Merge branch 'ros' into 'master'
Ros wrapper See merge request Percipiote/RapidPoseTriangulation!5
This commit is contained in:
21
README.md
21
README.md
@ -30,6 +30,27 @@ Fast triangulation of multiple persons from multiple camera views.
|
||||
- Build triangulator:
|
||||
```bash
|
||||
cd /RapidPoseTriangulation/swig/ && make all && cd ../tests/ && python3 test_interface.py && cd ..
|
||||
|
||||
cd /RapidPoseTriangulation/scripts/ && \
|
||||
g++ -std=c++2a -fPIC -O3 -march=native -Wall -Werror -flto=auto -fopenmp -fopenmp-simd \
|
||||
-I /RapidPoseTriangulation/rpt/ \
|
||||
-isystem /usr/include/opencv4/ \
|
||||
-isystem /onnxruntime/include/ \
|
||||
-isystem /onnxruntime/include/onnxruntime/core/session/ \
|
||||
-isystem /onnxruntime/include/onnxruntime/core/providers/tensorrt/ \
|
||||
-L /onnxruntime/build/Linux/Release/ \
|
||||
test_skelda_dataset.cpp \
|
||||
/RapidPoseTriangulation/rpt/*.cpp \
|
||||
-o test_skelda_dataset.bin \
|
||||
-Wl,--start-group \
|
||||
-lonnxruntime_providers_tensorrt \
|
||||
-lonnxruntime_providers_shared \
|
||||
-lonnxruntime_providers_cuda \
|
||||
-lonnxruntime \
|
||||
-Wl,--end-group \
|
||||
$(pkg-config --libs opencv4) \
|
||||
-Wl,-rpath,/onnxruntime/build/Linux/Release/ \
|
||||
&& cd ..
|
||||
```
|
||||
|
||||
- Test with samples:
|
||||
|
||||
24674
extras/include/nlohmann/json.hpp
Normal file
24674
extras/include/nlohmann/json.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -54,6 +54,7 @@ def add_steps_to_onnx(model_path):
|
||||
inputs=[input_name],
|
||||
outputs=[casted_output],
|
||||
to=cast_type,
|
||||
name="Cast_Input",
|
||||
)
|
||||
|
||||
# Node to transpose
|
||||
@ -118,6 +119,90 @@ def add_steps_to_onnx(model_path):
|
||||
# Set input image type to int8
|
||||
model.graph.input[0].type.tensor_type.elem_type = TensorProto.UINT8
|
||||
|
||||
# Cast all outputs to fp32 to avoid half precision issues in cpp code
|
||||
for output in graph.output:
|
||||
orig_output_name = output.name
|
||||
internal_output_name = orig_output_name + "_internal"
|
||||
|
||||
# Rename the output tensor
|
||||
for node in model.graph.node:
|
||||
for idx, name in enumerate(node.output):
|
||||
if name == orig_output_name:
|
||||
node.output[idx] = internal_output_name
|
||||
|
||||
# Insert a Cast node that casts the internal output to fp32
|
||||
cast_fp32_name = orig_output_name
|
||||
cast_node_output = helper.make_node(
|
||||
"Cast",
|
||||
inputs=[internal_output_name],
|
||||
outputs=[cast_fp32_name],
|
||||
to=1,
|
||||
name="Cast_Output_" + orig_output_name,
|
||||
)
|
||||
# Append the cast node to the graph
|
||||
graph.node.append(cast_node_output)
|
||||
|
||||
# Update the output's data type info
|
||||
output.type.tensor_type.elem_type = TensorProto.FLOAT
|
||||
|
||||
# Merge the two outputs
|
||||
if "det" in model_path:
|
||||
r1_output = "dets"
|
||||
r2_output = "labels"
|
||||
out_name = "bboxes"
|
||||
out_dim = 6
|
||||
if "pose" in model_path:
|
||||
r1_output = "kpts"
|
||||
r2_output = "scores"
|
||||
out_name = "keypoints"
|
||||
out_dim = 3
|
||||
if "det" in model_path or "pose" in model_path:
|
||||
# Node to expand
|
||||
r2_expanded = r2_output + "_expanded"
|
||||
unsqueeze_node = helper.make_node(
|
||||
"Unsqueeze",
|
||||
inputs=[r2_output],
|
||||
outputs=[r2_expanded],
|
||||
axes=[2],
|
||||
name="Unsqueeze",
|
||||
)
|
||||
|
||||
# Node to concatenate
|
||||
r12_merged = out_name
|
||||
concat_node = helper.make_node(
|
||||
"Concat",
|
||||
inputs=[r1_output, r2_expanded],
|
||||
outputs=[r12_merged],
|
||||
axis=2,
|
||||
name="Merged",
|
||||
)
|
||||
|
||||
# Define the new concatenated output
|
||||
merged_output = helper.make_tensor_value_info(
|
||||
r12_merged,
|
||||
TensorProto.FLOAT,
|
||||
[
|
||||
(
|
||||
graph.input[0].type.tensor_type.shape.dim[0].dim_value
|
||||
if graph.input[0].type.tensor_type.shape.dim[0].dim_value > 0
|
||||
else None
|
||||
),
|
||||
(
|
||||
graph.output[0].type.tensor_type.shape.dim[1].dim_value
|
||||
if graph.output[0].type.tensor_type.shape.dim[1].dim_value > 0
|
||||
else None
|
||||
),
|
||||
out_dim,
|
||||
],
|
||||
)
|
||||
|
||||
# Update the graph
|
||||
graph.node.append(unsqueeze_node)
|
||||
graph.node.append(concat_node)
|
||||
graph.output.pop()
|
||||
graph.output.pop()
|
||||
graph.output.append(merged_output)
|
||||
|
||||
path = re.sub(r"(x)(\d+)x(\d+)x(\d+)", r"\1\3x\4x\2", model_path)
|
||||
path = path.replace(".onnx", "_extra-steps.onnx")
|
||||
onnx.save(model, path)
|
||||
|
||||
20
extras/ros/README.md
Normal file
20
extras/ros/README.md
Normal file
@ -0,0 +1,20 @@
|
||||
# ROS-Wrapper
|
||||
|
||||
Run pose estimator with ros topics as inputs and publish detected poses.
|
||||
|
||||
<br>
|
||||
|
||||
- Build container:
|
||||
```bash
|
||||
docker build --progress=plain -t rapidposetriangulation_ros -f extras/ros/dockerfile .
|
||||
```
|
||||
|
||||
- Update or remove the `ROS_DOMAIN_ID` in `docker-compose.yml` to fit your environment
|
||||
|
||||
- Run and test:
|
||||
```bash
|
||||
xhost +; docker compose -f extras/ros/docker-compose.yml up
|
||||
|
||||
docker exec -it ros-test_node-1 bash
|
||||
export ROS_DOMAIN_ID=18
|
||||
```
|
||||
70
extras/ros/docker-compose.yml
Normal file
70
extras/ros/docker-compose.yml
Normal file
@ -0,0 +1,70 @@
|
||||
version: "2.3"
|
||||
# runtime: nvidia needs version 2 else change standard runtime at host pc
|
||||
|
||||
services:
|
||||
|
||||
test_node:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- ../../:/RapidPoseTriangulation/
|
||||
- ../../skelda/:/skelda/
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'sleep infinity'
|
||||
|
||||
estimator:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- ../../:/RapidPoseTriangulation/
|
||||
- ../../skelda/:/skelda/
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'export ROS_DOMAIN_ID=18 && ros2 run rpt2d_wrapper_cpp rpt2d_wrapper'
|
||||
|
||||
pose_visualizer:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- ../../:/RapidPoseTriangulation/
|
||||
- ../../skelda/:/skelda/
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'sleep 2 && export ROS_DOMAIN_ID=18 && ros2 run pose2d_visualizer pose2d_visualizer'
|
||||
|
||||
pose_viewer:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'sleep 2 && export ROS_DOMAIN_ID=18 && ros2 run image_view image_view --ros-args --remap image:=/camera01/img_with_pose -p autosize:=True -p window_name:=MyImage'
|
||||
82
extras/ros/dockerfile
Normal file
82
extras/ros/dockerfile
Normal file
@ -0,0 +1,82 @@
|
||||
FROM rapidposetriangulation
|
||||
WORKDIR /
|
||||
|
||||
# Install ONNX runtime
|
||||
# See: https://github.com/microsoft/onnxruntime/blob/main/dockerfiles/Dockerfile.tensorrt
|
||||
RUN pip3 uninstall -y onnxruntime-gpu
|
||||
RUN git clone --recursive --depth=1 --branch=v1.20.1 https://github.com/Microsoft/onnxruntime.git
|
||||
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/cmake-3.30.1-linux-x86_64/bin:${PATH}
|
||||
ARG CMAKE_CUDA_ARCHITECTURES=75;80;90
|
||||
ENV TRT_VERSION=10.5.0.18
|
||||
RUN /bin/sh onnxruntime/dockerfiles/scripts/install_common_deps.sh
|
||||
RUN /bin/sh onnxruntime/dockerfiles/scripts/checkout_submodules.sh ${trt_version}
|
||||
RUN ls
|
||||
RUN cd onnxruntime && \
|
||||
/bin/sh build.sh --allow_running_as_root --parallel --build_shared_lib \
|
||||
--cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu/ --use_tensorrt \
|
||||
--tensorrt_home /usr/lib/x86_64-linux-gnu/ --config Release --build_wheel --skip_tests \
|
||||
--skip_submodule_sync --cmake_extra_defines '"CMAKE_CUDA_ARCHITECTURES='${CMAKE_CUDA_ARCHITECTURES}'"'
|
||||
RUN cd onnxruntime && pip install build/Linux/Release/dist/*.whl
|
||||
|
||||
# Install ROS2
|
||||
# https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends locales
|
||||
RUN locale-gen en_US en_US.UTF-8 && update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends software-properties-common
|
||||
RUN add-apt-repository universe
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends curl
|
||||
RUN curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg
|
||||
RUN echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-release && echo $UBUNTU_CODENAME) main" > /etc/apt/sources.list.d/ros2.list
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends ros-humble-ros-base python3-argcomplete
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends ros-dev-tools
|
||||
RUN echo "source /opt/ros/humble/setup.bash" >> ~/.bashrc
|
||||
|
||||
# Create ROS2 workspace for basic packages
|
||||
RUN mkdir -p /project/base/src/
|
||||
RUN cd /project/base/; colcon build
|
||||
