Merge remote-tracking branch 'origin/trt' into jetson

This commit is contained in:
Isse
2024-12-19 15:16:16 +01:00
35 changed files with 5482 additions and 3285 deletions

View File

@ -27,6 +27,11 @@ Fast triangulation of multiple persons from multiple camera views.
./run_container.sh
```
- Build triangulator:
```bash
cd /RapidPoseTriangulation/swig/ && make all && cd ../tests/ && python3 test_interface.py && cd ..
```
- Test with samples:
```bash
python3 /RapidPoseTriangulation/scripts/test_triangulate.py
@ -37,11 +42,3 @@ Fast triangulation of multiple persons from multiple camera views.
export CUDA_VISIBLE_DEVICES=0
python3 /RapidPoseTriangulation/scripts/test_skelda_dataset.py
```
<br>
## Debugging
```bash
cd /RapidPoseTriangulation/swig/ && make all && cd ../tests/ && python3 test_interface.py
```

1
data/.gitignore vendored
View File

@ -5,3 +5,4 @@
*.json
!*/*.json
testoutput/
trt_cache/

View File

@ -1,4 +1,4 @@
FROM nvcr.io/nvidia/pytorch:23.02-py3
FROM nvcr.io/nvidia/tensorrt:24.10-py3
ARG DEBIAN_FRONTEND=noninteractive
ENV LANG=C.UTF-8
@ -15,31 +15,16 @@ RUN apt-get update && apt-get install -y --no-install-recommends python3-tk
# Update pip to allow installation of skelda in editable mode
RUN pip3 install --upgrade --no-cache-dir pip
# Install MMPose
ENV FORCE_CUDA="1"
ENV MMCV_WITH_OPS=1
RUN pip3 install --upgrade --no-cache-dir openmim
RUN mim install mmengine
RUN mim install "mmcv>=2,<2.2.0"
RUN mim install "mmdet>=3"
RUN mim install "mmpose>=1.1.0"
# Fix an error when importing mmpose
RUN pip3 install --upgrade --no-cache-dir numpy scipy
RUN git clone --depth=1 --branch=main https://github.com/open-mmlab/mmpose.git
# Download pretrained model
COPY scripts/utils_2d_pose.py /
RUN python3 -c "from utils_2d_pose import load_model; load_model();"
RUN python3 -c "from utils_2d_pose import load_wb_model; load_wb_model();"
# Fix an undefined symbol error with ompi
RUN echo "ldconfig" >> ~/.bashrc
# Install swig and later dependencies
RUN apt-get update && apt-get install -y --no-install-recommends build-essential
RUN apt-get update && apt-get install -y --no-install-recommends swig
RUN apt-get update && apt-get install -y --no-install-recommends libopencv-dev
# Install ONNX runtime
RUN pip3 install --upgrade --no-cache-dir onnxruntime-gpu
# Install skelda
RUN pip3 install --upgrade --no-cache-dir scipy
COPY ./skelda/ /skelda/
RUN pip3 install --no-cache-dir -e /skelda/

18
extras/easypose/README.md Normal file
View File

@ -0,0 +1,18 @@
# Test ONNX with EasyPose
Code files originally from: https://github.com/Dominic23331/EasyPose.git
<br>
```bash
docker build --progress=plain -f extras/easypose/dockerfile -t rpt_easypose .
./extras/easypose/run_container.sh
```
```bash
export CUDA_VISIBLE_DEVICES=0
python3 /RapidPoseTriangulation/scripts/test_triangulate.py
python3 /RapidPoseTriangulation/scripts/test_skelda_dataset.py
```

View File

@ -0,0 +1,65 @@
import warnings
from abc import ABC, abstractmethod
from typing import List
import time
import numpy as np
import onnxruntime as ort
from tqdm import tqdm
class BaseModel(ABC):
def __init__(self, model_path: str, device: str = 'CUDA', warmup: int = 30):
self.opt = ort.SessionOptions()
if device == 'CUDA':
provider = 'CUDAExecutionProvider'
if provider not in ort.get_available_providers():
warnings.warn("No CUDAExecutionProvider found, switched to CPUExecutionProvider.", UserWarning)
provider = 'CPUExecutionProvider'
elif device == 'CPU':
provider = 'CPUExecutionProvider'
else:
raise ValueError('Provider {} does not exist.'.format(device))
self.session = ort.InferenceSession(model_path,
providers=[provider],
sess_options=self.opt)
self.input_name = self.session.get_inputs()[0].name
self.input_shape = self.session.get_inputs()[0].shape
input_type = self.session.get_inputs()[0].type
if input_type == 'tensor(float32)':
self.input_type = np.float32
elif input_type == 'tensor(float16)':
self.input_type = np.float16
elif input_type == 'tensor(uint8)':
self.input_type = np.uint8
else:
raise ValueError('Unknown input type: ', input_type)
if warmup > 0:
self.warmup(warmup)
@abstractmethod
def preprocess(self, image: np.ndarray):
pass
@abstractmethod
def postprocess(self, tensor: List[np.ndarray]):
pass
def forward(self, image: np.ndarray):
tensor = self.preprocess(image)
result = self.session.run(None, {self.input_name: tensor})
output = self.postprocess(result)
return output
def warmup(self, epoch: int = 30):
print('{} start warmup!'.format(self.__class__.__name__))
tensor = np.random.random(self.input_shape).astype(self.input_type)
for _ in tqdm(range(epoch)):
self.session.run(None, {self.input_name: tensor})
def __call__(self, image: np.ndarray, *args, **kwargs):
return self.forward(image)

View File

@ -0,0 +1,100 @@
import numpy as np
from typing import List
from .base_model import BaseModel
from .utils import letterbox, nms_optimized, xywh2xyxy
class RTMDet(BaseModel):
def __init__(self,
model_path: str,
conf_threshold: float,
iou_threshold: float,
device: str = 'CUDA',
warmup: int = 30):
super(RTMDet, self).__init__(model_path, device, warmup)
self.conf_threshold = conf_threshold
self.iou_threshold = iou_threshold
self.dx = 0
self.dy = 0
self.scale = 0
def preprocess(self, image: np.ndarray):
th, tw = self.input_shape[1:3]
image, self.dx, self.dy, self.scale = letterbox(
image, (tw, th), fill_value=114
)
tensor = np.asarray(image).astype(self.input_type, copy=False)[..., ::-1]
tensor = np.expand_dims(tensor, axis=0)
return tensor
def postprocess(self, tensor: List[np.ndarray]):
boxes = np.squeeze(tensor[0], axis=0)
classes = np.expand_dims(np.squeeze(tensor[1], axis=0), axis=-1)
boxes = np.concatenate([boxes, classes], axis=-1)
boxes = nms_optimized(boxes, self.iou_threshold, self.conf_threshold)
if boxes.shape[0] == 0:
return boxes
human_class = boxes[..., -1] == 0
boxes = boxes[human_class][..., :4]
boxes[:, 0] -= self.dx
boxes[:, 2] -= self.dx
boxes[:, 1] -= self.dy
boxes[:, 3] -= self.dy
boxes = np.clip(boxes, a_min=0, a_max=None)
boxes[:, :4] /= self.scale
return boxes
class Yolov8(BaseModel):
def __init__(self,
model_path: str,
conf_threshold: float,
iou_threshold: float,
device: str = 'CUDA',
warmup: int = 30):
super(Yolov8, self).__init__(model_path, device, warmup)
self.conf_threshold = conf_threshold
self.iou_threshold = iou_threshold
self.dx = 0
self.dy = 0
self.scale = 0
def preprocess(self, image):
th, tw = self.input_shape[2:]
image, self.dx, self.dy, self.scale = letterbox(image, (tw, th))
tensor = image / 255.
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
return tensor
def postprocess(self, tensor):
feature_map = tensor[0]
feature_map = np.squeeze(feature_map, axis=0).transpose((1, 0))
pred_class = feature_map[..., 4:]
pred_conf = np.max(pred_class, axis=-1, keepdims=True)
pred_class = np.argmax(pred_class, axis=-1, keepdims=True)
boxes = np.concatenate([feature_map[..., :4], pred_conf, pred_class], axis=-1)
boxes = xywh2xyxy(boxes)
boxes = nms(boxes, self.iou_threshold, self.conf_threshold)
if boxes.shape[0] == 0:
return boxes
human_class = boxes[..., -1] == 0
boxes = boxes[human_class][..., :4]
boxes[:, 0] -= self.dx
boxes[:, 2] -= self.dx
boxes[:, 1] -= self.dy
boxes[:, 3] -= self.dy
boxes = np.clip(boxes, a_min=0, a_max=None)
boxes[:, :4] /= self.scale
return boxes

View File

@ -0,0 +1,10 @@
FROM rapidposetriangulation
WORKDIR /
RUN pip3 install --upgrade --no-cache-dir onnxruntime-gpu
RUN git clone https://github.com/Dominic23331/EasyPose.git --depth=1
RUN cd /EasyPose/; pip install -v -e .
WORKDIR /RapidPoseTriangulation/
CMD ["/bin/bash"]

362
extras/easypose/pipeline.py Normal file
View File

@ -0,0 +1,362 @@
import os
import cv2
import numpy as np
from easypose import model
from easypose.model import detection
from easypose.model import pose
from .download import get_url, get_model_path, download
from .consts import AvailablePoseModels, AvailableDetModels
from .common import Person, region_of_interest, restore_keypoints
def get_pose_model(pose_model_path, pose_model_decoder, device, warmup):
if pose_model_decoder == 'Dark':
pose_model = pose.Heatmap(pose_model_path, dark=True, device=device, warmup=warmup)
else:
pose_model = getattr(pose, pose_model_decoder)(pose_model_path, device=device, warmup=warmup)
return pose_model
def get_det_model(det_model_path, model_type, conf_thre, iou_thre, device, warmup):
det_model = getattr(detection, model_type)(det_model_path, conf_thre, iou_thre, device, warmup)
return det_model
def region_of_interest_warped(
image: np.ndarray,
box: np.ndarray,
target_size=(288, 384),
padding_scale: float = 1.25,
):
start_x, start_y, end_x, end_y = box
target_w, target_h = target_size
# Calculate original bounding box width and height
bbox_w = end_x - start_x
bbox_h = end_y - start_y
if bbox_w <= 0 or bbox_h <= 0:
raise ValueError("Invalid bounding box!")
