2d,
|
const std::vector<std::vector<std::vector<std::array<float, 3>>>> &poses_2d,
|
||||||
@ -44,6 +44,8 @@ public:
|
|||||||
|
|
||||||
private:
|
private:
|
||||||
float min_score;
|
float min_score;
|
||||||
|
float min_group_size;
|
||||||
|
|
||||||
const std::vector<std::string> core_joints = {
|
const std::vector<std::string> core_joints = {
|
||||||
"shoulder_left",
|
"shoulder_left",
|
||||||
"shoulder_right",
|
"shoulder_right",
|
||||||
|
|||||||
Reference in New Issue
Block a user