RUN echo "source /project/base/install/setup.bash" >> ~/.bashrc
|
||||
|
||||
# Install opencv and cv_bridge
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libboost-dev
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libboost-python-dev
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libopencv-dev
|
||||
RUN cd /project/base/src/; git clone --branch humble --depth=1 https://github.com/ros-perception/vision_opencv.git
|
||||
RUN /bin/bash -i -c 'cd /project/base/; colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release'
|
||||
|
||||
# Install ROS2 image viewer
|
||||
RUN cd /project/base/src/; git clone --branch=humble --depth=1 https://github.com/ros-perception/image_pipeline.git
|
||||
RUN cd /project/base/src/; git clone --branch=humble --depth=1 https://github.com/ros-perception/image_common.git
|
||||
RUN /bin/bash -i -c 'cd /project/base/; colcon build --symlink-install --packages-select camera_calibration_parsers image_transport image_view --cmake-args -DCMAKE_BUILD_TYPE=Release'
|
||||
|
||||
# Fix module not found error when displaying images
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libcanberra-gtk-module libcanberra-gtk3-module
|
||||
|
||||
# Create ROS2 workspace for project packages
|
||||
RUN mkdir -p /project/dev_ws/src/
|
||||
RUN cd /project/dev_ws/; colcon build
|
||||
RUN echo "source /project/dev_ws/install/setup.bash" >> ~/.bashrc
|
||||
|
||||
# Fix ros package building error
|
||||
RUN pip3 install --no-cache-dir "setuptools<=58.2.0"
|
||||
|
||||
# Copy modules
|
||||
COPY ./extras/include/ /RapidPoseTriangulation/extras/include/
|
||||
COPY ./scripts/ /RapidPoseTriangulation/scripts/
|
||||
COPY ./extras/ros/pose2d_visualizer/ /RapidPoseTriangulation/extras/ros/pose2d_visualizer/
|
||||
COPY ./extras/ros/rpt2d_wrapper_cpp/ /RapidPoseTriangulation/extras/ros/rpt2d_wrapper_cpp/
|
||||
|
||||
# Link and build as ros package
|
||||
RUN ln -s /RapidPoseTriangulation/extras/ros/pose2d_visualizer/ /project/dev_ws/src/pose2d_visualizer
|
||||
RUN ln -s /RapidPoseTriangulation/extras/ros/rpt2d_wrapper_cpp/ /project/dev_ws/src/rpt2d_wrapper_cpp
|
||||
RUN /bin/bash -i -c 'cd /project/dev_ws/; colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release'
|
||||
|
||||
# Update ros packages -> autocompletion and check
|
||||
RUN /bin/bash -i -c 'ros2 pkg list'
|
||||
|
||||
# Clear cache to save space, only has an effect if image is squashed
|
||||
RUN apt-get autoremove -y \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
WORKDIR /RapidPoseTriangulation/
|
||||
CMD ["/bin/bash"]
|
||||
18
extras/ros/pose2d_visualizer/package.xml
Normal file
18
extras/ros/pose2d_visualizer/package.xml
Normal file
@ -0,0 +1,18 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>pose2d_visualizer</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="root@todo.todo">root</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
<test_depend>python3-pytest</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_python</build_type>
|
||||
</export>
|
||||
</package>
|
||||
@ -0,0 +1,152 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
|
||||
import cv2
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
import rclpy
|
||||
from cv_bridge import CvBridge
|
||||
from rclpy.qos import QoSHistoryPolicy, QoSProfile, QoSReliabilityPolicy
|
||||
from sensor_msgs.msg import Image
|
||||
from std_msgs.msg import String
|
||||
|
||||
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||
sys.path.append(filepath + "../../../../scripts/")
|
||||
import utils_pipeline
|
||||
|
||||
from skelda import utils_view
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
bridge = CvBridge()
|
||||
node = None
|
||||
publisher_img = None
|
||||
|
||||
cam_id = "camera01"
|
||||
img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw"
|
||||
pose_input_topic = "/poses/" + cam_id
|
||||
img_output_topic = "/" + cam_id + "/img_with_pose"
|
||||
|
||||
last_input_image = None
|
||||
lock = threading.Lock()
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_images(image_data):
|
||||
global last_input_image, lock
|
||||
|
||||
# Convert into cv images from image string
|
||||
if image_data.encoding == "bayer_rggb8":
|
||||
bayer_image = bridge.imgmsg_to_cv2(image_data, "bayer_rggb8")
|
||||
color_image = utils_pipeline.bayer2rgb(bayer_image)
|
||||
elif image_data.encoding == "mono8":
|
||||
gray_image = bridge.imgmsg_to_cv2(image_data, "mono8")
|
||||
color_image = cv2.cvtColor(gray_image, cv2.COLOR_GRAY2RGB)
|
||||
elif image_data.encoding == "rgb8":
|
||||
color_image = bridge.imgmsg_to_cv2(image_data, "rgb8")
|
||||
else:
|
||||
raise ValueError("Unknown image encoding:", image_data.encoding)
|
||||
|
||||
time_stamp = image_data.header.stamp.sec + image_data.header.stamp.nanosec / 1.0e9
|
||||
|
||||
with lock:
|
||||
last_input_image = (color_image, time_stamp)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_poses(pose_data):
|
||||
global last_input_image, lock
|
||||
|
||||
ptime = time.time()
|
||||
if last_input_image is None:
|
||||
return
|
||||
|
||||
# Convert pose data from json string
|
||||
poses = json.loads(pose_data.data)
|
||||
|
||||
# Collect inputs
|
||||
images_2d = []
|
||||
timestamps = []
|
||||
with lock:
|
||||
img = np.copy(last_input_image[0])
|
||||
ts = last_input_image[1]
|
||||
images_2d.append(img)
|
||||
timestamps.append(ts)
|
||||
|
||||
# Visualize 2D poses
|
||||
bodies2D = poses["bodies2D"]
|
||||
colors = plt.cm.hsv(np.linspace(0, 1, len(bodies2D), endpoint=False)).tolist()
|
||||
colors = [[int(c[0] * 255), int(c[1] * 255), int(c[2] * 255)] for c in colors]
|
||||
for i, body in enumerate(bodies2D):
|
||||
color = list(reversed(colors[i]))
|
||||
img = utils_view.draw_body_in_image(img, body, poses["joints"], color)
|
||||
|
||||
# Publish image with poses
|
||||
publish(img)
|
||||
|
||||
msg = "Visualization time: {:.3f}s"
|
||||
print(msg.format(time.time() - ptime))
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def publish(img):
|
||||
# Publish image data
|
||||
msg = bridge.cv2_to_imgmsg(img, "rgb8")
|
||||
publisher_img.publish(msg)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
global node, publisher_img
|
||||
|
||||
# Start node
|
||||
rclpy.init(args=sys.argv)
|
||||
node = rclpy.create_node("pose2d_visualizer")
|
||||
|
||||
# Quality of service settings
|
||||
qos_profile = QoSProfile(
|
||||
reliability=QoSReliabilityPolicy.RELIABLE,
|
||||
history=QoSHistoryPolicy.KEEP_LAST,
|
||||
depth=1,
|
||||
)
|
||||
|
||||
# Create subscribers
|
||||
_ = node.create_subscription(
|
||||
Image,
|
||||
img_input_topic,
|
||||
callback_images,
|
||||
qos_profile,
|
||||
)
|
||||
_ = node.create_subscription(
|
||||
String,
|
||||
pose_input_topic,
|
||||
callback_poses,
|
||||
qos_profile,
|
||||
)
|
||||
|
||||
# Create publishers
|
||||
publisher_img = node.create_publisher(Image, img_output_topic, qos_profile)
|
||||
|
||||
node.get_logger().info("Finished initialization of pose visualizer")
|
||||
|
||||
# Run ros update thread
|
||||
rclpy.spin(node)
|
||||
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
4
extras/ros/pose2d_visualizer/setup.cfg
Normal file
4
extras/ros/pose2d_visualizer/setup.cfg
Normal file
@ -0,0 +1,4 @@
|
||||
[develop]
|
||||
script_dir=$base/lib/pose2d_visualizer
|
||||
[install]
|
||||
install_scripts=$base/lib/pose2d_visualizer
|
||||
23
extras/ros/pose2d_visualizer/setup.py
Normal file
23
extras/ros/pose2d_visualizer/setup.py
Normal file
@ -0,0 +1,23 @@
|
||||
from setuptools import setup
|
||||
|
||||
package_name = "pose2d_visualizer"
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version="0.0.0",
|
||||
packages=[package_name],
|
||||
data_files=[
|
||||
("share/ament_index/resource_index/packages", ["resource/" + package_name]),
|
||||
("share/" + package_name, ["package.xml"]),
|
||||
],
|
||||
install_requires=["setuptools"],
|
||||
zip_safe=True,
|
||||
maintainer="root",
|
||||
maintainer_email="root@todo.todo",
|
||||
description="TODO: Package description",
|
||||
license="TODO: License declaration",
|
||||
tests_require=["pytest"],
|
||||
entry_points={
|
||||
"console_scripts": ["pose2d_visualizer = pose2d_visualizer.pose2d_visualizer:main"],
|
||||
},
|
||||
)
|
||||
27
extras/ros/pose2d_visualizer/test/test_copyright.py
Normal file
27
extras/ros/pose2d_visualizer/test/test_copyright.py
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_copyright.main import main
|
||||
|
||||
|
||||
# Remove the `skip` decorator once the source file(s) have a copyright header
|
||||
@pytest.mark.skip(
|
||||
reason="No copyright header has been placed in the generated source file."