# Calculate the aspect ratios
bbox_aspect = bbox_w / bbox_h
target_aspect = target_w / target_h
# Adjust the scaled bounding box to match the target aspect ratio
if bbox_aspect > target_aspect:
adjusted_h = bbox_w / target_aspect
adjusted_w = bbox_w
else:
adjusted_w = bbox_h * target_aspect
adjusted_h = bbox_h
# Scale the bounding box by the padding_scale
scaled_bbox_w = adjusted_w * padding_scale
scaled_bbox_h = adjusted_h * padding_scale
# Calculate the center of the original box
center_x = (start_x + end_x) / 2.0
center_y = (start_y + end_y) / 2.0
# Calculate scaled bounding box coordinates
new_start_x = center_x - scaled_bbox_w / 2.0
new_start_y = center_y - scaled_bbox_h / 2.0
new_end_x = center_x + scaled_bbox_w / 2.0
new_end_y = center_y + scaled_bbox_h / 2.0
# Define the new box coordinates
new_box = np.array(
[new_start_x, new_start_y, new_end_x, new_end_y], dtype=np.float32
)
scale = target_w / scaled_bbox_w
# Define source and destination points for affine transformation
# See: /mmpose/structures/bbox/transforms.py
src_pts = np.array(
[
[center_x, center_y],
[new_start_x, center_y],
[new_start_x, center_y + (center_x - new_start_x)],
],
dtype=np.float32,
)
dst_pts = np.array(
[
[target_w * 0.5, target_h * 0.5],
[0, target_h * 0.5],
[0, target_h * 0.5 + (target_w * 0.5 - 0)],
],
dtype=np.float32,
)
# Compute the affine transformation matrix
M = cv2.getAffineTransform(src_pts, dst_pts)
# Apply affine transformation with border filling
extracted_region = cv2.warpAffine(
image,
M,
target_size,
flags=cv2.INTER_LINEAR,
)
return extracted_region, new_box, scale
class TopDown:
def __init__(self,
pose_model_name,
pose_model_decoder,
det_model_name,
conf_threshold=0.6,
iou_threshold=0.6,
device='CUDA',
warmup=30):
if not pose_model_name.endswith('.onnx') and pose_model_name not in AvailablePoseModels.POSE_MODELS:
raise ValueError(
'The {} human pose estimation model is not in the model repository.'.format(pose_model_name))
if not pose_model_name.endswith('.onnx') and pose_model_decoder not in AvailablePoseModels.POSE_MODELS[pose_model_name]:
raise ValueError(
'No {} decoding head for the {} model was found in the model repository.'.format(pose_model_decoder,
pose_model_name))
if not pose_model_name.endswith('.onnx') and det_model_name not in AvailableDetModels.DET_MODELS:
raise ValueError(
'The {} detection model is not in the model repository.'.format(det_model_name))
if not pose_model_name.endswith('.onnx'):
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
pose_model_path = os.path.join(pose_model_dir,
AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder])
else:
pose_model_path = pose_model_name
if os.path.exists(pose_model_path):
try:
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
except Exception:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
else:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
if not det_model_name.endswith('.onnx'):
det_model_dir = get_model_path(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
detection_model=True)
det_model_path = os.path.join(det_model_dir,
AvailableDetModels.DET_MODELS[det_model_name]['file_name'])
det_model_type = AvailableDetModels.DET_MODELS[det_model_name]['model_type']
else:
det_model_path = det_model_name
if "rtmdet" in det_model_name:
det_model_type = 'RTMDet'
if os.path.exists(det_model_path):
try:
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
except Exception:
url = get_url(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
else:
url = get_url(AvailableDetModels.DET_MODELS[det_model_name]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
def predict(self, image):
boxes = self.det_model(image)
results = []
for i in range(boxes.shape[0]):
p = Person()
p.box = boxes[i]
region, p.box, _ = region_of_interest_warped(image, p.box)
kp = self.pose_model(region)
# See: /mmpose/models/pose_estimators/topdown.py - add_pred_to_datasample()
th, tw = region.shape[:2]
bw, bh = [p.box[2] - p.box[0], p.box[3] - p.box[1]]
kp[:, :2] /= np.array([tw, th])
kp[:, :2] *= np.array([bw, bh])
kp[:, :2] += np.array([p.box[0] + bw / 2, p.box[1] + bh / 2])
kp[:, :2] -= 0.5 * np.array([bw, bh])
p.keypoints = kp
results.append(p)
return results
class Pose:
def __init__(self,
pose_model_name,
pose_model_decoder,
device='CUDA',
warmup=30):
if pose_model_name not in AvailablePoseModels.POSE_MODELS:
raise ValueError(
'The {} human pose estimation model is not in the model repository.'.format(pose_model_name))
if pose_model_decoder not in AvailablePoseModels.POSE_MODELS[pose_model_name]:
raise ValueError(
'No {} decoding head for the {} model was found in the model repository.'.format(pose_model_decoder,
pose_model_name))
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
pose_model_path = os.path.join(pose_model_dir,
AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder])
if os.path.exists(pose_model_path):
try:
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
except Exception:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
else:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model_name][pose_model_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_model_decoder, device, warmup)
def predict(self, image):
p = Person()
box = np.array([0, 0, image.shape[3], image.shape[2], 1, 0])
p.box = box
p.keypoints = self.pose_model(image)
return p
class CustomTopDown:
def __init__(self,
pose_model,
det_model,
pose_decoder=None,
device='CUDA',
iou_threshold=0.6,
conf_threshold=0.6,
warmup=30):
if isinstance(pose_model, model.BaseModel):
self.pose_model = pose_model
elif isinstance(pose_model, str):
if pose_model not in AvailablePoseModels.POSE_MODELS:
raise ValueError(
'The {} human pose estimation model is not in the model repository.'.format(pose_model))
if pose_model not in AvailablePoseModels.POSE_MODELS[pose_model]:
raise ValueError(
'No {} decoding head for the {} model was found in the model repository.'.format(pose_decoder,
pose_model))
pose_model_dir = get_model_path(AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder],
detection_model=False)
pose_model_path = os.path.join(pose_model_dir,
AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder])
if os.path.exists(pose_model_path):
try:
self.pose_model = get_pose_model(pose_model_path, pose_decoder, device, warmup)
except Exception:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_decoder, device, warmup)
else:
url = get_url(AvailablePoseModels.POSE_MODELS[pose_model][pose_decoder],
detection_model=False)
download(url, pose_model_dir)
self.pose_model = get_pose_model(pose_model_path, pose_decoder, device, warmup)
else:
raise TypeError("Invalid type for pose model, Please write a custom model based on 'BaseModel'.")
if isinstance(det_model, model.BaseModel):
self.det_model = det_model
elif isinstance(det_model, str):
if det_model not in AvailableDetModels.DET_MODELS:
raise ValueError(
'The {} detection model is not in the model repository.'.format(det_model))
det_model_dir = get_model_path(AvailableDetModels.DET_MODELS[det_model]['file_name'],
detection_model=True)
det_model_path = os.path.join(det_model_dir,
AvailableDetModels.DET_MODELS[det_model]['file_name'])
det_model_type = AvailableDetModels.DET_MODELS[det_model]['model_type']
if os.path.exists(det_model_path):
try:
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
except Exception:
url = get_url(AvailableDetModels.DET_MODELS[det_model]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
else:
url = get_url(AvailableDetModels.DET_MODELS[det_model]['file_name'],
detection_model=True)
download(url, det_model_dir)
self.det_model = get_det_model(det_model_path,
det_model_type,
conf_threshold,
iou_threshold,
device,
warmup)
else:
raise TypeError("Invalid type for detection model, Please write a custom model based on 'BaseModel'.")
def predict(self, image):
boxes = self.det_model(image)
results = []
for i in range(boxes.shape[0]):
p = Person()
p.box = boxes[i]
region = region_of_interest(image, p.box)
kp = self.pose_model(region)
p.keypoints = restore_keypoints(p.box, kp)
results.append(p)
return results
class CustomSinglePose:
def __init__(self, pose_model):
if isinstance(pose_model, model.BaseModel):
self.pose_model = pose_model
else:
raise TypeError("Invalid type for pose model, Please write a custom model based on 'BaseModel'.")
def predict(self, image):
p = Person()
box = np.array([0, 0, image.shape[3], image.shape[2], 1, 0])
p.box = box
p.keypoints = self.pose_model(image)
return p

52
extras/easypose/pose.py Normal file
View File

@ -0,0 +1,52 @@
import numpy as np
from typing import List
from .base_model import BaseModel
from .utils import letterbox, get_heatmap_points, \
get_real_keypoints, refine_keypoints_dark, refine_keypoints, simcc_decoder
class Heatmap(BaseModel):
def __init__(self,
model_path: str,
dark: bool = False,
device: str = 'CUDA',
warmup: int = 30):
super(Heatmap, self).__init__(model_path, device, warmup)
self.use_dark = dark
self.img_size = ()
def preprocess(self, image: np.ndarray):
th, tw = self.input_shape[2:]
self.img_size = image.shape[:2]
image, _, _, _ = letterbox(image, (tw, th))
tensor = (image - np.array((103.53, 116.28, 123.675))) / np.array((57.375, 57.12, 58.395))
tensor = np.expand_dims(tensor, axis=0).transpose((0, 3, 1, 2)).astype(np.float32)
return tensor
def postprocess(self, tensor: List[np.ndarray]):
heatmaps = tensor[0]
heatmaps = np.squeeze(heatmaps, axis=0)
keypoints = get_heatmap_points(heatmaps)
if self.use_dark:
keypoints = refine_keypoints_dark(keypoints, heatmaps, 11)
else:
keypoints = refine_keypoints(keypoints, heatmaps)
keypoints = get_real_keypoints(keypoints, heatmaps, self.img_size)
return keypoints
class SimCC(BaseModel):
def __init__(self, model_path: str, device: str = 'CUDA', warmup: int = 30):
super(SimCC, self).__init__(model_path, device, warmup)
def preprocess(self, image: np.ndarray):
tensor = np.asarray(image).astype(self.input_type, copy=False)
tensor = np.expand_dims(tensor, axis=0)
return tensor
def postprocess(self, tensor: List[np.ndarray]):
keypoints = np.concatenate(
[tensor[0][0], np.expand_dims(tensor[1][0], axis=-1)], axis=-1
)
return keypoints

View File

@ -0,0 +1,16 @@
#! /bin/bash
xhost +
docker run --privileged --rm --network host -it \
--gpus all --shm-size=16g --ulimit memlock=-1 --ulimit stack=67108864 \
--volume "$(pwd)"/:/RapidPoseTriangulation/ \
--volume "$(pwd)"/extras/easypose/pipeline.py:/EasyPose/easypose/pipeline.py \
--volume "$(pwd)"/extras/easypose/base_model.py:/EasyPose/easypose/model/base_model.py \
--volume "$(pwd)"/extras/easypose/detection.py:/EasyPose/easypose/model/detection.py \
--volume "$(pwd)"/extras/easypose/pose.py:/EasyPose/easypose/model/pose.py \
--volume "$(pwd)"/extras/easypose/utils.py:/EasyPose/easypose/model/utils.py \
--volume "$(pwd)"/../datasets/:/datasets/ \
--volume "$(pwd)"/skelda/:/skelda/ \
--volume /tmp/.X11-unix:/tmp/.X11-unix \
--env DISPLAY --env QT_X11_NO_MITSHM=1 \
rpt_easypose

259
extras/easypose/utils.py Normal file
View File

@ -0,0 +1,259 @@
from itertools import product
from typing import Sequence
import cv2
import numpy as np
def letterbox(img: np.ndarray, target_size: Sequence[int], fill_value: int = 128):
h, w = img.shape[:2]
tw, th = target_size
scale = min(tw / w, th / h)
nw, nh = int(w * scale), int(h * scale)
dx, dy = (tw - nw) // 2, (th - nh) // 2
canvas = np.full((th, tw, img.shape[2]), fill_value, dtype=img.dtype)
canvas[dy:dy + nh, dx:dx + nw, :] = cv2.resize(img, (nw, nh))
return canvas, dx, dy, scale
def intersection_over_union(box1: np.ndarray, box2: np.ndarray):
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = (x2 - x1) * (y2 - y1)
union = area1 + area2 - intersection
iou = intersection / (union + 1e-6)
return iou
def xywh2xyxy(boxes):
boxes[:, 0] -= boxes[:, 2] / 2
boxes[:, 1] -= boxes[:, 3] / 2
boxes[:, 2] += boxes[:, 0]
boxes[:, 3] += boxes[:, 1]
return boxes
def nms(boxes: np.ndarray, iou_threshold: float, conf_threshold: float):
conf = boxes[..., 4] > conf_threshold
boxes = boxes[conf]
boxes = list(boxes)
boxes.sort(reverse=True, key=lambda x: x[4])
result = []
while boxes:
chosen_box = boxes.pop()
b = []
for box in boxes:
if box[-1] != chosen_box[-1] or \
intersection_over_union(chosen_box, box) \
< iou_threshold:
b.append(box)
result.append(chosen_box)
boxes = b
return np.array(result)
def nms_optimized(boxes: np.ndarray, iou_threshold: float, conf_threshold: float):
"""
Perform Non-Maximum Suppression (NMS) on bounding boxes for a single class.