|
||||
)
|
||||
@pytest.mark.copyright
|
||||
@pytest.mark.linter
|
||||
def test_copyright():
|
||||
rc = main(argv=[".", "test"])
|
||||
assert rc == 0, "Found errors"
|
||||
25
extras/ros/pose2d_visualizer/test/test_flake8.py
Normal file
25
extras/ros/pose2d_visualizer/test/test_flake8.py
Normal file
@ -0,0 +1,25 @@
|
||||
# Copyright 2017 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_flake8.main import main_with_errors
|
||||
|
||||
|
||||
@pytest.mark.flake8
|
||||
@pytest.mark.linter
|
||||
def test_flake8():
|
||||
rc, errors = main_with_errors(argv=[])
|
||||
assert rc == 0, "Found %d code style errors / warnings:\n" % len(
|
||||
errors
|
||||
) + "\n".join(errors)
|
||||
23
extras/ros/pose2d_visualizer/test/test_pep257.py
Normal file
23
extras/ros/pose2d_visualizer/test/test_pep257.py
Normal file
@ -0,0 +1,23 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_pep257.main import main
|
||||
|
||||
|
||||
@pytest.mark.linter
|
||||
@pytest.mark.pep257
|
||||
def test_pep257():
|
||||
rc = main(argv=[".", "test"])
|
||||
assert rc == 0, "Found code style errors / warnings"
|
||||
65
extras/ros/rpt2d_wrapper_cpp/CMakeLists.txt
Normal file
65
extras/ros/rpt2d_wrapper_cpp/CMakeLists.txt
Normal file
@ -0,0 +1,65 @@
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
project(rpt2d_wrapper_cpp)
|
||||
|
||||
# Default to C99
|
||||
if(NOT CMAKE_C_STANDARD)
|
||||
set(CMAKE_C_STANDARD 99)
|
||||
endif()
|
||||
|
||||
# Default to C++17
|
||||
if(NOT CMAKE_CXX_STANDARD)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
endif()
|
||||
|
||||
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
add_compile_options(-Wall -Wextra -Wpedantic)
|
||||
endif()
|
||||
|
||||
# find dependencies
|
||||
find_package(ament_cmake REQUIRED)
|
||||
find_package(rclcpp REQUIRED)
|
||||
find_package(std_msgs REQUIRED)
|
||||
find_package(sensor_msgs REQUIRED)
|
||||
find_package(cv_bridge REQUIRED)
|
||||
find_package(OpenCV REQUIRED)
|
||||
|
||||
### 3) ONNX Runtime
|
||||
include_directories(/onnxruntime/include/
|
||||
/onnxruntime/include/onnxruntime/core/session/
|
||||
/onnxruntime/include/onnxruntime/core/providers/tensorrt/)
|
||||
link_directories(/onnxruntime/build/Linux/Release/)
|
||||
|
||||
add_executable(rpt2d_wrapper src/rpt2d_wrapper.cpp)
|
||||
ament_target_dependencies(rpt2d_wrapper rclcpp std_msgs sensor_msgs cv_bridge)
|
||||
target_include_directories(rpt2d_wrapper PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
|
||||
$<INSTALL_INTERFACE:include>)
|
||||
|
||||
target_link_libraries(rpt2d_wrapper
|
||||
${OpenCV_LIBS}
|
||||
onnxruntime_providers_tensorrt
|
||||
onnxruntime_providers_shared
|
||||
onnxruntime_providers_cuda
|
||||
onnxruntime
|
||||
)
|
||||
|
||||
set_target_properties(rpt2d_wrapper PROPERTIES
|
||||
BUILD_WITH_INSTALL_RPATH TRUE
|
||||
INSTALL_RPATH "/onnxruntime/build/Linux/Release"
|
||||
)
|
||||
|
||||
install(TARGETS rpt2d_wrapper
|
||||
DESTINATION lib/${PROJECT_NAME})
|
||||
|
||||
if(BUILD_TESTING)
|
||||
find_package(ament_lint_auto REQUIRED)
|
||||
# the following line skips the linter which checks for copyrights
|
||||
# uncomment the line when a copyright and license is not present in all source files
|
||||
#set(ament_cmake_copyright_FOUND TRUE)
|
||||
# the following line skips cpplint (only works in a git repo)
|
||||
# uncomment the line when this package is not in a git repo
|
||||
#set(ament_cmake_cpplint_FOUND TRUE)
|
||||
ament_lint_auto_find_test_dependencies()
|
||||
endif()
|
||||
|
||||
ament_package()
|
||||
25
extras/ros/rpt2d_wrapper_cpp/package.xml
Normal file
25
extras/ros/rpt2d_wrapper_cpp/package.xml
Normal file
@ -0,0 +1,25 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>rpt2d_wrapper_cpp</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="root@todo.todo">root</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<buildtool_depend>ament_cmake</buildtool_depend>
|
||||
|
||||
<depend>rclcpp</depend>
|
||||
<depend>std_msgs</depend>
|
||||
<depend>sensor_msgs</depend>
|
||||
|
||||
<depend>cv_bridge</depend>
|
||||
<depend>OpenCV</depend>
|
||||
|
||||
<test_depend>ament_lint_auto</test_depend>
|
||||
<test_depend>ament_lint_common</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_cmake</build_type>
|
||||
</export>
|
||||
</package>
|
||||
230
extras/ros/rpt2d_wrapper_cpp/src/rpt2d_wrapper.cpp
Normal file
230
extras/ros/rpt2d_wrapper_cpp/src/rpt2d_wrapper.cpp
Normal file
@ -0,0 +1,230 @@
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// ROS2
|
||||
#include <rclcpp/rclcpp.hpp>
|
||||
#include <sensor_msgs/msg/image.hpp>
|
||||
#include <std_msgs/msg/string.hpp>
|
||||
|
||||
// OpenCV / cv_bridge
|
||||
#include <cv_bridge/cv_bridge.h>
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
// JSON library
|
||||
#include "/RapidPoseTriangulation/extras/include/nlohmann/json.hpp"
|
||||
using json = nlohmann::json;
|
||||
|
||||
#include "/RapidPoseTriangulation/scripts/utils_2d_pose.hpp"
|
||||
#include "/RapidPoseTriangulation/scripts/utils_pipeline.hpp"
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
static const std::string cam_id = "camera01";
|
||||
static const std::string img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw";
|
||||
static const std::string pose_out_topic = "/poses/" + cam_id;
|
||||
|
||||
static const float min_bbox_score = 0.4;
|
||||
static const float min_bbox_area = 0.1 * 0.1;
|
||||
static const bool batch_poses = true;
|
||||
|
||||
static const std::map<std::string, bool> whole_body = {
|
||||
{"foots", true},
|
||||
{"face", true},
|
||||
{"hands", true},
|
||||
};
|
||||
|
||||
// =================================================================================================
|
||||
// =================================================================================================
|
||||
|
||||
class Rpt2DWrapperNode : public rclcpp::Node
|
||||
{
|
||||
public:
|
||||
Rpt2DWrapperNode(const std::string &node_name)
|
||||
: Node(node_name)
|
||||
{
|
||||
this->is_busy = false;
|
||||
|
||||
// QoS
|
||||
rclcpp::QoS qos_profile(1);
|
||||
qos_profile.reliable();
|
||||
qos_profile.keep_last(1);
|
||||
|
||||
// Setup subscriber
|
||||
image_sub_ = this->create_subscription<sensor_msgs::msg::Image>(
|
||||
img_input_topic, qos_profile,
|
||||
std::bind(&Rpt2DWrapperNode::callback_images, this, std::placeholders::_1));
|
||||
|
||||
// Setup publisher
|
||||
pose_pub_ = this->create_publisher<std_msgs::msg::String>(pose_out_topic, qos_profile);
|
||||
|
||||
// Load model
|
||||
bool use_wb = utils_pipeline::use_whole_body(whole_body);
|
||||
this->kpt_model = std::make_unique<utils_2d_pose::PosePredictor>(
|
||||
use_wb, min_bbox_score, min_bbox_area, batch_poses);
|
||||
|
||||
RCLCPP_INFO(this->get_logger(), "Finished initialization of pose estimator.");
|
||||
}
|
||||
|
||||
private:
|
||||
rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr image_sub_;
|
||||
rclcpp::Publisher<std_msgs::msg::String>::SharedPtr pose_pub_;
|
||||
std::atomic<bool> is_busy;
|
||||
|
||||
// Pose model pointer
|
||||
std::unique_ptr<utils_2d_pose::PosePredictor> kpt_model;
|
||||
const std::vector<std::string> joint_names_2d = utils_pipeline::get_joint_names(whole_body);
|
||||
|
||||
void callback_images(const sensor_msgs::msg::Image::SharedPtr msg);
|
||||
|
||||
std::vector<std::vector<std::array<float, 3>>> call_model(const cv::Mat &image);
|
||||
|
||||
void publish(const json &data)
|
||||
{
|
||||
std_msgs::msg::String msg;
|
||||
msg.data = data.dump();
|
||||
pose_pub_->publish(msg);
|
||||
}
|
||||
};
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
void Rpt2DWrapperNode::callback_images(const sensor_msgs::msg::Image::SharedPtr msg)
|
||||
{
|
||||
if (this->is_busy)
|
||||
{
|
||||
RCLCPP_WARN(this->get_logger(), "Skipping frame, still processing...");
|
||||
return;
|
||||
}
|
||||
this->is_busy = true;
|
||||
auto ts_image = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// Load or convert image to Bayer format
|
||||
cv::Mat bayer_image;
|
||||
try
|
||||
{
|
||||
if (msg->encoding == "mono8")
|
||||
{
|
||||
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, msg->encoding);
|
||||
bayer_image = cv_ptr->image;
|
||||
}
|
||||
else if (msg->encoding == "bayer_rggb8")
|
||||
{
|
||||
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, msg->encoding);
|
||||
bayer_image = cv_ptr->image;
|
||||
}
|
||||
else if (msg->encoding == "rgb8")
|
||||
{
|
||||
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, "rgb8");
|
||||
cv::Mat color_image = cv_ptr->image;
|
||||
bayer_image = utils_pipeline::rgb2bayer(color_image);
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Unknown image encoding: " + msg->encoding);
|
||||
}
|
||||
}
|
||||
catch (const std::exception &e)
|
||||
{
|
||||
RCLCPP_ERROR(this->get_logger(), "cv_bridge exception: %s", e.what());
|
||||
return;
|
||||
}
|
||||
|
||||
// Call model
|
||||
const auto &valid_poses = this->call_model(bayer_image);
|
||||
|
||||
// Calculate timings
|
||||
double time_stamp = msg->header.stamp.sec + msg->header.stamp.nanosec / 1.0e9;
|
||||
auto ts_image_sec = std::chrono::duration<double>(ts_image.time_since_epoch()).count();
|
||||
auto ts_pose = std::chrono::high_resolution_clock::now();
|
||||
double ts_pose_sec = std::chrono::duration<double>(ts_pose.time_since_epoch()).count();
|
||||
double z_trigger_image = ts_image_sec - time_stamp;
|
||||
double z_trigger_pose = ts_pose_sec - time_stamp;
|
||||
double z_image_pose = ts_pose_sec - ts_image_sec;
|
||||
|
||||
// Build JSON
|
||||
json poses_msg;
|
||||
poses_msg["bodies2D"] = valid_poses; // shape: persons x keypoints x 3
|
||||
poses_msg["joints"] = joint_names_2d;
|
||||
poses_msg["num_persons"] = valid_poses.size();
|
||||
poses_msg["timestamps"] = {
|
||||
{"trigger", time_stamp},
|
||||
{"image", ts_image_sec},
|
||||
{"pose", ts_pose_sec},
|
||||
{"z-trigger-image", z_trigger_image},
|
||||
{"z-image-pose", z_image_pose},
|
||||
{"z-trigger-pose", z_trigger_pose}};
|
||||
|
||||
// Publish
|
||||
publish(poses_msg);
|
||||
|
||||
// Print info
|
||||
double elapsed_time = std::chrono::duration<double>(
|
||||
std::chrono::high_resolution_clock::now() - ts_image)
|
||||
.count();
|
||||
std::cout << "Detected persons: " << valid_poses.size()
|
||||
<< " - Prediction time: " << elapsed_time << "s" << std::endl;
|
||||
|