"""
# Filter out boxes with low confidence scores
scores = boxes[:, 4]
keep = scores > conf_threshold
boxes = boxes[keep]
scores = scores[keep]
if boxes.shape[0] == 0:
return np.empty((0, 5), dtype=boxes.dtype)
# Compute the area of the bounding boxes
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
# Sort the boxes by scores in descending order
order = scores.argsort()[::-1]
keep_indices = []
while order.size > 0:
i = order[0]
keep_indices.append(i)
# Compute IoU of the current box with the rest
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
# Compute width and height of the overlapping area
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
# Compute the area of the intersection
inter = w * h
# Compute the IoU
iou = inter / (areas[i] + areas[order[1:]] - inter)
# Keep boxes with IoU less than the threshold
inds = np.where(iou <= iou_threshold)[0]
# Update the order array
order = order[inds + 1]
# Return the boxes that are kept
return boxes[keep_indices]
def get_heatmap_points(heatmap: np.ndarray):
keypoints = np.zeros([1, heatmap.shape[0], 3], dtype=np.float32)
for i in range(heatmap.shape[0]):
h, w = np.nonzero(heatmap[i] == heatmap[i].max())
h, w = h[0], w[0]
h_fixed = h + 0.5
w_fixed = w + 0.5
score = heatmap[i][h][w]
keypoints[0][i][0] = w_fixed
keypoints[0][i][1] = h_fixed
keypoints[0][i][2] = score
return keypoints
def gaussian_blur(heatmaps: np.ndarray, kernel: int = 11):
assert kernel % 2 == 1
border = (kernel - 1) // 2
K, H, W = heatmaps.shape
for k in range(K):
origin_max = np.max(heatmaps[k])
dr = np.zeros((H + 2 * border, W + 2 * border), dtype=np.float32)
dr[border:-border, border:-border] = heatmaps[k].copy()
dr = cv2.GaussianBlur(dr, (kernel, kernel), 0)
heatmaps[k] = dr[border:-border, border:-border].copy()
heatmaps[k] *= origin_max / np.max(heatmaps[k])
return heatmaps
def refine_keypoints(keypoints: np.ndarray, heatmaps: np.ndarray):
N, K = keypoints.shape[:2]
H, W = heatmaps.shape[:2]
for n, k in product(range(N), range(K)):
x, y = keypoints[n, k, :2].astype(int)
if 1 < x < W - 1 and 0 < y < H:
dx = heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1]
else:
dx = 0.
if 1 < y < H - 1 and 0 < x < W:
dy = heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x]
else:
dy = 0.
keypoints[n, k] += np.sign([dx, dy, 0], dtype=np.float32) * 0.25
return keypoints
def refine_keypoints_dark(keypoints: np.ndarray, heatmaps: np.ndarray, blur_kernel_size: int = 11):
N, K = keypoints.shape[:2]
H, W = heatmaps.shape[1:]
# modulate heatmaps
heatmaps = gaussian_blur(heatmaps, blur_kernel_size)
np.maximum(heatmaps, 1e-10, heatmaps)
np.log(heatmaps, heatmaps)
for n, k in product(range(N), range(K)):
x, y = keypoints[n, k, :2].astype(int)
if 1 < x < W - 2 and 1 < y < H - 2:
dx = 0.5 * (heatmaps[k, y, x + 1] - heatmaps[k, y, x - 1])
dy = 0.5 * (heatmaps[k, y + 1, x] - heatmaps[k, y - 1, x])
dxx = 0.25 * (
heatmaps[k, y, x + 2] - 2 * heatmaps[k, y, x] +
heatmaps[k, y, x - 2])
dxy = 0.25 * (
heatmaps[k, y + 1, x + 1] - heatmaps[k, y - 1, x + 1] -
heatmaps[k, y + 1, x - 1] + heatmaps[k, y - 1, x - 1])
dyy = 0.25 * (
heatmaps[k, y + 2, x] - 2 * heatmaps[k, y, x] +
heatmaps[k, y - 2, x])
derivative = np.array([[dx], [dy]])
hessian = np.array([[dxx, dxy], [dxy, dyy]])
if dxx * dyy - dxy ** 2 != 0:
hessianinv = np.linalg.inv(hessian)
offset = -hessianinv @ derivative
offset = np.squeeze(np.array(offset.T), axis=0)
keypoints[n, k, :2] += offset
return keypoints
def get_real_keypoints(keypoints: np.ndarray, heatmaps: np.ndarray, img_size: Sequence[int]):
img_h, img_w = img_size
heatmap_h, heatmap_w = heatmaps.shape[1:]
heatmap_ratio = heatmaps.shape[1] / heatmaps.shape[2]
img_ratio = img_h / img_w
if heatmap_ratio > img_ratio:
resize_w = img_w
resize_h = int(img_w * heatmap_ratio)
elif heatmap_ratio < img_ratio:
resize_h = img_h
resize_w = int(img_h / heatmap_ratio)
else:
resize_w = img_w
resize_h = img_h
keypoints[:, :, 0] = (keypoints[:, :, 0] / heatmap_w) * resize_w - (resize_w - img_w) / 2
keypoints[:, :, 1] = (keypoints[:, :, 1] / heatmap_h) * resize_h - (resize_h - img_h) / 2
keypoints = np.squeeze(keypoints, axis=0)
return keypoints
def simcc_decoder(
simcc_x: np.ndarray,
simcc_y: np.ndarray,
input_size: Sequence[int],
dx: int,
dy: int,
scale: float,
):
# See: /mmpose/codecs/utils/post_processing.py - get_simcc_maximum()
x = np.argmax(simcc_x, axis=-1, keepdims=True).astype(np.float32)
y = np.argmax(simcc_y, axis=-1, keepdims=True).astype(np.float32)
x_conf = np.max(simcc_x, axis=-1, keepdims=True)
y_conf = np.max(simcc_y, axis=-1, keepdims=True)
conf = np.minimum(x_conf, y_conf)
x /= simcc_x.shape[-1]
y /= simcc_y.shape[-1]
x *= input_size[1]
y *= input_size[0]
keypoints = np.concatenate([x, y, conf], axis=-1)
keypoints[..., 0] -= dx
keypoints[..., 1] -= dy
keypoints[..., :2] /= scale
return keypoints

View File

@ -0,0 +1,68 @@
import os
import cv2
import easypose as ep
import numpy as np
# ==================================================================================================
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
# ==================================================================================================
def load_model():
print("Loading mmpose model ...")
model = ep.TopDown(
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_384x288_fp16_extra-steps.onnx",
"SimCC",
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_320x320_fp16_extra-steps.onnx",
conf_threshold=0.3,
iou_threshold=0.3,
warmup=10,
)
print("Loaded mmpose model")
return model
def load_wb_model():
print("Loading mmpose whole body model ...")
model = None
print("Loaded mmpose model")
return model
# ==================================================================================================
def get_2d_pose(model, imgs, num_joints=17):
"""See: https://mmpose.readthedocs.io/en/latest/user_guides/inference.html#basic-usage"""
new_poses = []
for i in range(len(imgs)):
img = imgs[i]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
poses = []
dets = model.predict(img)
for pose in dets:
pose = pose.keypoints
pose = np.asarray(pose)
scores = pose[:, 2].reshape(-1, 1)
scores = np.clip(scores, 0, 1)
pose = np.concatenate((pose[:, :2], scores), axis=-1)
poses.append(pose)
if len(poses) == 0:
poses.append(np.zeros([num_joints, 3]))
poses = np.array(poses)
new_poses.append(poses)
return new_poses

122
extras/mmdeploy/README.md Normal file
View File

@ -0,0 +1,122 @@
# Exporting MMPose models
```bash
docker build --progress=plain -f extras/mmdeploy/dockerfile -t rpt_mmdeploy .
./extras/mmdeploy/run_container.sh
```
<br>
## ONNX
```bash
cd /mmdeploy/
export withFP16="_fp16"
cp /RapidPoseTriangulation/extras/mmdeploy/configs/detection_onnxruntime_static-320x320"$withFP16".py configs/mmdet/detection/
python3 ./tools/deploy.py \
configs/mmdet/detection/detection_onnxruntime_static-320x320"$withFP16".py \
/mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-person.py \
https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth \
/mmpose/projects/rtmpose/examples/onnxruntime/human-pose.jpeg \
--work-dir work_dir \
--show
mv /mmdeploy/work_dir/end2end.onnx /RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x3x320x320"$withFP16".onnx
```
```bash
cd /mmdeploy/
export withFP16="_fp16"
cp /RapidPoseTriangulation/extras/mmdeploy/configs/pose-detection_simcc_onnxruntime_static-384x288"$withFP16".py configs/mmpose/
cp /RapidPoseTriangulation/extras/mmdeploy/configs/pose-detection_simcc_onnxruntime_dynamic-384x288"$withFP16".py configs/mmpose/
python3 ./tools/deploy.py \
configs/mmpose/pose-detection_simcc_onnxruntime_static-384x288"$withFP16".py \
/mmpose/projects/rtmpose/rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py \
https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-body7_pt-body7_420e-384x288-65e718c4_20230504.pth \
/mmpose/projects/rtmpose/examples/onnxruntime/human-pose.jpeg \
--work-dir work_dir \
--show
mv /mmdeploy/work_dir/end2end.onnx /RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_1x3x384x288"$withFP16".onnx
python3 ./tools/deploy.py \
configs/mmpose/pose-detection_simcc_onnxruntime_dynamic-384x288"$withFP16".py \
/mmpose/projects/rtmpose/rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py \
https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-body7_pt-body7_420e-384x288-65e718c4_20230504.pth \
/mmpose/projects/rtmpose/examples/onnxruntime/human-pose.jpeg \
--work-dir work_dir \
--show
mv /mmdeploy/work_dir/end2end.onnx /RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_Bx3x384x288"$withFP16".onnx
python3 ./tools/deploy.py \
configs/mmpose/pose-detection_simcc_onnxruntime_static-384x288"$withFP16".py \
/mmpose/projects/rtmpose/rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py \
https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-384x288-eaeb96c8_20230125.pth \
/mmpose/projects/rtmpose/examples/onnxruntime/human-pose.jpeg \
--work-dir work_dir \
--show
mv /mmdeploy/work_dir/end2end.onnx /RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-l_wb_1x3x384x288"$withFP16".onnx
python3 ./tools/deploy.py \
configs/mmpose/pose-detection_simcc_onnxruntime_dynamic-384x288"$withFP16".py \
/mmpose/projects/rtmpose/rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py \
https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-384x288-eaeb96c8_20230125.pth \
/mmpose/projects/rtmpose/examples/onnxruntime/human-pose.jpeg \
--work-dir work_dir \
--show
mv /mmdeploy/work_dir/end2end.onnx /RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-l_wb_Bx3x384x288"$withFP16".onnx
```
```bash
python3 /RapidPoseTriangulation/extras/mmdeploy/make_extra_graphs.py
```
```bash
python3 /RapidPoseTriangulation/extras/mmdeploy/add_extra_steps.py
```
<br>
## TensorRT
Run this directly in the inference container (the TensorRT versions need to be the same)
```bash
export withFP16="_fp16"
trtexec --fp16 \
--onnx=/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3"$withFP16"_extra-steps.onnx \
--saveEngine=end2end.engine
mv ./end2end.engine /RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3"$withFP16"_extra-steps.engine
trtexec --fp16 \
--onnx=/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_Bx384x288x3"$withFP16"_extra-steps.onnx \
--saveEngine=end2end.engine \
--minShapes=image_input:1x384x288x3 \
--optShapes=image_input:1x384x288x3 \
--maxShapes=image_input:1x384x288x3
mv ./end2end.engine /RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_1x384x288x3"$withFP16"_extra-steps.engine
```
<br>
## Benchmark
```bash
cd /mmdeploy/
export withFP16="_fp16"
python3 ./tools/profiler.py \
configs/mmpose/pose-detection_simcc_onnxruntime_static-384x288"$withFP16".py \
/mmpose/projects/rtmpose/rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py \
/RapidPoseTriangulation/extras/mmdeploy/testimages/ \
--model /RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_1x3x384x288"$withFP16".onnx \
--shape 384x288 \
--device cuda \
--warmup 50 \
--num-iter 200
```

View File

@ -0,0 +1,145 @@
import re
import numpy as np
import onnx
from onnx import TensorProto, helper, numpy_helper
# ==================================================================================================
base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/"
det_model_path = base_path + "rtmdet-nano_1x3x320x320.onnx"
pose_model_path1 = base_path + "rtmpose-m_Bx3x384x288.onnx"
pose_model_path2 = base_path + "rtmpose-m_1x3x384x288.onnx"
pose_model_path3 = base_path + "rtmpose-l_wb_Bx3x384x288.onnx"
pose_model_path4 = base_path + "rtmpose-l_wb_1x3x384x288.onnx"
norm_mean = -1 * (np.array([0.485, 0.456, 0.406]) * 255)
norm_std = 1.0 / (np.array([0.229, 0.224, 0.225]) * 255)
# ==================================================================================================
def add_steps_to_onnx(model_path):
# Load existing model
model = onnx.load(model_path)
graph = model.graph
mean = norm_mean.astype(np.float32)
std = norm_std.astype(np.float32)
mean = np.reshape(mean, (1, 3, 1, 1)).astype(np.float32)
std = np.reshape(std, (1, 3, 1, 1)).astype(np.float32)
use_fp16 = bool("fp16" in model_path)
if use_fp16:
mean = mean.astype(np.float16)
std = std.astype(np.float16)
# Add the initializers to the graph
mean_initializer = numpy_helper.from_array(mean, name="norm_mean")
std_initializer = numpy_helper.from_array(std, name="norm_std")
graph.initializer.extend([mean_initializer, std_initializer])
# Define layer names, assuming the first input is the image tensor
input_name = graph.input[0].name
# Cast to internal type
# This has to be the first node, because tensorrt does not support uint8 layers
cast_type = 10 if use_fp16 else 1
casted_output = "casted_output"
cast_node = helper.make_node(
"Cast",
inputs=[input_name],
outputs=[casted_output],
to=cast_type,
)
# Node to transpose
transpose_output = "transpose_output"
transpose_node = helper.make_node(
"Transpose",
inputs=[casted_output],
outputs=[transpose_output],
perm=[0, 3, 1, 2],
name="Transpose",
)
# Node to add mean
mean_added_output = "mean_added_output"
mean_add_node = helper.make_node(
"Add",
inputs=[transpose_output, "norm_mean"],
outputs=[mean_added_output],
name="Mean_Addition",
)
# Node to multiply by std
std_mult_output = "std_mult_output"
std_mul_node = helper.make_node(
"Mul",
inputs=[mean_added_output, "norm_std"],
outputs=[std_mult_output],
name="Std_Multiplication",
)
# Replace original input of the model with the output of normalization
for node in graph.node:
for idx, input_name_in_node in enumerate(node.input):
if input_name_in_node == input_name:
node.input[idx] = std_mult_output
# Add the new nodes to the graph
graph.node.insert(0, cast_node)
graph.node.insert(1, transpose_node)
graph.node.insert(2, mean_add_node)
graph.node.insert(3, std_mul_node)
# Transpose the input shape
input_shape = graph.input[0].type.tensor_type.shape.dim
dims = [dim.dim_value for dim in input_shape]
for i, j in enumerate([0, 3, 1, 2]):
input_shape[j].dim_value = dims[i]
# Set the batch size to a defined string
input_shape = graph.input[0].type.tensor_type.shape.dim
if input_shape[0].dim_value == 0:
input_shape[0].dim_param = "batch_size"
# Rename the input tensor
main_input_image_name = model.graph.input[0].name
for node in model.graph.node:
for idx, name in enumerate(node.input):
if name == main_input_image_name:
node.input[idx] = "image_input"
model.graph.input[0].name = "image_input"
# Set input image type to int8
model.graph.input[0].type.tensor_type.elem_type = TensorProto.UINT8
path = re.sub(r"(x)(\d+)x(\d+)x(\d+)", r"\1\3x\4x\2", model_path)
path = path.replace(".onnx", "_extra-steps.onnx")
onnx.save(model, path)
# ==================================================================================================
def main():
add_steps_to_onnx(det_model_path)
add_steps_to_onnx(pose_model_path1)
add_steps_to_onnx(pose_model_path2)
add_steps_to_onnx(pose_model_path3)
add_steps_to_onnx(pose_model_path4)
add_steps_to_onnx(det_model_path.replace(".onnx", "_fp16.onnx"))
add_steps_to_onnx(pose_model_path1.replace(".onnx", "_fp16.onnx"))
add_steps_to_onnx(pose_model_path2.replace(".onnx", "_fp16.onnx"))
add_steps_to_onnx(pose_model_path3.replace(".onnx", "_fp16.onnx"))
add_steps_to_onnx(pose_model_path4.replace(".onnx", "_fp16.onnx"))
# ==================================================================================================
if __name__ == "__main__":
main()

View File

@ -0,0 +1,18 @@
_base_ = ["../_base_/base_static.py", "../../_base_/backends/onnxruntime.py"]
onnx_config = dict(
input_shape=[320, 320],
)
codebase_config = dict(
# For later TensorRT inference, the number of output boxes needs to be as stable as possible,
# because a drop in the box count leads to a re-optimization which takes a lot of time,
# therefore reduce the maximum number of output boxes to the smallest usable value and sort out
# low confidence boxes outside the model.
post_processing=dict(
score_threshold=0.0,
confidence_threshold=0.0,
iou_threshold=0.5,
max_output_boxes_per_class=10,
),
)

View File

@ -0,0 +1,18 @@
_base_ = ["../_base_/base_static.py", "../../_base_/backends/onnxruntime-fp16.py"]
onnx_config = dict(
input_shape=[320, 320],
)