||||
this->is_busy = false;
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
std::vector<std::vector<std::array<float, 3>>> Rpt2DWrapperNode::call_model(const cv::Mat &image)
|
||||
{
|
||||
// Create image vector
|
||||
cv::Mat rgb_image = utils_pipeline::bayer2rgb(image);
|
||||
std::vector<cv::Mat> images_2d = {rgb_image};
|
||||
|
||||
// Predict 2D poses
|
||||
auto poses_2d_all = kpt_model->predict(images_2d);
|
||||
auto poses_2d_upd = utils_pipeline::update_keypoints(
|
||||
poses_2d_all, joint_names_2d, whole_body);
|
||||
auto &poses_2d = poses_2d_upd[0];
|
||||
|
||||
// Drop persons with no joints
|
||||
std::vector<std::vector<std::array<float, 3>>> valid_poses;
|
||||
for (auto &person : poses_2d)
|
||||
{
|
||||
float sum_conf = 0.0;
|
||||
for (auto &kp : person)
|
||||
{
|
||||
sum_conf += kp[2];
|
||||
}
|
||||
if (sum_conf > 0.0)
|
||||
{
|
||||
valid_poses.push_back(person);
|
||||
}
|
||||
}
|
||||
|
||||
// Round poses to 3 decimal places
|
||||
for (auto &person : valid_poses)
|
||||
{
|
||||
for (auto &kp : person)
|
||||
{
|
||||
kp[0] = std::round(kp[0] * 1000.0) / 1000.0;
|
||||
kp[1] = std::round(kp[1] * 1000.0) / 1000.0;
|
||||
kp[2] = std::round(kp[2] * 1000.0) / 1000.0;
|
||||
}
|
||||
}
|
||||
|
||||
return valid_poses;
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
// =================================================================================================
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
rclcpp::init(argc, argv);
|
||||
|
||||
auto node = std::make_shared<Rpt2DWrapperNode>("rpt2d_wrapper");
|
||||
rclcpp::spin(node);
|
||||
|
||||
rclcpp::shutdown();
|
||||
return 0;
|
||||
}
|
||||
8895
media/RESULTS.md
8895
media/RESULTS.md
File diff suppressed because it is too large
Load Diff
@ -581,20 +581,21 @@ void TriangulatorInternal::reset()
|
||||
|
||||
void TriangulatorInternal::print_stats()
|
||||
{
|
||||
std::cout << "Triangulator statistics:" << std::endl;
|
||||
std::cout << " Number of calls: " << num_calls << std::endl;
|
||||
std::cout << " Init time: " << init_time / num_calls << std::endl;
|
||||
std::cout << " Undistort time: " << undistort_time / num_calls << std::endl;
|
||||
std::cout << " Project time: " << project_time / num_calls << std::endl;
|
||||
std::cout << " Match time: " << match_time / num_calls << std::endl;
|
||||
std::cout << " Pairs time: " << pairs_time / num_calls << std::endl;
|
||||
std::cout << " Pair scoring time: " << pair_scoring_time / num_calls << std::endl;
|
||||
std::cout << " Grouping time: " << grouping_time / num_calls << std::endl;
|
||||
std::cout << " Full time: " << full_time / num_calls << std::endl;
|
||||
std::cout << " Merge time: " << merge_time / num_calls << std::endl;
|
||||
std::cout << " Post time: " << post_time / num_calls << std::endl;
|
||||
std::cout << " Convert time: " << convert_time / num_calls << std::endl;
|
||||
std::cout << " Total time: " << total_time / num_calls << std::endl;
|
||||
std::cout << "{" << std::endl;
|
||||
std::cout << " \"triangulator_calls\": " << num_calls << "," << std::endl;
|
||||
std::cout << " \"init_time\": " << init_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"undistort_time\": " << undistort_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"project_time\": " << project_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"match_time\": " << match_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"pairs_time\": " << pairs_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"pair_scoring_time\": " << pair_scoring_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"grouping_time\": " << grouping_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"full_time\": " << full_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"merge_time\": " << merge_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"post_time\": " << post_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"convert_time\": " << convert_time / num_calls << "," << std::endl;
|
||||
std::cout << " \"total_time\": " << total_time / num_calls << std::endl;
|
||||
std::cout << "}" << std::endl;
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
268
scripts/test_skelda_dataset.cpp
Normal file
268
scripts/test_skelda_dataset.cpp
Normal file
@ -0,0 +1,268 @@
|
||||
#include <chrono>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// OpenCV
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
// JSON library
|
||||
#include "/RapidPoseTriangulation/extras/include/nlohmann/json.hpp"
|
||||
using json = nlohmann::json;
|
||||
|
||||
#include "/RapidPoseTriangulation/rpt/camera.hpp"
|
||||
#include "/RapidPoseTriangulation/rpt/interface.hpp"
|
||||
#include "/RapidPoseTriangulation/scripts/utils_2d_pose.hpp"
|
||||
#include "/RapidPoseTriangulation/scripts/utils_pipeline.hpp"
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
static const std::string path_data = "/tmp/rpt/all.json";
|
||||
static const std::string path_cfg = "/tmp/rpt/config.json";
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
std::vector<cv::Mat> load_images(json &item)
|
||||
{
|
||||
// Load images
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t j = 0; j < item["imgpaths"].size(); j++)
|
||||
{
|
||||
auto ipath = item["imgpaths"][j].get<std::string>();
|
||||
cv::Mat image = cv::imread(ipath, cv::IMREAD_COLOR);
|
||||
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
|
||||
images.push_back(image);
|
||||
}
|
||||
|
||||
if (item["dataset_name"] == "human36m")
|
||||
{
|
||||
// Since the images don't have the same shape, rescale some of them
|
||||
for (size_t i = 0; i < images.size(); i++)
|
||||
{
|
||||
cv::Mat &img = images[i];
|
||||
cv::Size ishape = img.size();
|
||||
if (ishape != cv::Size(1000, 1000))
|
||||
{
|
||||
auto cam = item["cameras"][i];
|
||||
cam["K"][1][1] = cam["K"][1][1].get<float>() * (1000.0 / ishape.height);
|
||||
cam["K"][1][2] = cam["K"][1][2].get<float>() * (1000.0 / ishape.height);
|
||||
cam["K"][0][0] = cam["K"][0][0].get<float>() * (1000.0 / ishape.width);
|
||||
cam["K"][0][2] = cam["K"][0][2].get<float>() * (1000.0 / ishape.width);
|
||||
cv::resize(img, img, cv::Size(1000, 1000));
|
||||
images[i] = img;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert image format to Bayer encoding to simulate real camera input
|
||||
// This also resulted in notably better MPJPE results in most cases, presumbly since the
|
||||
// demosaicing algorithm from OpenCV is better than the default one from the cameras
|
||||
for (size_t i = 0; i < images.size(); i++)
|
||||
{
|
||||
cv::Mat &img = images[i];
|
||||
cv::Mat bayer_image = utils_pipeline::rgb2bayer(img);
|
||||
images[i] = std::move(bayer_image);
|
||||
}
|
||||
|
||||
return images;
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
std::string read_file(const std::string &path)
|
||||
{
|
||||
std::ifstream file_stream(path);
|
||||
if (!file_stream.is_open())
|
||||
{
|
||||
throw std::runtime_error("Unable to open file: " + path);
|
||||
}
|
||||
|
||||
std::stringstream buffer;
|
||||
buffer << file_stream.rdbuf();
|
||||
return buffer.str();
|
||||
}
|
||||
|
||||
void write_file(const std::string &path, const std::string &content)
|
||||
{
|
||||
std::ofstream file_stream(path, std::ios::out | std::ios::binary);
|
||||
if (!file_stream.is_open())
|
||||
{
|
||||
throw std::runtime_error("Unable to open file for writing: " + path);
|
||||
}
|
||||
|
||||
file_stream << content;
|
||||
|
||||
if (!file_stream)
|
||||
{
|
||||
throw std::runtime_error("Error occurred while writing to file: " + path);
|
||||
}
|
||||
file_stream.close();
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// Load the files
|
||||
auto dataset = json::parse(read_file(path_data));
|
||||
auto config = json::parse(read_file(path_cfg));
|
||||
|
||||
// Load the configuration
|
||||
const std::map<std::string, bool> whole_body = config["whole_body"];
|
||||
const float min_bbox_score = config["min_bbox_score"];
|
||||
const float min_bbox_area = config["min_bbox_area"];
|
||||
const bool batch_poses = config["batch_poses"];
|
||||
const std::vector<std::string> joint_names_2d = utils_pipeline::get_joint_names(whole_body);
|
||||
const float min_match_score = config["min_match_score"];
|
||||
const size_t min_group_size = config["min_group_size"];
|
||||
const int take_interval = config["take_interval"];
|
||||
|
||||
// Load 2D model
|
||||
bool use_wb = utils_pipeline::use_whole_body(whole_body);
|
||||
std::unique_ptr<utils_2d_pose::PosePredictor> kpt_model =
|
||||
std::make_unique<utils_2d_pose::PosePredictor>(
|
||||
use_wb, min_bbox_score, min_bbox_area, batch_poses);
|
||||
|
||||
// Load 3D model
|
||||
std::unique_ptr<Triangulator> tri_model = std::make_unique<Triangulator>(
|
||||
min_match_score, min_group_size);
|
||||
|
||||
// Timers
|
||||
size_t time_count = dataset.size();
|
||||
double time_image = 0.0;
|
||||
double time_pose2d = 0.0;
|
||||
double time_pose3d = 0.0;
|
||||
size_t print_steps = (size_t)std::floor((float)time_count / 100.0f);
|
||||
print_steps = std::max((size_t)1, print_steps);
|
||||
|
||||
std::cout << "Running predictions: |";
|
||||
size_t bar_width = (size_t)std::ceil((float)time_count / (float)print_steps) - 2;
|
||||
for (size_t i = 0; i < bar_width; i++)
|
||||
{
|
||||
std::cout << "-";
|
||||
}
|
||||
std::cout << "|" << std::endl;
|
||||
|
||||
// Calculate 2D poses [items, views, persons, joints, 3]
|
||||
std::vector<std::vector<std::vector<std::vector<std::array<float, 3>>>>> all_poses_2d;
|
||||
std::cout << "Calculating 2D poses: ";
|
||||
for (size_t i = 0; i < dataset.size(); i++)
|
||||
{
|
||||
if (i % print_steps == 0)
|
||||
{
|
||||
std::cout << "#" << std::flush;
|
||||
}
|
||||
std::chrono::duration<float> elapsed;
|
||||
auto &item = dataset[i];
|
||||
|
||||
// Load images
|
||||
auto stime = std::chrono::high_resolution_clock::now();
|
||||
std::vector<cv::Mat> images = load_images(item);
|
||||
elapsed = std::chrono::high_resolution_clock::now() - stime;
|
||||
time_image += elapsed.count();
|
||||
|
||||
// Predict 2D poses
|
||||
stime = std::chrono::high_resolution_clock::now();
|
||||
for (size_t i = 0; i < images.size(); i++)
|
||||
{
|
||||
cv::Mat &img = images[i];
|
||||
cv::Mat rgb = utils_pipeline::bayer2rgb(img);
|
||||
images[i] = std::move(rgb);
|
||||
}
|
||||
auto poses_2d_all = kpt_model->predict(images);