codebase_config = dict(
# For later TensorRT inference, the number of output boxes needs to be as stable as possible,
# because a drop in the box count leads to a re-optimization which takes a lot of time,
# therefore reduce the maximum number of output boxes to the smallest usable value and sort out
# low confidence boxes outside the model.
post_processing=dict(
score_threshold=0.0,
confidence_threshold=0.0,
iou_threshold=0.5,
max_output_boxes_per_class=10,
),
)

View File

@ -0,0 +1,19 @@
_base_ = ["./pose-detection_static.py", "../_base_/backends/onnxruntime.py"]
onnx_config = dict(
input_shape=[288, 384],
output_names=["kpts", "scores"],
dynamic_axes={
"input": {
0: "batch",
},
"kpts": {
0: "batch",
},
"scores": {
0: "batch",
},
},
)
codebase_config = dict(export_postprocess=True) # export get_simcc_maximum

View File

@ -0,0 +1,19 @@
_base_ = ["./pose-detection_static.py", "../_base_/backends/onnxruntime-fp16.py"]
onnx_config = dict(
input_shape=[288, 384],
output_names=["kpts", "scores"],
dynamic_axes={
"input": {
0: "batch",
},
"kpts": {
0: "batch",
},
"scores": {
0: "batch",
},
},
)
codebase_config = dict(export_postprocess=True) # export get_simcc_maximum

View File

@ -0,0 +1,8 @@
_base_ = ["./pose-detection_static.py", "../_base_/backends/onnxruntime.py"]
onnx_config = dict(
input_shape=[288, 384],
output_names=["kpts", "scores"],
)
codebase_config = dict(export_postprocess=True) # export get_simcc_maximum

View File

@ -0,0 +1,8 @@
_base_ = ["./pose-detection_static.py", "../_base_/backends/onnxruntime-fp16.py"]
onnx_config = dict(
input_shape=[288, 384],
output_names=["kpts", "scores"],
)
codebase_config = dict(export_postprocess=True) # export get_simcc_maximum

View File

@ -0,0 +1,38 @@
FROM openmmlab/mmdeploy:ubuntu20.04-cuda11.8-mmdeploy1.3.1
ARG DEBIAN_FRONTEND=noninteractive
ENV LANG=C.UTF-8
ENV LC_ALL=C.UTF-8
WORKDIR /
RUN apt-get update && apt-get install -y --no-install-recommends feh
RUN git clone https://github.com/open-mmlab/mmdeploy.git --depth=1
RUN cd mmdeploy/; python3 tools/scripts/build_ubuntu_x64_ort.py
# Install MMPose
ENV FORCE_CUDA="1"
ENV MMCV_WITH_OPS=1
RUN pip3 install --upgrade --no-cache-dir openmim
RUN mim install mmengine
RUN mim install "mmcv>=2,<2.2.0"
RUN mim install "mmdet>=3"
RUN mim install "mmpose>=1.1.0"
# Fix an error when importing mmpose
RUN pip3 install --upgrade --no-cache-dir "numpy<2" scipy
RUN git clone --depth=1 --branch=main https://github.com/open-mmlab/mmpose.git
RUN echo 'export PYTHONPATH=/mmdeploy/build/lib:$PYTHONPATH' >> ~/.bashrc
RUN echo 'export LD_LIBRARY_PATH=/mmdeploy/../mmdeploy-dep/onnxruntime-linux-x64-1.8.1/lib/:$LD_LIBRARY_PATH' >> ~/.bashrc
# Show images
RUN apt-get update && apt-get install -y --no-install-recommends python3-tk
# Tool for fp16 conversion
RUN pip3 install --upgrade --no-cache-dir onnxconverter_common
# Fix an error when profiling
RUN pip3 install --upgrade --no-cache-dir "onnxruntime-gpu<1.17"
WORKDIR /mmdeploy/
CMD ["/bin/bash"]

2
extras/mmdeploy/exports/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*
!.gitignore

View File

@ -0,0 +1,338 @@
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.ops import roi_align
# ==================================================================================================
base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/"
det_target_size = (320, 320)
pose_target_size = (384, 288)
# ==================================================================================================
class Letterbox(nn.Module):
def __init__(self, target_size, fill_value=128):
"""Resize and pad image while keeping aspect ratio"""
super(Letterbox, self).__init__()
self.target_size = target_size
self.fill_value = fill_value
def calc_params(self, ishape):
ih, iw = ishape[1], ishape[2]
th, tw = self.target_size
scale = torch.min(tw / iw, th / ih)
nw = torch.round(iw * scale)
nh = torch.round(ih * scale)
pad_w = tw - nw
pad_h = th - nh
pad_left = pad_w // 2
pad_top = pad_h // 2
pad_right = pad_w - pad_left
pad_bottom = pad_h - pad_top
paddings = (pad_left, pad_right, pad_top, pad_bottom)
return paddings, scale, (nw, nh)
def forward(self, img):
paddings, _, (nw, nh) = self.calc_params(img.shape)
# Resize the image
img = img.to(torch.float32)
img = img.permute(0, 3, 1, 2)
img = F.interpolate(
img,
size=(nh, nw),
mode="bilinear",
align_corners=False,
)
img = img.permute(0, 2, 3, 1)
img = img.round()
# Pad the image
img = F.pad(
img.permute(0, 3, 1, 2),
pad=paddings,
mode="constant",
value=self.fill_value,
)
img = img.permute(0, 2, 3, 1)
return img
# ==================================================================================================
class BoxCrop(nn.Module):
def __init__(self, target_size):
"""Crop bounding box from image"""
super(BoxCrop, self).__init__()
self.target_size = target_size
self.padding_scale = 1.25
def calc_params(self, bbox):
start_x, start_y, end_x, end_y = bbox[0, 0], bbox[0, 1], bbox[0, 2], bbox[0, 3]
target_h, target_w = self.target_size
# Calculate original bounding box width, height and center
bbox_w = end_x - start_x
bbox_h = end_y - start_y
center_x = (start_x + end_x) / 2.0
center_y = (start_y + end_y) / 2.0
# Calculate the aspect ratios
bbox_aspect = bbox_w / bbox_h
target_aspect = target_w / target_h
# Adjust the scaled bounding box to match the target aspect ratio
if bbox_aspect > target_aspect:
adjusted_h = bbox_w / target_aspect
adjusted_w = bbox_w
else:
adjusted_w = bbox_h * target_aspect
adjusted_h = bbox_h
# Scale the bounding box by the padding_scale
scaled_bbox_w = adjusted_w * self.padding_scale
scaled_bbox_h = adjusted_h * self.padding_scale
# Calculate scaled bounding box coordinates
new_start_x = center_x - scaled_bbox_w / 2.0
new_start_y = center_y - scaled_bbox_h / 2.0
new_end_x = center_x + scaled_bbox_w / 2.0
new_end_y = center_y + scaled_bbox_h / 2.0
# Define the new box coordinates
new_box = torch.stack((new_start_x, new_start_y, new_end_x, new_end_y), dim=0)
new_box = new_box.unsqueeze(0)
scale = torch.stack(
((target_w / scaled_bbox_w), (target_h / scaled_bbox_h)), dim=0
)
return scale, new_box
def forward(self, img, bbox):
_, bbox = self.calc_params(bbox)
batch_indices = torch.zeros(bbox.shape[0], 1)
rois = torch.cat([batch_indices, bbox], dim=1)
# Resize and crop
img = img.to(torch.float32)
img = img.permute(0, 3, 1, 2)
img = roi_align(
img,
rois,
output_size=self.target_size,
spatial_scale=1.0,
sampling_ratio=0,
)
img = img.permute(0, 2, 3, 1)
img = img.round()
return img
# ==================================================================================================
class DetPreprocess(nn.Module):
def __init__(self, target_size, fill_value=114):
super(DetPreprocess, self).__init__()
self.letterbox = Letterbox(target_size, fill_value)
def forward(self, img):
# img: torch.Tensor of shape [batch, H, W, C], dtype=torch.uint8
img = self.letterbox(img)
return img
# ==================================================================================================
class DetPostprocess(nn.Module):
def __init__(self, target_size):
super(DetPostprocess, self).__init__()
self.target_size = target_size
self.letterbox = Letterbox(target_size)
def forward(self, img, boxes):
paddings, scale, _ = self.letterbox.calc_params(img.shape)
boxes = boxes.float()
boxes[:, :, 0] -= paddings[0]
boxes[:, :, 2] -= paddings[0]
boxes[:, :, 1] -= paddings[2]
boxes[:, :, 3] -= paddings[2]
zero = torch.tensor(0)
boxes = torch.max(boxes, zero)
th, tw = self.target_size
pad_w = paddings[0] + paddings[1]
pad_h = paddings[2] + paddings[3]
max_w = tw - pad_w - 1
max_h = th - pad_h - 1
b0 = boxes[:, :, 0]
b1 = boxes[:, :, 1]
b2 = boxes[:, :, 2]
b3 = boxes[:, :, 3]
b0 = torch.min(b0, max_w)
b1 = torch.min(b1, max_h)
b2 = torch.min(b2, max_w)
b3 = torch.min(b3, max_h)
boxes[:, :, 0] = b0
boxes[:, :, 1] = b1
boxes[:, :, 2] = b2
boxes[:, :, 3] = b3
boxes[:, :, 0:4] /= scale
return boxes
# ==================================================================================================
class PosePreprocess(nn.Module):
def __init__(self, target_size, fill_value=114):
super(PosePreprocess, self).__init__()
self.boxcrop = BoxCrop(target_size)
def forward(self, img, bbox):
# img: torch.Tensor of shape [1, H, W, C], dtype=torch.uint8
# bbox: torch.Tensor of shape [1, 4], dtype=torch.float32
img = self.boxcrop(img, bbox)
return img
# ==================================================================================================
class PosePostprocess(nn.Module):
def __init__(self, target_size):
super(PosePostprocess, self).__init__()
self.boxcrop = BoxCrop(target_size)
self.target_size = target_size
def forward(self, img, bbox, keypoints):
scale, bbox = self.boxcrop.calc_params(bbox)
kp = keypoints.float()
kp[:, :, 0:2] /= scale
kp[:, :, 0] += bbox[0, 0]
kp[:, :, 1] += bbox[0, 1]
zero = torch.tensor(0)
kp = torch.max(kp, zero)
max_w = img.shape[2] - 1
max_h = img.shape[1] - 1
k0 = kp[:, :, 0]
k1 = kp[:, :, 1]
k0 = torch.min(k0, max_w)
k1 = torch.min(k1, max_h)
kp[:, :, 0] = k0
kp[:, :, 1] = k1
return kp
# ==================================================================================================
def main():
img_path = "/RapidPoseTriangulation/scripts/../data/h1/54138969-img_003201.jpg"
image = cv2.imread(img_path, 3)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Initialize the DetPreprocess module
preprocess_model = DetPreprocess(target_size=det_target_size)
det_dummy_input_a0 = torch.from_numpy(image).unsqueeze(0)
# Export to ONNX
torch.onnx.export(
preprocess_model,
det_dummy_input_a0,
base_path + "det_preprocess.onnx",
opset_version=11,
input_names=["input_image"],
output_names=["preprocessed_image"],
dynamic_axes={
"input_image": {0: "batch_size", 1: "height", 2: "width"},
"preprocessed_image": {0: "batch_size"},
},
)
# Initialize the DetPostprocess module
postprocess_model = DetPostprocess(target_size=det_target_size)
det_dummy_input_b0 = torch.from_numpy(image).unsqueeze(0)
det_dummy_input_b1 = torch.rand(1, 10, 5)
# Export to ONNX
torch.onnx.export(
postprocess_model,
(det_dummy_input_b0, det_dummy_input_b1),
base_path + "det_postprocess.onnx",
opset_version=11,
input_names=["input_image", "boxes"],
output_names=["output_boxes"],
dynamic_axes={
"input_image": {0: "batch_size", 1: "height", 2: "width"},
"boxes": {0: "batch_size", 1: "num_boxes"},
"output_boxes": {0: "batch_size", 1: "num_boxes"},
},
)
# Initialize the PosePreprocess module
preprocess_model = PosePreprocess(target_size=pose_target_size)
det_dummy_input_c0 = torch.from_numpy(image).unsqueeze(0)
det_dummy_input_c1 = torch.tensor([[352, 339, 518, 594]]).to(torch.int32)
# Export to ONNX
torch.onnx.export(
preprocess_model,
(det_dummy_input_c0, det_dummy_input_c1),
base_path + "pose_preprocess.onnx",
opset_version=11,
input_names=["input_image", "bbox"],
output_names=["preprocessed_image"],
dynamic_axes={
"input_image": {0: "batch_size", 1: "height", 2: "width"},
"preprocessed_image": {0: "batch_size"},
},
)
# Initialize the PosePostprocess module
postprocess_model = PosePostprocess(target_size=pose_target_size)
det_dummy_input_d0 = torch.from_numpy(image).unsqueeze(0)
det_dummy_input_d1 = torch.tensor([[352, 339, 518, 594]]).to(torch.int32)
det_dummy_input_d2 = torch.rand(1, 17, 2)
# Export to ONNX
torch.onnx.export(
postprocess_model,
(det_dummy_input_d0, det_dummy_input_d1, det_dummy_input_d2),
base_path + "pose_postprocess.onnx",
opset_version=11,
input_names=["input_image", "bbox", "keypoints"],
output_names=["output_keypoints"],
dynamic_axes={
"input_image": {0: "batch_size", 1: "height", 2: "width"},
"output_keypoints": {0: "batch_size"},
},
)
# ==================================================================================================
if __name__ == "__main__":
main()

View File

@ -0,0 +1,9 @@
#! /bin/bash
xhost +
docker run --privileged --rm --network host -it \
--gpus all --shm-size=16g --ulimit memlock=-1 --ulimit stack=67108864 \
--volume "$(pwd)"/:/RapidPoseTriangulation/ \
--volume /tmp/.X11-unix:/tmp/.X11-unix \
--env DISPLAY --env QT_X11_NO_MITSHM=1 \
rpt_mmdeploy

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

File diff suppressed because it is too large Load Diff

View File

@ -4,9 +4,9 @@
// =================================================================================================
// =================================================================================================
Triangulator::Triangulator(float min_score, size_t min_group_size)
Triangulator::Triangulator(float min_match_score, size_t min_group_size)
{
this->triangulator = new TriangulatorInternal(min_score, min_group_size);
this->triangulator = new TriangulatorInternal(min_match_score, min_group_size);
}
// =================================================================================================

View File

@ -19,11 +19,11 @@ public:
* Triangulator to predict poses from multiple views.