|
||||
auto poses_2d_upd = utils_pipeline::update_keypoints(
|
||||
poses_2d_all, joint_names_2d, whole_body);
|
||||
elapsed = std::chrono::high_resolution_clock::now() - stime;
|
||||
time_pose2d += elapsed.count();
|
||||
|
||||
all_poses_2d.push_back(std::move(poses_2d_upd));
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
// Calculate 3D poses [items, persons, joints, 4]
|
||||
std::vector<std::vector<std::vector<std::array<float, 4>>>> all_poses_3d;
|
||||
std::vector<std::string> all_ids;
|
||||
std::string old_scene = "";
|
||||
int old_id = -1;
|
||||
std::cout << "Calculating 3D poses: ";
|
||||
for (size_t i = 0; i < dataset.size(); i++)
|
||||
{
|
||||
if (i % print_steps == 0)
|
||||
{
|
||||
std::cout << "#" << std::flush;
|
||||
}
|
||||
std::chrono::duration<float> elapsed;
|
||||
auto &item = dataset[i];
|
||||
auto &poses_2d = all_poses_2d[i];
|
||||
|
||||
if (old_scene != item["scene"] || old_id + take_interval < item["index"])
|
||||
{
|
||||
// Reset last poses if scene changes
|
||||
tri_model->reset();
|
||||
old_scene = item["scene"];
|
||||
}
|
||||
|
||||
auto stime = std::chrono::high_resolution_clock::now();
|
||||
std::vector<Camera> cameras;
|
||||
for (size_t j = 0; j < item["cameras"].size(); j++)
|
||||
{
|
||||
auto &cam = item["cameras"][j];
|
||||
Camera camera;
|
||||
camera.name = cam["name"].get<std::string>();
|
||||
camera.K = cam["K"].get<std::array<std::array<float, 3>, 3>>();
|
||||
camera.DC = cam["DC"].get<std::vector<float>>();
|
||||
camera.R = cam["R"].get<std::array<std::array<float, 3>, 3>>();
|
||||
camera.T = cam["T"].get<std::array<std::array<float, 1>, 3>>();
|
||||
camera.width = cam["width"].get<int>();
|
||||
camera.height = cam["height"].get<int>();
|
||||
camera.type = cam["type"].get<std::string>();
|
||||
cameras.push_back(camera);
|
||||
}
|
||||
std::array<std::array<float, 3>, 2> roomparams = {
|
||||
item["room_size"].get<std::array<float, 3>>(),
|
||||
item["room_center"].get<std::array<float, 3>>()};
|
||||
|
||||
auto poses_3d = tri_model->triangulate_poses(poses_2d, cameras, roomparams, joint_names_2d);
|
||||
elapsed = std::chrono::high_resolution_clock::now() - stime;
|
||||
time_pose3d += elapsed.count();
|
||||
|
||||
all_poses_3d.push_back(std::move(poses_3d));
|
||||
all_ids.push_back(item["id"].get<std::string>());
|
||||
old_id = item["index"];
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
// Print timing stats
|
||||
std::cout << "\nMetrics:" << std::endl;
|
||||
size_t warmup = 10;
|
||||
double avg_time_image = time_image / (time_count - warmup);
|
||||
double avg_time_pose2d = time_pose2d / (time_count - warmup);
|
||||
double avg_time_pose3d = time_pose3d / (time_count - warmup);
|
||||
double fps = 1.0 / (avg_time_pose2d + avg_time_pose3d);
|
||||
std::cout << "{\n"
|
||||
<< " \"img_loading\": " << avg_time_image << ",\n"
|
||||
<< " \"avg_time_2d\": " << avg_time_pose2d << ",\n"
|
||||
<< " \"avg_time_3d\": " << avg_time_pose3d << ",\n"
|
||||
<< " \"fps\": " << fps << "\n"
|
||||
<< "}" << std::endl;
|
||||
tri_model->print_stats();
|
||||
|
||||
// Store the results as json
|
||||
json all_results;
|
||||
all_results["all_ids"] = all_ids;
|
||||
all_results["all_poses_2d"] = all_poses_2d;
|
||||
all_results["all_poses_3d"] = all_poses_3d;
|
||||
all_results["joint_names_2d"] = joint_names_2d;
|
||||
all_results["joint_names_3d"] = joint_names_2d;
|
||||
|
||||
// Save the results
|
||||
std::string path_results = "/tmp/rpt/results.json";
|
||||
write_file(path_results, all_results.dump(0));
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -1,22 +1,18 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
import tqdm
|
||||
|
||||
import test_triangulate
|
||||
import utils_2d_pose
|
||||
import utils_pipeline
|
||||
from skelda import evals
|
||||
|
||||
sys.path.append("/RapidPoseTriangulation/swig/")
|
||||
import rpt
|
||||
from skelda.writers import json_writer
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
whole_body = {
|
||||
"foots": False,
|
||||
"face": False,
|
||||
"hands": False,
|
||||
}
|
||||
|
||||
dataset_use = "human36m"
|
||||
# dataset_use = "panoptic"
|
||||
# dataset_use = "mvor"
|
||||
@ -33,8 +29,6 @@ dataset_use = "human36m"
|
||||
# dataset_use = "egohumans_volleyball"
|
||||
# dataset_use = "egohumans_badminton"
|
||||
# dataset_use = "egohumans_tennis"
|
||||
# dataset_use = "ntu"
|
||||
# dataset_use = "koarob"
|
||||
|
||||
|
||||
# Describes the minimum area as fraction of the image size for a 2D bounding box to be considered
|
||||
@ -89,13 +83,13 @@ datasets = {
|
||||
"campus": {
|
||||
"path": "/datasets/campus/skelda/test.json",
|
||||
"take_interval": 1,
|
||||
"min_match_score": 0.90,
|
||||
"min_match_score": 0.92,
|
||||
"min_bbox_score": 0.5,
|
||||
},
|
||||
"shelf": {
|
||||
"path": "/datasets/shelf/skelda/test.json",
|
||||
"take_interval": 1,
|
||||
"min_match_score": 0.96,
|
||||
"min_match_score": 0.95,
|
||||
"min_group_size": 2,
|
||||
},
|
||||
"ikeaasm": {
|
||||
@ -175,7 +169,7 @@ datasets = {
|
||||
},
|
||||
}
|
||||
|
||||
joint_names_2d = test_triangulate.joint_names_2d
|
||||
joint_names_2d = utils_pipeline.get_joint_names(whole_body)
|
||||
joint_names_3d = list(joint_names_2d)
|
||||
eval_joints = [
|
||||
"head",
|
||||
@ -197,7 +191,7 @@ if dataset_use == "human36m":
|
||||
if dataset_use == "panoptic":
|
||||
eval_joints[eval_joints.index("head")] = "nose"
|
||||
if dataset_use == "human36m_wb":
|
||||
if any((test_triangulate.whole_body.values())):
|
||||
if utils_pipeline.use_whole_body(whole_body):
|
||||
eval_joints = list(joint_names_2d)
|
||||
else:
|
||||
eval_joints[eval_joints.index("head")] = "nose"
|
||||
@ -214,6 +208,11 @@ def load_json(path: str):
|
||||
return data
|
||||
|
||||
|
||||
def save_json(data: dict, path: str):
|
||||
with open(path, "w+", encoding="utf-8") as file:
|
||||
json.dump(data, file, indent=0)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
@ -304,6 +303,14 @@ def load_labels(dataset: dict):
|
||||
if take_interval > 1:
|
||||
labels = [l for i, l in enumerate(labels) if i % take_interval == 0]
|
||||
|
||||
# Add default values
|
||||
for label in labels:
|
||||
if "scene" not in label:
|
||||
label["scene"] = "default"
|
||||
for cam in label["cameras"]:
|
||||
if not "type" in cam:
|
||||
cam["type"] = "pinhole"
|
||||
|
||||
return labels
|
||||
|
||||
|
||||
@ -313,28 +320,6 @@ def load_labels(dataset: dict):
|
||||
def main():
|
||||
global joint_names_3d, eval_joints
|
||||
|
||||
# Load dataset specific parameters
|
||||
min_match_score = datasets[dataset_use].get(
|
||||
"min_match_score", default_min_match_score
|
||||
)
|
||||
min_group_size = datasets[dataset_use].get("min_group_size", default_min_group_size)
|
||||
min_bbox_score = datasets[dataset_use].get("min_bbox_score", default_min_bbox_score)
|
||||
min_bbox_area = datasets[dataset_use].get("min_bbox_area", default_min_bbox_area)
|
||||
batch_poses = datasets[dataset_use].get("batch_poses", default_batch_poses)
|
||||
|
||||
# Load 2D pose model
|
||||
whole_body = test_triangulate.whole_body
|
||||
if any((whole_body[k] for k in whole_body)):
|
||||
kpt_model = utils_2d_pose.load_wb_model()
|
||||
else:
|
||||
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
|
||||
|
||||
# Manually set matplotlib backend
|
||||
try:
|
||||
matplotlib.use("TkAgg")
|
||||
except ImportError:
|
||||
print("WARNING: Using headless mode, no visualizations will be shown.")
|
||||
|
||||
print("Loading dataset ...")
|
||||
labels = load_labels(
|
||||
{
|
||||
@ -346,120 +331,47 @@ def main():
|
||||
# Print a dataset sample for debugging
|
||||
print(labels[0])
|
||||
|
||||
print("\nPrefetching images ...")
|
||||
for label in tqdm.tqdm(labels):
|
||||
# If the images are stored on a HDD, it sometimes takes a while to load them
|
||||
# Prefetching them results in more stable timings of the following steps
|
||||
# To prevent memory overflow, the code only loads the images, but does not store them
|
||||
try:
|
||||
for i in range(len(label["imgpaths"])):
|
||||
imgpath = label["imgpaths"][i]
|
||||
img = test_triangulate.load_image(imgpath)
|
||||
except cv2.error:
|
||||
print("One of the paths not found:", label["imgpaths"])
|
||||
continue
|
||||
time.sleep(3)
|
||||
# Save dataset
|
||||
tmp_export_dir = "/tmp/rpt/"
|
||||
for label in labels:
|
||||
if "splits" in label:
|
||||
label.pop("splits")
|
||||
json_writer.save_dataset(labels, tmp_export_dir)
|
||||
|
||||
print("\nCalculating 2D predictions ...")
|
||||
all_poses_2d = []
|
||||
times = []
|
||||
for label in tqdm.tqdm(labels):
|
||||
images_2d = []
|
||||
|
||||
start = time.time()
|
||||
try:
|
||||
for i in range(len(label["imgpaths"])):
|
||||
imgpath = label["imgpaths"][i]
|
||||
img = test_triangulate.load_image(imgpath)
|
||||
images_2d.append(img)
|
||||
except cv2.error:
|
||||
print("One of the paths not found:", label["imgpaths"])
|
||||
continue
|
||||
|
||||
if dataset_use == "human36m":
|
||||
for i in range(len(images_2d)):
|
||||
# Since the images don't have the same shape, rescale some of them
|
||||
img = images_2d[i]
|
||||
ishape = img.shape
|
||||
if ishape != (1000, 1000, 3):
|
||||
cam = label["cameras"][i]
|
||||
cam["K"][1][1] = cam["K"][1][1] * (1000 / ishape[0])
|
||||
cam["K"][1][2] = cam["K"][1][2] * (1000 / ishape[0])
|
||||
cam["K"][0][0] = cam["K"][0][0] * (1000 / ishape[1])
|
||||
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
|
||||
images_2d[i] = cv2.resize(img, (1000, 1000))
|
||||
|
||||
# Convert image format to Bayer encoding to simulate real camera input
|
||||
# This also resulted in notably better MPJPE results in most cases, presumbly since the
|
||||
# demosaicing algorithm from OpenCV is better than the default one from the cameras
|
||||
for i in range(len(images_2d)):
|
||||
images_2d[i] = test_triangulate.rgb2bayer(images_2d[i])
|
||||
time_imgs = time.time() - start
|
||||
|
||||
start = time.time()
|
||||
for i in range(len(images_2d)):
|
||||
images_2d[i] = test_triangulate.bayer2rgb(images_2d[i])
|
||||
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
||||
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
|
||||
time_2d = time.time() - start
|
||||
|
||||
all_poses_2d.append(poses_2d)
|
||||
times.append([time_imgs, time_2d, 0])
|
||||
|
||||
print("\nCalculating 3D predictions ...")
|
||||
all_poses_3d = []
|
||||
all_ids = []
|
||||
triangulator = rpt.Triangulator(
|
||||
min_match_score=min_match_score, min_group_size=min_group_size
|
||||
# Load dataset specific parameters
|
||||
min_match_score = datasets[dataset_use].get(
|
||||
"min_match_score", default_min_match_score
|
||||
)
|
||||
old_scene = ""
|
||||
old_index = -1
|
||||
for i in tqdm.tqdm(range(len(labels))):
|
||||
label = labels[i]
|
||||
poses_2d = all_poses_2d[i]
|
||||
min_group_size = datasets[dataset_use].get("min_group_size", default_min_group_size)
|
||||
min_bbox_score = datasets[dataset_use].get("min_bbox_score", default_min_bbox_score)
|
||||
min_bbox_area = datasets[dataset_use].get("min_bbox_area", default_min_bbox_area)
|
||||
batch_poses = datasets[dataset_use].get("batch_poses", default_batch_poses)
|
||||
|
||||
if old_scene != label.get("scene", "") or (
|
||||
old_index + datasets[dataset_use]["take_interval"] < label["index"]
|
||||
):
|
||||
# Reset last poses if scene changes
|
||||
old_scene = label.get("scene", "")
|
||||
triangulator.reset()
|
||||
|
||||
start = time.time()
|
||||
if sum(np.sum(p) for p in poses_2d) == 0:
|
||||
poses3D = np.zeros([1, len(joint_names_3d), 4]).tolist()
|
||||
else:
|
||||
rpt_cameras = rpt.convert_cameras(label["cameras"])
|
||||
roomparams = [label["room_size"], label["room_center"]]
|
||||
poses3D = triangulator.triangulate_poses(
|
||||
poses_2d, rpt_cameras, roomparams, joint_names_2d
|
||||
)
|
||||
time_3d = time.time() - start
|
||||
|
||||
old_index = label["index"]
|
||||
all_poses_3d.append(np.array(poses3D).tolist())
|
||||
all_ids.append(label["id"])
|
||||
times[i][2] = time_3d
|
||||
|
||||
# Print per-step triangulation timings
|
||||
print("")
|
||||
triangulator.print_stats()
|
||||
|
||||
warmup_iters = 10
|
||||
if len(times) > warmup_iters:
|
||||
times = times[warmup_iters:]
|
||||
avg_time_im = np.mean([t[0] for t in times])
|
||||
avg_time_2d = np.mean([t[1] for t in times])
|
||||
avg_time_3d = np.mean([t[2] for t in times])
|
||||
tstats = {
|
||||
"img_loading": avg_time_im,
|
||||
"avg_time_2d": avg_time_2d,
|
||||
"avg_time_3d": avg_time_3d,
|
||||
"avg_fps": 1.0 / (avg_time_2d + avg_time_3d),
|
||||
# Save config
|
||||
config_path = tmp_export_dir + "config.json"
|
||||
config = {
|
||||
"min_match_score": min_match_score,
|
||||
"min_group_size": min_group_size,
|
||||
"min_bbox_score": min_bbox_score,
|
||||
"min_bbox_area": min_bbox_area,
|
||||
"batch_poses": batch_poses,
|
||||
"whole_body": whole_body,
|
||||
"take_interval": datasets[dataset_use]["take_interval"],
|
||||
}
|
||||
print("\nMetrics:")
|
||||
print(json.dumps(tstats, indent=2))
|
||||
save_json(config, config_path)
|
||||
|
||||
# Call the CPP binary
|
||||
os.system("/RapidPoseTriangulation/scripts/test_skelda_dataset.bin")
|
||||
|
||||
# Load the results
|
||||
print("Loading exports ...")
|
||||
res_path = tmp_export_dir + "results.json"
|
||||
results = load_json(res_path)
|
||||
all_poses_3d = results["all_poses_3d"]
|
||||
all_ids = results["all_ids"]
|
||||
joint_names_3d = results["joint_names_3d"]
|
||||
|
||||
# Run evaluation
|
||||
_ = evals.mpjpe.run_eval(
|
||||
labels,
|
||||
all_poses_3d,
|
||||
@ -477,7 +389,6 @@ def main():
|
||||
replace_head_with_nose=True,
|
||||
)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@ -3,13 +3,12 @@ import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
|
||||
import utils_2d_pose
|
||||
import utils_pipeline
|
||||
from skelda import utils_pose, utils_view
|
||||
|
||||
sys.path.append("/RapidPoseTriangulation/swig/")
|
||||
@ -25,175 +24,9 @@ whole_body = {
|
||||
"hands": False,
|
||||
}
|
||||
|
||||
joint_names_2d = [
|
||||
"nose",
|
||||
"eye_left",
|
||||
"eye_right",
|
||||
"ear_left",
|
||||
"ear_right",
|
||||
"shoulder_left",
|
||||
"shoulder_right",
|
||||
"elbow_left",
|
||||
"elbow_right",
|
||||
"wrist_left",
|
||||
"wrist_right",
|
||||
"hip_left",
|
||||
"hip_right",
|
||||
"knee_left",
|
||||
"knee_right",
|
||||
"ankle_left",
|
||||
"ankle_right",
|
||||
]
|
||||
if whole_body["foots"]:
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"foot_toe_big_left",
|
||||
"foot_toe_small_left",
|
||||
"foot_heel_left",
|
||||
"foot_toe_big_right",
|
||||
"foot_toe_small_right",
|
||||
"foot_heel_right",
|
||||
]
|
||||
)
|
||||
if whole_body["face"]:
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"face_jaw_right_1",
|
||||
"face_jaw_right_2",
|
||||
"face_jaw_right_3",
|
||||
"face_jaw_right_4",
|
||||
"face_jaw_right_5",
|
||||
"face_jaw_right_6",
|
||||
"face_jaw_right_7",
|
||||
"face_jaw_right_8",
|
||||
"face_jaw_middle",
|
||||
"face_jaw_left_1",
|
||||
"face_jaw_left_2",
|
||||
"face_jaw_left_3",
|
||||
"face_jaw_left_4",
|
||||
"face_jaw_left_5",
|
||||
"face_jaw_left_6",
|
||||
"face_jaw_left_7",
|
||||
"face_jaw_left_8",
|
||||
"face_eyebrow_right_1",
|
||||
"face_eyebrow_right_2",
|
||||
"face_eyebrow_right_3",
|
||||
"face_eyebrow_right_4",
|
||||
"face_eyebrow_right_5",
|
||||
"face_eyebrow_left_1",
|
||||
"face_eyebrow_left_2",
|
||||
"face_eyebrow_left_3",
|
||||
"face_eyebrow_left_4",
|
||||
"face_eyebrow_left_5",
|
||||
"face_nose_1",
|
||||
"face_nose_2",
|
||||
"face_nose_3",
|
||||
"face_nose_4",
|
||||
"face_nose_5",
|
||||
"face_nose_6",
|
||||
"face_nose_7",
|
||||
"face_nose_8",
|
||||
"face_nose_9",
|
||||
"face_eye_right_1",
|
||||
"face_eye_right_2",
|
||||
"face_eye_right_3",
|
||||
"face_eye_right_4",
|
||||
"face_eye_right_5",
|
||||
"face_eye_right_6",
|
||||
"face_eye_left_1",
|
||||
"face_eye_left_2",
|
||||
"face_eye_left_3",
|
||||
"face_eye_left_4",
|
||||
"face_eye_left_5",
|
||||
"face_eye_left_6",
|
||||
"face_mouth_1",
|
||||
"face_mouth_2",
|
||||
"face_mouth_3",
|
||||
"face_mouth_4",
|
||||
"face_mouth_5",
|
||||
"face_mouth_6",
|
||||
"face_mouth_7",
|
||||
"face_mouth_8",
|
||||
"face_mouth_9",
|
||||
"face_mouth_10",
|
||||
"face_mouth_11",
|
||||
"face_mouth_12",
|
||||
"face_mouth_13",
|
||||
"face_mouth_14",
|
||||
"face_mouth_15",
|
||||
"face_mouth_16",
|
||||
"face_mouth_17",
|
||||
"face_mouth_18",
|
||||
"face_mouth_19",
|
||||
"face_mouth_20",
|
||||
]
|
||||
)
|
||||
if whole_body["hands"]:
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"hand_wrist_left",
|
||||
"hand_finger_thumb_left_1",
|
||||
"hand_finger_thumb_left_2",
|
||||
"hand_finger_thumb_left_3",
|
||||
"hand_finger_thumb_left_4",
|
||||
"hand_finger_index_left_1",
|
||||
"hand_finger_index_left_2",
|
||||
"hand_finger_index_left_3",
|
||||
"hand_finger_index_left_4",
|
||||
"hand_finger_middle_left_1",
|
||||
"hand_finger_middle_left_2",
|
||||
"hand_finger_middle_left_3",
|
||||
"hand_finger_middle_left_4",
|
||||
"hand_finger_ring_left_1",
|
||||
"hand_finger_ring_left_2",
|
||||
"hand_finger_ring_left_3",
|
||||
"hand_finger_ring_left_4",
|
||||
"hand_finger_pinky_left_1",
|
||||
"hand_finger_pinky_left_2",
|
||||
"hand_finger_pinky_left_3",
|
||||
"hand_finger_pinky_left_4",
|
||||
"hand_wrist_right",
|
||||
"hand_finger_thumb_right_1",
|
||||
"hand_finger_thumb_right_2",
|
||||
"hand_finger_thumb_right_3",
|
||||
"hand_finger_thumb_right_4",
|
||||
"hand_finger_index_right_1",
|
||||
"hand_finger_index_right_2",
|
||||
"hand_finger_index_right_3",
|
||||
"hand_finger_index_right_4",
|
||||
"hand_finger_middle_right_1",
|
||||
"hand_finger_middle_right_2",
|
||||
"hand_finger_middle_right_3",
|
||||
"hand_finger_middle_right_4",
|
||||
"hand_finger_ring_right_1",
|
||||
"hand_finger_ring_right_2",
|
||||
"hand_finger_ring_right_3",
|
||||
"hand_finger_ring_right_4",
|
||||
"hand_finger_pinky_right_1",
|
||||
"hand_finger_pinky_right_2",
|
||||
"hand_finger_pinky_right_3",
|
||||
"hand_finger_pinky_right_4",
|
||||
]
|
||||
)
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"hip_middle",
|
||||
"shoulder_middle",
|
||||
"head",
|
||||
]
|
||||
)
|
||||
joint_names_2d = utils_pipeline.get_joint_names(whole_body)
|
||||
joint_names_3d = list(joint_names_2d)
|
||||
|
||||
main_limbs = [
|
||||
("shoulder_left", "elbow_left"),
|
||||
("elbow_left", "wrist_left"),
|
||||
("shoulder_right", "elbow_right"),
|
||||
("elbow_right", "wrist_right"),
|
||||
("hip_left", "knee_left"),
|
||||
("knee_left", "ankle_left"),
|
||||
("hip_right", "knee_right"),
|
||||
("knee_right", "ankle_right"),
|
||||
]
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
@ -217,85 +50,6 @@ def update_sample(sample, new_dir=""):
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def load_image(path: str):
|