*
*
* @param min_score Minimum score to consider a triangulated joint as valid.
* @param min_match_score Minimum score to consider a triangulated joint as valid.
* @param min_group_size Minimum number of camera pairs that need to see a person.
*/
Triangulator(
float min_score = 0.95,
float min_match_score = 0.95,
size_t min_group_size = 1);
/**

View File

@ -102,9 +102,9 @@ void CameraInternal::update_projection_matrix()
// =================================================================================================
// =================================================================================================
TriangulatorInternal::TriangulatorInternal(float min_score, size_t min_group_size)
TriangulatorInternal::TriangulatorInternal(float min_match_score, size_t min_group_size)
{
this->min_score = min_score;
this->min_match_score = min_match_score;
this->min_group_size = min_group_size;
}
@ -241,7 +241,7 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
stime = std::chrono::high_resolution_clock::now();
// Check matches to old poses
float threshold = min_score - 0.2;
float threshold = min_match_score - 0.2;
std::map<size_t, std::map<size_t, std::vector<size_t>>> scored_pasts;
if (!last_poses_3d.empty())
{
@ -447,7 +447,7 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
size_t num_poses = all_scored_poses.size();
for (size_t i = num_poses; i > 0; --i)
{
if (all_scored_poses[i - 1].second < min_score)
if (all_scored_poses[i - 1].second < min_match_score)
{
all_scored_poses.erase(all_scored_poses.begin() + i - 1);
all_pairs.erase(all_pairs.begin() + i - 1);
@ -456,7 +456,7 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
// Group pairs that share a person
std::vector<std::tuple<cv::Point3f, cv::Mat, std::vector<int>>> groups;
groups = calc_grouping(all_pairs, all_scored_poses, min_score);
groups = calc_grouping(all_pairs, all_scored_poses, min_match_score);
// Drop groups with too few matches
size_t num_groups = groups.size();
@ -508,7 +508,7 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
poses.push_back(all_full_poses[idx]);
}
auto merged_pose = merge_group(poses, min_score);
auto merged_pose = merge_group(poses, min_match_score);
all_merged_poses[i] = (merged_pose);
}
@ -548,7 +548,7 @@ std::vector<std::vector<std::array<float, 4>>> TriangulatorInternal::triangulate
}
pose.push_back(point);
if (point[3] > min_score)
if (point[3] > min_match_score)
{
num_valid++;
}
@ -1860,7 +1860,7 @@ void TriangulatorInternal::add_missing_joints(
for (size_t j = 0; j < num_joints; ++j)
{
float *pose_ptr = pose.ptr<float>(j);
if (pose_ptr[3] > min_score)
if (pose_ptr[3] > min_match_score)
{
valid_joint_idx.push_back(j);
}

View File

@ -31,7 +31,7 @@ public:
class TriangulatorInternal
{
public:
TriangulatorInternal(float min_score, size_t min_group_size);
TriangulatorInternal(float min_match_score, size_t min_group_size);
std::vector<std::vector<std::array<float, 4>>> triangulate_poses(
const std::vector<std::vector<std::vector<std::array<float, 3>>>> &poses_2d,
@ -43,7 +43,7 @@ public:
void print_stats();
private:
float min_score;
float min_match_score;
float min_group_size;
const std::vector<std::string> core_joints = {

View File

@ -17,8 +17,8 @@ import rpt
# ==================================================================================================
# dataset_use = "panoptic"
dataset_use = "human36m"
# dataset_use = "panoptic"
# dataset_use = "mvor"
# dataset_use = "shelf"
# dataset_use = "campus"
@ -26,8 +26,47 @@ dataset_use = "human36m"
# dataset_use = "chi3d"
# dataset_use = "tsinghua"
# dataset_use = "human36m_wb"
# dataset_use = "egohumans"
# dataset_use = "egohumans_tagging"
# dataset_use = "egohumans_legoassemble"
# dataset_use = "egohumans_fencing"
# dataset_use = "egohumans_basketball"
# dataset_use = "egohumans_volleyball"
# dataset_use = "egohumans_badminton"
# dataset_use = "egohumans_tennis"
# dataset_use = "ntu"
# dataset_use = "koarob"
# Describes the minimum area as fraction of the image size for a 2D bounding box to be considered
# If the persons are small in the image, use a lower value
default_min_bbox_area = 0.1 * 0.1
# Describes how confident a 2D bounding box needs to be to be considered
# If the persons are small in the image, or poorly recognizable, use a lower value
default_min_bbox_score = 0.3
# Describes how good two 2D poses need to match each other to create a valid triangulation
# If the quality of the 2D detections is poor, use a lower value
default_min_match_score = 0.94
# Describes the minimum number of camera pairs that need to detect the same person
# If the number of cameras is high, and the views are not occluded, use a higher value
default_min_group_size = 1
# Batch poses per image for faster processing
# If most of the time only one person is in a image, disable it, because it is slightly slower then
default_batch_poses = True
datasets = {
"human36m": {
"path": "/datasets/human36m/skelda/pose_test.json",
"take_interval": 5,
"min_match_score": 0.94,
"min_group_size": 1,
"min_bbox_score": 0.4,
"min_bbox_area": 0.1 * 0.1,
"batch_poses": False,
},
"panoptic": {
"path": "/datasets/panoptic/skelda/test.json",
"cams": ["00_03", "00_06", "00_12", "00_13", "00_23"],
@ -35,27 +74,33 @@ datasets = {
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
"take_interval": 3,
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
},
"human36m": {
"path": "/datasets/human36m/skelda/pose_test.json",
"take_interval": 5,
"min_group_size": 1,
# "min_group_size": 4,
"min_bbox_area": 0.05 * 0.05,
},
"mvor": {
"path": "/datasets/mvor/skelda/all.json",
"take_interval": 1,
"with_depth": False,
"min_match_score": 0.85,
"min_bbox_score": 0.25,
},
"campus": {
"path": "/datasets/campus/skelda/test.json",
"take_interval": 1,
"min_bbox_score": 0.5,
},
"shelf": {
"path": "/datasets/shelf/skelda/test.json",
"take_interval": 1,
"min_match_score": 0.96,
"min_group_size": 2,
},
"ikeaasm": {
"path": "/datasets/ikeaasm/skelda/test.json",
"take_interval": 2,
"min_match_score": 0.92,
"min_bbox_score": 0.20,
},
"chi3d": {
"path": "/datasets/chi3d/skelda/all.json",
@ -64,21 +109,66 @@ datasets = {
"tsinghua": {
"path": "/datasets/tsinghua/skelda/test.json",
"take_interval": 3,
"min_group_size": 2,
},
"human36m_wb": {
"path": "/datasets/human36m/skelda/wb/test.json",
"take_interval": 100,
"min_bbox_score": 0.4,
"batch_poses": False,
},
"egohumans": {
"egohumans_tagging": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "tagging",
"min_group_size": 2,
"min_bbox_score": 0.25,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_legoassemble": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
# "subset": "tagging",
"subset": "legoassemble",
# "subset": "fencing",
# "subset": "basketball",
# "subset": "volleyball",
# "subset": "badminton",
# "subset": "tennis",
"min_group_size": 2,
},
"egohumans_fencing": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "fencing",
"min_group_size": 7,
"min_bbox_score": 0.5,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_basketball": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "basketball",
"min_group_size": 7,
"min_bbox_score": 0.25,
"min_bbox_area": 0.025 * 0.025,
},
"egohumans_volleyball": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "volleyball",
"min_group_size": 11,
"min_bbox_score": 0.25,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_badminton": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "badminton",
"min_group_size": 7,
"min_bbox_score": 0.25,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_tennis": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "tennis",
"min_group_size": 11,
"min_bbox_area": 0.025 * 0.025,
},
}
@ -99,11 +189,15 @@ eval_joints = [
"ankle_left",
"ankle_right",
]
if dataset_use in ["human36m", "panoptic"]:
if dataset_use == "human36m":
eval_joints[eval_joints.index("head")] = "nose"
if dataset_use.endswith("_wb"):
# eval_joints[eval_joints.index("head")] = "nose"
eval_joints = list(joint_names_2d)
if dataset_use == "panoptic":
eval_joints[eval_joints.index("head")] = "nose"
if dataset_use == "human36m_wb":
if any((test_triangulate.whole_body.values())):
eval_joints = list(joint_names_2d)
else:
eval_joints[eval_joints.index("head")] = "nose"
# output_dir = "/RapidPoseTriangulation/data/testoutput/"
output_dir = ""
@ -191,11 +285,11 @@ def load_labels(dataset: dict):
elif "human36m_wb" in dataset:
labels = load_json(dataset["human36m_wb"]["path"])
elif "egohumans" in dataset:
labels = load_json(dataset["egohumans"]["path"])
elif any(("egohumans" in key for key in dataset)):
labels = load_json(dataset[dataset_use]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
labels = [lb for lb in labels if dataset["egohumans"]["subset"] in lb["seq"]]
if dataset["egohumans"]["subset"] in ["volleyball", "tennis"]:
labels = [lb for lb in labels if dataset[dataset_use]["subset"] in lb["seq"]]
if dataset[dataset_use]["subset"] in ["volleyball", "tennis"]:
labels = [lb for i, lb in enumerate(labels) if i % 150 < 60]
else:
@ -216,11 +310,21 @@ def load_labels(dataset: dict):
def main():
global joint_names_3d, eval_joints
# Load dataset specific parameters
min_match_score = datasets[dataset_use].get(
"min_match_score", default_min_match_score
)
min_group_size = datasets[dataset_use].get("min_group_size", default_min_group_size)
min_bbox_score = datasets[dataset_use].get("min_bbox_score", default_min_bbox_score)
min_bbox_area = datasets[dataset_use].get("min_bbox_area", default_min_bbox_area)
batch_poses = datasets[dataset_use].get("batch_poses", default_batch_poses)
# Load 2D pose model
whole_body = test_triangulate.whole_body
if any((whole_body[k] for k in whole_body)):
kpt_model = utils_2d_pose.load_wb_model()
else:
kpt_model = utils_2d_pose.load_model()
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
# Manually set matplotlib backend
try:
@ -239,68 +343,19 @@ def main():
# Print a dataset sample for debugging
print(labels[0])
minscores = {
# Describes how good two 2D poses need to match each other to create a valid triangulation
# If the quality of the 2D detections is poor, use a lower value
"panoptic": 0.94,
"human36m": 0.94,
"mvor": 0.86,
"campus": 0.96,
"shelf": 0.96,
"ikeaasm": 0.89,
"chi3d": 0.94,
"tsinghua": 0.96,
"egohumans": 0.95,
"human36m_wb": 0.94,
}
minscore = minscores.get(dataset_use, 0.95)
min_group_sizes = {
# Describes the minimum number of camera pairs that need to detect the same person
# If the number of cameras is high, and the views are not occluded, use a higher value
"panoptic": 1,
"shelf": 2,
"chi3d": 1,
"tsinghua": 2,
"egohumans": 4,
}
min_group_size = min_group_sizes.get(dataset_use, 1)
if dataset_use == "panoptic" and len(datasets["panoptic"]["cams"]) == 10:
min_group_size = 4
if dataset_use == "egohumans" and (
"lego" in labels[0]["seq"] or "tagging" in labels[0]["seq"]
):
min_group_size = 2
if dataset_use == "egohumans" and (
"volleyball" in labels[0]["seq"] or "badminton" in labels[0]["seq"]
):
min_group_size = 7
if dataset_use == "egohumans" and "tennis" in labels[0]["seq"]:
min_group_size = 11
print("\nRunning predictions ...")