||||
image = cv2.imread(path, 3)
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
image = np.asarray(image, dtype=np.uint8)
|
||||
return image
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def rgb2bayer(img):
|
||||
bayer = np.zeros((img.shape[0], img.shape[1]), dtype=img.dtype)
|
||||
bayer[0::2, 0::2] = img[0::2, 0::2, 0]
|
||||
bayer[0::2, 1::2] = img[0::2, 1::2, 1]
|
||||
bayer[1::2, 0::2] = img[1::2, 0::2, 1]
|
||||
bayer[1::2, 1::2] = img[1::2, 1::2, 2]
|
||||
return bayer
|
||||
|
||||
|
||||
def bayer2rgb(bayer):
|
||||
img = cv2.cvtColor(bayer, cv2.COLOR_BayerBG2RGB)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def update_keypoints(poses_2d: list, joint_names: List[str]) -> list:
|
||||
new_views = []
|
||||
for view in poses_2d:
|
||||
new_bodies = []
|
||||
for body in view:
|
||||
body = body.tolist()
|
||||
|
||||
new_body = body[:17]
|
||||
if whole_body["foots"]:
|
||||
new_body.extend(body[17:22])
|
||||
if whole_body["face"]:
|
||||
new_body.extend(body[22:90])
|
||||
if whole_body["hands"]:
|
||||
new_body.extend(body[90:])
|
||||
body = new_body
|
||||
|
||||
hlid = joint_names.index("hip_left")
|
||||
hrid = joint_names.index("hip_right")
|
||||
mid_hip = [
|
||||
float(((body[hlid][0] + body[hrid][0]) / 2.0)),
|
||||
float(((body[hlid][1] + body[hrid][1]) / 2.0)),
|
||||
min(body[hlid][2], body[hrid][2]),
|
||||
]
|
||||
body.append(mid_hip)
|
||||
|
||||
slid = joint_names.index("shoulder_left")
|
||||
srid = joint_names.index("shoulder_right")
|
||||
mid_shoulder = [
|
||||
float(((body[slid][0] + body[srid][0]) / 2.0)),
|
||||
float(((body[slid][1] + body[srid][1]) / 2.0)),
|
||||
min(body[slid][2], body[srid][2]),
|
||||
]
|
||||
body.append(mid_shoulder)
|
||||
|
||||
elid = joint_names.index("ear_left")
|
||||
erid = joint_names.index("ear_right")
|
||||
head = [
|
||||
float(((body[elid][0] + body[erid][0]) / 2.0)),
|
||||
float(((body[elid][1] + body[erid][1]) / 2.0)),
|
||||
min(body[elid][2], body[erid][2]),
|
||||
]
|
||||
body.append(head)
|
||||
|
||||
new_bodies.append(body)
|
||||
new_views.append(new_bodies)
|
||||
|
||||
return new_views
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
if any((whole_body[k] for k in whole_body)):
|
||||
kpt_model = utils_2d_pose.load_wb_model()
|
||||
@ -330,15 +84,15 @@ def main():
|
||||
images_2d = []
|
||||
for i in range(len(sample["cameras_color"])):
|
||||
imgpath = sample["imgpaths_color"][i]
|
||||
img = load_image(imgpath)
|
||||
img = rgb2bayer(img)
|
||||
img = bayer2rgb(img)
|
||||
img = utils_pipeline.load_image(imgpath)
|
||||
img = utils_pipeline.rgb2bayer(img)
|
||||
img = utils_pipeline.bayer2rgb(img)
|
||||
images_2d.append(img)
|
||||
|
||||
# Get 2D poses
|
||||
stime = time.time()
|
||||
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
||||
poses_2d = update_keypoints(poses_2d, joint_names_2d)
|
||||
poses_2d = utils_pipeline.update_keypoints(poses_2d, joint_names_2d, whole_body)
|
||||
print("2D time:", time.time() - stime)
|
||||
# print([np.array(p).round(6).tolist() for p in poses_2d])
|
||||
|
||||
|
||||
1034
scripts/utils_2d_pose.hpp
Normal file
1034
scripts/utils_2d_pose.hpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -20,6 +20,7 @@ class BaseModel(ABC):
|
||||
raise FileNotFoundError("File not found:", model_path)
|
||||
|
||||
if model_path.endswith(".onnx"):
|
||||
print("Loading model:", model_path)
|
||||
self.init_onnxruntime(model_path)
|
||||
self.runtime = "ort"
|
||||
else:
|
||||
@ -189,9 +190,15 @@ class BoxCrop:
|
||||
self.fill_value = fill_value
|
||||
|
||||
def calc_params(self, ishape, bbox):
|
||||
start_x, start_y, end_x, end_y = bbox[0], bbox[1], bbox[2], bbox[3]
|
||||
img_h, img_w = ishape[:2]
|
||||
target_h, target_w = self.target_size
|
||||
|
||||
# Round the bounding box coordinates
|
||||
start_x = math.floor(bbox[0])
|
||||
start_y = math.floor(bbox[1])
|
||||
end_x = math.ceil(bbox[2])
|
||||
end_y = math.ceil(bbox[3])
|
||||
|
||||
# Calculate original bounding box center
|
||||
center_x = (start_x + end_x) / 2.0
|
||||
center_y = (start_y + end_y) / 2.0
|
||||
@ -231,8 +238,8 @@ class BoxCrop:
|
||||
# Define the new box coordinates
|
||||
new_start_x = max(0, start_x)
|
||||
new_start_y = max(0, start_y)
|
||||
new_end_x = min(ishape[1] - 1, end_x)
|
||||
new_end_y = min(ishape[0] - 1, end_y)
|
||||
new_end_x = min(img_w - 1, end_x)
|
||||
new_end_y = min(img_h - 1, end_y)
|
||||
new_box = [new_start_x, new_start_y, new_end_x, new_end_y]
|
||||
|
||||
# Calculate resized crop size
|
||||
@ -332,9 +339,8 @@ class RTMDet(BaseModel):
|
||||
|
||||
def postprocess(self, result: List[np.ndarray], image: np.ndarray):
|
||||
boxes = np.squeeze(result[0], axis=0)
|
||||
classes = np.squeeze(result[1], axis=0)
|
||||
|
||||
human_class = classes[:] == 0
|
||||
human_class = boxes[:, 5] == 0
|
||||
boxes = boxes[human_class]
|
||||
|
||||
keep = boxes[:, 4] > self.conf_threshold
|
||||
@ -344,7 +350,6 @@ class RTMDet(BaseModel):
|
||||
return np.array([])
|
||||
|
||||
# Drop boxes with too small area
|
||||
boxes = boxes.astype(np.float32)
|
||||
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
||||
keep = areas >= self.min_area
|
||||
boxes = boxes[keep]
|
||||
@ -386,10 +391,7 @@ class RTMPose(BaseModel):
|
||||
def preprocess(self, image: np.ndarray, bboxes: np.ndarray):
|
||||
cutouts = []
|
||||
for i in range(len(bboxes)):
|
||||
bbox = np.asarray(bboxes[i])[0:4]
|
||||
bbox += np.array([-0.5, -0.5, 0.5 - 1e-8, 0.5 - 1e-8])
|
||||
bbox = bbox.round().astype(np.int32)
|
||||
region = self.boxcrop.crop_resize_box(image, bbox)
|
||||
region = self.boxcrop.crop_resize_box(image, bboxes[i])
|
||||
tensor = np.asarray(region).astype(self.input_types[0], copy=False)
|
||||
cutouts.append(tensor)
|
||||
|
||||
@ -406,10 +408,7 @@ class RTMPose(BaseModel):
|
||||
):
|
||||
kpts = []
|
||||
for i in range(len(bboxes)):
|
||||
scores = np.clip(result[1][i], 0, 1)
|
||||
kp = np.concatenate(
|
||||
[result[0][i], np.expand_dims(scores, axis=-1)], axis=-1
|
||||
)
|
||||
kp = result[0][i]
|
||||
|
||||
paddings, scale, bbox, _ = self.boxcrop.calc_params(image.shape, bboxes[i])
|
||||
kp[:, 0] -= paddings[0]
|
||||
|
||||
316
scripts/utils_pipeline.hpp
Normal file
316
scripts/utils_pipeline.hpp
Normal file
@ -0,0 +1,316 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
namespace utils_pipeline
|
||||
{
|
||||
bool use_whole_body(const std::map<std::string, bool> &whole_body)
|
||||
{
|
||||
for (const auto &pair : whole_body)
|
||||
{
|
||||
if (pair.second)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// =============================================================================================
|
||||
|
||||
std::vector<std::string> get_joint_names(const std::map<std::string, bool> &whole_body)
|
||||
{
|
||||
std::vector<std::string> joint_names_2d = {
|
||||
"nose",
|
||||
"eye_left",
|
||||
"eye_right",
|
||||
"ear_left",
|
||||
"ear_right",
|
||||
"shoulder_left",
|
||||
"shoulder_right",
|
||||
"elbow_left",
|
||||
"elbow_right",
|
||||
"wrist_left",
|
||||
"wrist_right",
|
||||
"hip_left",
|
||||
"hip_right",
|
||||
"knee_left",
|
||||
"knee_right",
|
||||
"ankle_left",
|
||||
"ankle_right",
|
||||
};
|
||||
|
||||
if (whole_body.at("foots"))
|
||||
{
|
||||
joint_names_2d.insert(
|
||||
joint_names_2d.end(),
|
||||
{
|
||||
"foot_toe_big_left",
|
||||
"foot_toe_small_left",
|
||||
"foot_heel_left",
|
||||
"foot_toe_big_right",
|
||||
"foot_toe_small_right",
|
||||
"foot_heel_right",
|
||||
});
|
||||
}
|
||||
if (whole_body.at("face"))
|
||||
{
|
||||
joint_names_2d.insert(
|
||||
joint_names_2d.end(),
|
||||
{
|
||||
"face_jaw_right_1",
|
||||
"face_jaw_right_2",
|
||||
"face_jaw_right_3",
|
||||
"face_jaw_right_4",
|
||||
"face_jaw_right_5",
|
||||
"face_jaw_right_6",
|
||||
"face_jaw_right_7",
|
||||
"face_jaw_right_8",
|
||||
"face_jaw_middle",
|
||||
"face_jaw_left_1",
|
||||
"face_jaw_left_2",
|
||||
"face_jaw_left_3",
|
||||
"face_jaw_left_4",
|
||||
"face_jaw_left_5",
|
||||
"face_jaw_left_6",
|
||||
"face_jaw_left_7",
|
||||
"face_jaw_left_8",
|
||||
"face_eyebrow_right_1",
|
||||
"face_eyebrow_right_2",
|
||||
"face_eyebrow_right_3",
|
||||
"face_eyebrow_right_4",
|
||||
"face_eyebrow_right_5",
|
||||
"face_eyebrow_left_1",
|
||||
"face_eyebrow_left_2",
|
||||
"face_eyebrow_left_3",
|
||||
"face_eyebrow_left_4",
|
||||
"face_eyebrow_left_5",
|
||||
"face_nose_1",
|
||||
"face_nose_2",
|
||||
"face_nose_3",
|
||||
"face_nose_4",
|
||||
"face_nose_5",