all_poses = []
all_ids = []
print("\nCalculating 2D predictions ...")
all_poses_2d = []
times = []
triangulator = rpt.Triangulator(min_score=minscore, min_group_size=min_group_size)
old_scene = ""
old_index = -1
for label in tqdm.tqdm(labels):
images_2d = []
if old_scene != label.get("scene", "") or (
old_index + datasets[dataset_use]["take_interval"] < label["index"]
):
# Reset last poses if scene changes
old_scene = label.get("scene", "")
triangulator.reset()
try:
start = time.time()
for i in range(len(label["imgpaths"])):
imgpath = label["imgpaths"][i]
img = test_triangulate.load_image(imgpath)
images_2d.append(img)
print("IMG time:", time.time() - start)
time_imgs = time.time() - start
except cv2.error:
print("One of the paths not found:", label["imgpaths"])
continue
@ -322,7 +377,28 @@ def main():
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
time_2d = time.time() - start
print("2D time:", time_2d)
all_poses_2d.append(poses_2d)
times.append([time_imgs, time_2d, 0])
print("\nCalculating 3D predictions ...")
all_poses_3d = []
all_ids = []
triangulator = rpt.Triangulator(
min_match_score=min_match_score, min_group_size=min_group_size
)
old_scene = ""
old_index = -1
for i in tqdm.tqdm(range(len(labels))):
label = labels[i]
poses_2d = all_poses_2d[i]
if old_scene != label.get("scene", "") or (
old_index + datasets[dataset_use]["take_interval"] < label["index"]
):
# Reset last poses if scene changes
old_scene = label.get("scene", "")
triangulator.reset()
start = time.time()
if sum(np.sum(p) for p in poses_2d) == 0:
@ -333,14 +409,12 @@ def main():
poses3D = triangulator.triangulate_poses(
poses_2d, rpt_cameras, roomparams, joint_names_2d
)
time_3d = time.time() - start
print("3D time:", time_3d)
old_index = label["index"]
all_poses.append(np.array(poses3D).tolist())
all_poses_3d.append(np.array(poses3D).tolist())
all_ids.append(label["id"])
times.append((time_2d, time_3d))
times[i][2] = time_3d
# Print per-step triangulation timings
print("")
@ -349,9 +423,11 @@ def main():
warmup_iters = 10
if len(times) > warmup_iters:
times = times[warmup_iters:]
avg_time_2d = np.mean([t[0] for t in times])
avg_time_3d = np.mean([t[1] for t in times])
avg_time_im = np.mean([t[0] for t in times])
avg_time_2d = np.mean([t[1] for t in times])
avg_time_3d = np.mean([t[2] for t in times])
tstats = {
"img_loading": avg_time_im,
"avg_time_2d": avg_time_2d,
"avg_time_3d": avg_time_3d,
"avg_fps": 1.0 / (avg_time_2d + avg_time_3d),
@ -361,7 +437,7 @@ def main():
_ = evals.mpjpe.run_eval(
labels,
all_poses,
all_poses_3d,
all_ids,
joint_names_net=joint_names_3d,
joint_names_use=eval_joints,
@ -369,7 +445,7 @@ def main():
)
_ = evals.pcp.run_eval(
labels,
all_poses,
all_poses_3d,
all_ids,
joint_names_net=joint_names_3d,
joint_names_use=eval_joints,

View File

@ -220,7 +220,7 @@ def update_sample(sample, new_dir=""):
def load_image(path: str):
image = cv2.imread(path, 3)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = np.array(image, dtype=np.float32)
image = np.asarray(image, dtype=np.uint8)
return image
@ -283,7 +283,7 @@ def main():
if any((whole_body[k] for k in whole_body)):
kpt_model = utils_2d_pose.load_wb_model()
else:
kpt_model = utils_2d_pose.load_model()
kpt_model = utils_2d_pose.load_model(min_bbox_score=0.3)
# Manually set matplotlib backend
matplotlib.use("TkAgg")
@ -340,7 +340,7 @@ def main():
else:
cameras = rpt.convert_cameras(camparams)
roomp = [roomparams["room_size"], roomparams["room_center"]]
triangulator = rpt.Triangulator(min_score=0.95)
triangulator = rpt.Triangulator(min_match_score=0.94)
stime = time.time()
poses_3d = triangulator.triangulate_poses(

View File

@ -1,42 +1,498 @@
import math
import os
from abc import ABC, abstractmethod
from typing import List
import cv2
import numpy as np
from mmpose.apis import MMPoseInferencer
# ==================================================================================================
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
import onnxruntime as ort
from tqdm import tqdm
# ==================================================================================================
def load_model():
print("Loading mmpose model ...")
class BaseModel(ABC):
def __init__(self, model_path: str, warmup: int):
self.model_path = model_path
self.runtime = ""
model = MMPoseInferencer(
pose2d="/mmpose/projects/rtmpose/rtmpose/body_2d_keypoint/rtmpose-m_8xb256-420e_coco-384x288.py",
pose2d_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-m_simcc-body7_pt-body7_420e-384x288-65e718c4_20230504.pth",
det_model="/mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-person.py",
det_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth",
det_cat_ids=[0],
if not os.path.exists(model_path):
raise FileNotFoundError("File not found:", model_path)
if model_path.endswith(".onnx"):
self.init_onnxruntime(model_path)
self.runtime = "ort"
else:
raise ValueError("Unsupported model format:", model_path)
if warmup > 0:
print("Running warmup for '{}' ...".format(self.__class__.__name__))
self.warmup(warmup // 2)
self.warmup(warmup // 2)
def init_onnxruntime(self, model_path):
usetrt = True
usegpu = True
self.opt = ort.SessionOptions()
providers = ort.get_available_providers()
# ort.set_default_logger_severity(1)
self.providers = []
if usetrt and "TensorrtExecutionProvider" in providers:
self.providers.append(
(
"TensorrtExecutionProvider",
{
"trt_engine_cache_enable": True,
"trt_engine_cache_path": "/RapidPoseTriangulation/data/trt_cache/",
},
)
)
elif usegpu and "CUDAExecutionProvider" in providers:
self.providers.append("CUDAExecutionProvider")
else:
self.providers.append("CPUExecutionProvider")
print("Using providers:", self.providers)
self.session = ort.InferenceSession(
model_path, providers=self.providers, sess_options=self.opt
)
self.input_names = [input.name for input in self.session.get_inputs()]
self.input_shapes = [input.shape for input in self.session.get_inputs()]
input_types = [input.type for input in self.session.get_inputs()]
self.input_types = []
for i in range(len(input_types)):
input_type = input_types[i]
if input_type == "tensor(float32)":
itype = np.float32
elif input_type == "tensor(float16)":
itype = np.float16
elif input_type == "tensor(int32)":
itype = np.int32
elif input_type == "tensor(uint8)":
itype = np.uint8
else:
raise ValueError("Undefined input type:", input_type)
self.input_types.append(itype)
@abstractmethod
def preprocess(self, **kwargs):
pass
@abstractmethod
def postprocess(self, **kwargs):
pass
def warmup(self, epoch: int):
np.random.seed(42)
for _ in tqdm(range(epoch)):
inputs = {}
for i in range(len(self.input_names)):
iname = self.input_names[i]
if "image" in iname:
ishape = list(self.input_shapes[i])
if "batch_size" in ishape:
max_batch_size = 10
ishape[0] = np.random.choice(list(range(1, max_batch_size + 1)))
tensor = np.random.random(ishape)
tensor = tensor * 255
else:
raise ValueError("Undefined input type:", iname)
tensor = tensor.astype(self.input_types[i])
inputs[iname] = tensor
self.call_model_ort(list(inputs.values()))
def call_model_ort(self, tensor):
inputs = {}
for i in range(len(self.input_names)):
iname = self.input_names[i]
inputs[iname] = tensor[i]
result = self.session.run(None, inputs)
return result
def __call__(self, **kwargs):
tensor = self.preprocess(**kwargs)
result = self.call_model_ort(tensor)
output = self.postprocess(result=result, **kwargs)
return output
# ==================================================================================================
class LetterBox:
def __init__(self, target_size, fill_value=0):
self.target_size = target_size
self.fill_value = fill_value
def calc_params(self, ishape):
img_h, img_w = ishape[:2]
target_h, target_w = self.target_size
scale = min(target_w / img_w, target_h / img_h)
new_w = round(img_w * scale)
new_h = round(img_h * scale)
pad_w = target_w - new_w
pad_h = target_h - new_h
pad_left = pad_w // 2
pad_top = pad_h // 2
pad_right = pad_w - pad_left
pad_bottom = pad_h - pad_top
paddings = (pad_left, pad_right, pad_top, pad_bottom)
return paddings, scale, (new_w, new_h)
def resize_image(self, image):
paddings, _, new_size = self.calc_params(image.shape)
# Resize the image
new_w, new_h = new_size
resized_img = cv2.resize(
image,
(new_w, new_h),
interpolation=cv2.INTER_NEAREST,
)
# Optionally pad the image
pad_left, pad_right, pad_top, pad_bottom = paddings
if pad_left == 0 and pad_right == 0 and pad_top == 0 and pad_bottom == 0:
final_img = resized_img
else:
final_img = cv2.copyMakeBorder(
resized_img,
pad_top,
pad_bottom,
pad_left,
pad_right,
borderType=cv2.BORDER_CONSTANT,
value=[self.fill_value, self.fill_value, self.fill_value],
)
return final_img
# ==================================================================================================
class BoxCrop:
def __init__(self, target_size, padding_scale=1.0, fill_value=0):
self.target_size = target_size
self.padding_scale = padding_scale
self.fill_value = fill_value
def calc_params(self, ishape, bbox):
start_x, start_y, end_x, end_y = bbox[0], bbox[1], bbox[2], bbox[3]
target_h, target_w = self.target_size
# Calculate original bounding box center
center_x = (start_x + end_x) / 2.0
center_y = (start_y + end_y) / 2.0
# Scale the bounding box by the padding_scale
bbox_w = end_x - start_x
bbox_h = end_y - start_y
scaled_w = bbox_w * self.padding_scale
scaled_h = bbox_h * self.padding_scale
# Calculate the aspect ratios
bbox_aspect = scaled_w / scaled_h
target_aspect = target_w / target_h
# Adjust the scaled bounding box to match the target aspect ratio
if bbox_aspect > target_aspect:
adjusted_h = scaled_w / target_aspect
adjusted_w = scaled_w
else:
adjusted_w = scaled_h * target_aspect
adjusted_h = scaled_h
# Calculate scaled bounding box coordinates
bbox_w = adjusted_w
bbox_h = adjusted_h
new_start_x = center_x - bbox_w / 2.0
new_start_y = center_y - bbox_h / 2.0
new_end_x = center_x + bbox_w / 2.0
new_end_y = center_y + bbox_h / 2.0
# Round the box coordinates
start_x = int(math.floor(new_start_x))
start_y = int(math.floor(new_start_y))
end_x = int(math.ceil(new_end_x))
end_y = int(math.ceil(new_end_y))
# Define the new box coordinates
new_start_x = max(0, start_x)
new_start_y = max(0, start_y)
new_end_x = min(ishape[1] - 1, end_x)
new_end_y = min(ishape[0] - 1, end_y)
new_box = [new_start_x, new_start_y, new_end_x, new_end_y]
# Calculate resized crop size
bbox_w = new_box[2] - new_box[0]
bbox_h = new_box[3] - new_box[1]
scale = min(target_w / bbox_w, target_h / bbox_h)
new_w = round(bbox_w * scale)
new_h = round(bbox_h * scale)
# Calculate paddings
pad_w = target_w - new_w
pad_h = target_h - new_h
pad_left, pad_right, pad_top, pad_bottom = 0, 0, 0, 0
if pad_w > 0:
if start_x < 0:
pad_left = pad_w
pad_right = 0
elif end_x > ishape[1]:
pad_left = 0
pad_right = pad_w
else:
# Can be caused by bbox rounding
pad_left = pad_w // 2
pad_right = pad_w - pad_left
if pad_h > 0:
if start_y < 0:
pad_top = pad_h
pad_bottom = 0
elif end_y > ishape[0]:
pad_top = 0
pad_bottom = pad_h
else:
# Can be caused by bbox rounding
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
paddings = (pad_left, pad_right, pad_top, pad_bottom)
return paddings, scale, new_box, (new_w, new_h)
def crop_resize_box(self, image, bbox):
paddings, _, new_box, new_size = self.calc_params(image.shape, bbox)
# Extract the bounding box
cropped_img = image[new_box[1] : new_box[3], new_box[0] : new_box[2]]
# Resize the image
new_w, new_h = new_size
resized_img = cv2.resize(
cropped_img,
(new_w, new_h),
interpolation=cv2.INTER_NEAREST,
)
# Optionally pad the image
pad_left, pad_right, pad_top, pad_bottom = paddings
if pad_left == 0 and pad_right == 0 and pad_top == 0 and pad_bottom == 0:
final_img = resized_img
else:
final_img = cv2.copyMakeBorder(
resized_img,
pad_top,
pad_bottom,
pad_left,
pad_right,
borderType=cv2.BORDER_CONSTANT,
value=[self.fill_value, self.fill_value, self.fill_value],
)
return final_img
# ==================================================================================================
class RTMDet(BaseModel):
def __init__(
self,
model_path: str,
conf_threshold: float,
min_area_fraction: float,
warmup: int = 30,
):
super(RTMDet, self).__init__(model_path, warmup)
self.target_size = (320, 320)
self.conf_threshold = conf_threshold
self.letterbox = LetterBox(self.target_size, fill_value=114)
img_area = self.target_size[0] * self.target_size[1]
self.min_area = img_area * min_area_fraction
def preprocess(self, image: np.ndarray):
image = self.letterbox.resize_image(image)
tensor = np.asarray(image).astype(self.input_types[0], copy=False)
tensor = np.expand_dims(tensor, axis=0)
tensor = [tensor]
return tensor
def postprocess(self, result: List[np.ndarray], image: np.ndarray):
boxes = np.squeeze(result[0], axis=0)
classes = np.squeeze(result[1], axis=0)
human_class = classes[:] == 0
boxes = boxes[human_class]
keep = boxes[:, 4] > self.conf_threshold
boxes = boxes[keep]
if len(boxes) == 0:
return np.array([])
# Drop boxes with too small area
boxes = boxes.astype(np.float32)
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
keep = areas >= self.min_area
boxes = boxes[keep]
if len(boxes) == 0:
return np.array([])
paddings, scale, _ = self.letterbox.calc_params(image.shape)
boxes[:, 0] -= paddings[0]
boxes[:, 2] -= paddings[0]
boxes[:, 1] -= paddings[2]
boxes[:, 3] -= paddings[2]
boxes = np.maximum(boxes, 0)
th, tw = self.target_size
pad_w = paddings[0] + paddings[1]
pad_h = paddings[2] + paddings[3]
max_w = tw - pad_w - 1
max_h = th - pad_h - 1
boxes[:, 0] = np.minimum(boxes[:, 0], max_w)
boxes[:, 1] = np.minimum(boxes[:, 1], max_h)
boxes[:, 2] = np.minimum(boxes[:, 2], max_w)
boxes[:, 3] = np.minimum(boxes[:, 3], max_h)
boxes[:, 0:4] /= scale
return boxes
# ==================================================================================================
class RTMPose(BaseModel):
def __init__(self, model_path: str, warmup: int = 30):
super(RTMPose, self).__init__(model_path, warmup)
self.target_size = (384, 288)
self.boxcrop = BoxCrop(self.target_size, padding_scale=1.25, fill_value=0)
def preprocess(self, image: np.ndarray, bboxes: np.ndarray):
cutouts = []
for i in range(len(bboxes)):
bbox = np.asarray(bboxes[i])[0:4]
bbox += np.array([-0.5, -0.5, 0.5 - 1e-8, 0.5 - 1e-8])
bbox = bbox.round().astype(np.int32)
region = self.boxcrop.crop_resize_box(image, bbox)
tensor = np.asarray(region).astype(self.input_types[0], copy=False)
cutouts.append(tensor)
if len(bboxes) == 1:
cutouts = np.expand_dims(cutouts[0], axis=0)
else:
cutouts = np.stack(cutouts, axis=0)
tensor = [cutouts]
return tensor
def postprocess(
self, result: List[np.ndarray], image: np.ndarray, bboxes: np.ndarray
):
kpts = []
for i in range(len(bboxes)):
scores = np.clip(result[1][i], 0, 1)
kp = np.concatenate(
[result[0][i], np.expand_dims(scores, axis=-1)], axis=-1
)
paddings, scale, bbox, _ = self.boxcrop.calc_params(image.shape, bboxes[i])
kp[:, 0] -= paddings[0]
kp[:, 1] -= paddings[2]
kp[:, 0:2] /= scale
kp[:, 0] += bbox[0]
kp[:, 1] += bbox[1]
kp[:, 0:2] = np.maximum(kp[:, 0:2], 0)
max_w = image.shape[1] - 1
max_h = image.shape[0] - 1
kp[:, 0] = np.minimum(kp[:, 0], max_w)
kp[:, 1] = np.minimum(kp[:, 1], max_h)
kpts.append(kp)
return kpts
# ==================================================================================================
class TopDown:
def __init__(
self,
det_model_path: str,
pose_model_path: str,
box_conf_threshold: float,
box_min_area: float,
warmup: int = 30,
):
self.batch_poses = bool("Bx" in pose_model_path)
self.det_model = RTMDet(
det_model_path, box_conf_threshold, box_min_area, warmup
)
self.pose_model = RTMPose(pose_model_path, warmup)
def predict(self, image):
boxes = self.det_model(image=image)
if len(boxes) == 0:
return []
results = []
if self.batch_poses:
results = self.pose_model(image=image, bboxes=boxes)
else:
for i in range(boxes.shape[0]):
kp = self.pose_model(image=image, bboxes=[boxes[i]])
results.append(kp[0])
return results
# ==================================================================================================
def load_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
print("Loading 2D model ...")
model = TopDown(
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx",
f"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-m_{'B' if batch_poses else '1'}x384x288x3_fp16_extra-steps.onnx",
box_conf_threshold=min_bbox_score,
box_min_area=min_bbox_area,
warmup=30,
)
print("Loaded mmpose model")
print("Loaded 2D model")
return model
def load_wb_model():
print("Loading mmpose whole body model ...")
def load_wb_model(min_bbox_score=0.3, min_bbox_area=0.1 * 0.1, batch_poses=False):
print("Loading 2D-WB model ...")
model = MMPoseInferencer(
pose2d="/mmpose/projects/rtmpose/rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py",
pose2d_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-384x288-eaeb96c8_20230125.pth",
det_model="/mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-person.py",
det_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth",
det_cat_ids=[0],
# The FP16 pose model is much worse than the FP32 for whole-body keypoints
model = TopDown(
"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx",
f"/RapidPoseTriangulation/extras/mmdeploy/exports/rtmpose-l_wb_{'B' if batch_poses else '1'}x384x288x3_extra-steps.onnx",
box_conf_threshold=min_bbox_score,
box_min_area=min_bbox_area,
warmup=30,
)
print("Loaded mmpose model")
print("Loaded 2D-WB model")
return model
@ -44,28 +500,16 @@ def load_wb_model():
def get_2d_pose(model, imgs, num_joints=17):
"""See: https://mmpose.readthedocs.io/en/latest/user_guides/inference.html#basic-usage"""
result_generator = model(imgs, show=False)
new_poses = []
for _ in range(len(imgs)):
result = next(result_generator)
for i in range(len(imgs)):
img = imgs[i]
dets = model.predict(img)
poses = []
for i in range(len(result["predictions"][0])):
kpts = result["predictions"][0][i]["keypoints"]
scores = result["predictions"][0][i]["keypoint_scores"]
kpts = np.array(kpts)
scores = np.array(scores).reshape(-1, 1)
scores = np.clip(scores, 0, 1)
pose = np.concatenate((kpts, scores), axis=-1)
poses.append(pose)
if len(poses) == 0:
poses.append(np.zeros([num_joints, 3]))
poses = np.array(poses)
if len(dets) == 0:
poses = np.zeros([1, num_joints, 3], dtype=float)
else:
poses = np.asarray(dets, dtype=float)
new_poses.append(poses)
return new_poses

View File

@ -1,5 +1,5 @@
# Standard compile options for the C++ executable
FLAGS = -fPIC -O3 -march=native -Wall -Werror -flto -fopenmp -fopenmp-simd
FLAGS = -fPIC -O3 -march=native -Wall -Werror -flto=auto -fopenmp -fopenmp-simd
# The Python interface through SWIG
PYTHON_VERSION = $(shell python3 -c 'import sys; print(f"{sys.version_info.major}.{sys.version_info.minor}");')

View File

@ -60,7 +60,7 @@ def main():
cameras = rpt.convert_cameras(cams)
# Run triangulation
triangulator = rpt.Triangulator(min_score=0.95)
triangulator = rpt.Triangulator(min_match_score=0.95)
stime = time.time()
poses_3d = triangulator.triangulate_poses(
poses_2d, cameras, roomparams, joint_names