|
||||
"face_nose_6",
|
||||
"face_nose_7",
|
||||
"face_nose_8",
|
||||
"face_nose_9",
|
||||
"face_eye_right_1",
|
||||
"face_eye_right_2",
|
||||
"face_eye_right_3",
|
||||
"face_eye_right_4",
|
||||
"face_eye_right_5",
|
||||
"face_eye_right_6",
|
||||
"face_eye_left_1",
|
||||
"face_eye_left_2",
|
||||
"face_eye_left_3",
|
||||
"face_eye_left_4",
|
||||
"face_eye_left_5",
|
||||
"face_eye_left_6",
|
||||
"face_mouth_1",
|
||||
"face_mouth_2",
|
||||
"face_mouth_3",
|
||||
"face_mouth_4",
|
||||
"face_mouth_5",
|
||||
"face_mouth_6",
|
||||
"face_mouth_7",
|
||||
"face_mouth_8",
|
||||
"face_mouth_9",
|
||||
"face_mouth_10",
|
||||
"face_mouth_11",
|
||||
"face_mouth_12",
|
||||
"face_mouth_13",
|
||||
"face_mouth_14",
|
||||
"face_mouth_15",
|
||||
"face_mouth_16",
|
||||
"face_mouth_17",
|
||||
"face_mouth_18",
|
||||
"face_mouth_19",
|
||||
"face_mouth_20",
|
||||
});
|
||||
}
|
||||
if (whole_body.at("hands"))
|
||||
{
|
||||
joint_names_2d.insert(
|
||||
joint_names_2d.end(),
|
||||
{
|
||||
"hand_wrist_left",
|
||||
"hand_finger_thumb_left_1",
|
||||
"hand_finger_thumb_left_2",
|
||||
"hand_finger_thumb_left_3",
|
||||
"hand_finger_thumb_left_4",
|
||||
"hand_finger_index_left_1",
|
||||
"hand_finger_index_left_2",
|
||||
"hand_finger_index_left_3",
|
||||
"hand_finger_index_left_4",
|
||||
"hand_finger_middle_left_1",
|
||||
"hand_finger_middle_left_2",
|
||||
"hand_finger_middle_left_3",
|
||||
"hand_finger_middle_left_4",
|
||||
"hand_finger_ring_left_1",
|
||||
"hand_finger_ring_left_2",
|
||||
"hand_finger_ring_left_3",
|
||||
"hand_finger_ring_left_4",
|
||||
"hand_finger_pinky_left_1",
|
||||
"hand_finger_pinky_left_2",
|
||||
"hand_finger_pinky_left_3",
|
||||
"hand_finger_pinky_left_4",
|
||||
"hand_wrist_right",
|
||||
"hand_finger_thumb_right_1",
|
||||
"hand_finger_thumb_right_2",
|
||||
"hand_finger_thumb_right_3",
|
||||
"hand_finger_thumb_right_4",
|
||||
"hand_finger_index_right_1",
|
||||
"hand_finger_index_right_2",
|
||||
"hand_finger_index_right_3",
|
||||
"hand_finger_index_right_4",
|
||||
"hand_finger_middle_right_1",
|
||||
"hand_finger_middle_right_2",
|
||||
"hand_finger_middle_right_3",
|
||||
"hand_finger_middle_right_4",
|
||||
"hand_finger_ring_right_1",
|
||||
"hand_finger_ring_right_2",
|
||||
"hand_finger_ring_right_3",
|
||||
"hand_finger_ring_right_4",
|
||||
"hand_finger_pinky_right_1",
|
||||
"hand_finger_pinky_right_2",
|
||||
"hand_finger_pinky_right_3",
|
||||
"hand_finger_pinky_right_4",
|
||||
});
|
||||
}
|
||||
|
||||
joint_names_2d.insert(
|
||||
joint_names_2d.end(),
|
||||
{
|
||||
"hip_middle",
|
||||
"shoulder_middle",
|
||||
"head",
|
||||
});
|
||||
|
||||
return joint_names_2d;
|
||||
}
|
||||
|
||||
// =============================================================================================
|
||||
|
||||
cv::Mat bayer2rgb(const cv::Mat &bayer)
|
||||
{
|
||||
cv::Mat rgb;
|
||||
cv::cvtColor(bayer, rgb, cv::COLOR_BayerBG2RGB);
|
||||
return rgb;
|
||||
}
|
||||
|
||||
cv::Mat rgb2bayer(const cv::Mat &img)
|
||||
{
|
||||
CV_Assert(img.type() == CV_8UC3);
|
||||
cv::Mat bayer(img.rows, img.cols, CV_8UC1);
|
||||
|
||||
for (int r = 0; r < img.rows; ++r)
|
||||
{
|
||||
const uchar *imgData = img.ptr<uchar>(r);
|
||||
uchar *bayerRowPtr = bayer.ptr<uchar>(r);
|
||||
|
||||
for (int c = 0; c < img.cols; ++c)
|
||||
{
|
||||
int pixelIndex = 3 * c;
|
||||
|
||||
// Use faster bit operation instead of modulo+if
|
||||
// Even row, even col => R = 0
|
||||
// Even row, odd col => G = 1
|
||||
// Odd row, even col => G = 1
|
||||
// Odd row, odd col => B = 2
|
||||
int row_mod = r & 1;
|
||||
int col_mod = c & 1;
|
||||
int component = row_mod + col_mod;
|
||||
|
||||
bayerRowPtr[c] = imgData[pixelIndex + component];
|
||||
}
|
||||
}
|
||||
|
||||
return bayer;
|
||||
}
|
||||
|
||||
// =============================================================================================
|
||||
|
||||
inline int find_index(const std::vector<std::string> &vec, const std::string &key)
|
||||
{
|
||||
auto it = std::find(vec.begin(), vec.end(), key);
|
||||
if (it == vec.end())
|
||||
{
|
||||
throw std::runtime_error("Cannot find \"" + key + "\" in joint_names.");
|
||||
}
|
||||
return static_cast<int>(std::distance(vec.begin(), it));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<std::array<float, 3>>>> update_keypoints(
|
||||
const std::vector<std::vector<std::vector<std::array<float, 3>>>> &poses_2d,
|
||||
const std::vector<std::string> &joint_names,
|
||||
const std::map<std::string, bool> &whole_body)
|
||||
{
|
||||
std::vector<std::vector<std::vector<std::array<float, 3>>>> new_views;
|
||||
new_views.reserve(poses_2d.size());
|
||||
|
||||
for (const auto &view : poses_2d)
|
||||
{
|
||||
// "view" is a list of bodies => each body is Nx3
|
||||
std::vector<std::vector<std::array<float, 3>>> new_bodies;
|
||||
new_bodies.reserve(view.size());
|
||||
|
||||
for (const auto &body : view)
|
||||
{
|
||||
// 1) Copy first 17 keypoints
|
||||
std::vector<std::array<float, 3>> new_body;
|
||||
new_body.insert(new_body.end(), body.begin(), body.begin() + 17);
|
||||
|
||||
// 2) Optionally append extra keypoints
|
||||
if (whole_body.at("foots"))
|
||||
{
|
||||
new_body.insert(new_body.end(), body.begin() + 17, body.begin() + 23);
|
||||
}
|
||||
if (whole_body.at("face"))
|
||||
{
|
||||
new_body.insert(new_body.end(), body.begin() + 23, body.begin() + 91);
|
||||
}
|
||||
if (whole_body.at("hands"))
|
||||
{
|
||||
new_body.insert(new_body.end(), body.begin() + 91, body.end());
|
||||
}
|
||||
|
||||
// 3) Compute mid_hip
|
||||
int hlid = find_index(joint_names, "hip_left");
|
||||
int hrid = find_index(joint_names, "hip_right");
|
||||
float mid_hip_x = 0.5 * (new_body[hlid][0] + new_body[hrid][0]);
|
||||
float mid_hip_y = 0.5 * (new_body[hlid][1] + new_body[hrid][1]);
|
||||
float mid_hip_c = std::min(new_body[hlid][2], new_body[hrid][2]);
|
||||
new_body.push_back({mid_hip_x, mid_hip_y, mid_hip_c});
|
||||
|
||||
// 4) Compute mid_shoulder
|
||||
int slid = find_index(joint_names, "shoulder_left");
|
||||
int srid = find_index(joint_names, "shoulder_right");
|
||||
float mid_shoulder_x = 0.5 * (new_body[slid][0] + new_body[srid][0]);
|
||||
float mid_shoulder_y = 0.5 * (new_body[slid][1] + new_body[srid][1]);
|
||||
float mid_shoulder_c = std::min(new_body[slid][2], new_body[srid][2]);
|
||||
new_body.push_back({mid_shoulder_x, mid_shoulder_y, mid_shoulder_c});
|
||||
|
||||
// 5) Compute head
|
||||
int elid = find_index(joint_names, "ear_left");
|
||||
int erid = find_index(joint_names, "ear_right");
|
||||
float head_x = 0.5 * (new_body[elid][0] + new_body[erid][0]);
|
||||
float head_y = 0.5 * (new_body[elid][1] + new_body[erid][1]);
|
||||
float head_c = std::min(new_body[elid][2], new_body[erid][2]);
|
||||
new_body.push_back({head_x, head_y, head_c});
|
||||
|
||||
// Add this updated body into new_bodies
|
||||
new_bodies.push_back(new_body);
|
||||
}
|
||||
|
||||
// Add all updated bodies for this view
|
||||
new_views.push_back(new_bodies);
|
||||
}
|
||||
|
||||
return new_views;
|
||||
}
|
||||
}
|
||||
255
scripts/utils_pipeline.py
Normal file
255
scripts/utils_pipeline.py
Normal file
@ -0,0 +1,255 @@
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
def use_whole_body(whole_body: dict) -> bool:
|
||||
return any((whole_body[k] for k in whole_body))
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def get_joint_names(whole_body: dict):
|
||||
|
||||
joint_names_2d = [
|
||||
"nose",
|
||||
"eye_left",
|
||||
"eye_right",
|
||||
"ear_left",
|
||||
"ear_right",
|
||||
"shoulder_left",
|
||||
"shoulder_right",
|
||||
"elbow_left",
|
||||
"elbow_right",
|
||||
"wrist_left",
|
||||
"wrist_right",
|
||||
"hip_left",
|
||||
"hip_right",
|
||||
"knee_left",
|
||||
"knee_right",
|
||||
"ankle_left",
|
||||
"ankle_right",
|
||||
]
|
||||
|
||||
if whole_body["foots"]:
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"foot_toe_big_left",
|
||||
"foot_toe_small_left",
|
||||
"foot_heel_left",
|
||||
"foot_toe_big_right",
|
||||
"foot_toe_small_right",
|
||||
"foot_heel_right",
|
||||
]
|
||||
)
|
||||
if whole_body["face"]:
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"face_jaw_right_1",
|
||||
"face_jaw_right_2",
|
||||
"face_jaw_right_3",
|
||||
"face_jaw_right_4",
|
||||
"face_jaw_right_5",
|
||||
"face_jaw_right_6",
|
||||
"face_jaw_right_7",
|
||||
"face_jaw_right_8",
|
||||
"face_jaw_middle",
|
||||
"face_jaw_left_1",
|
||||
"face_jaw_left_2",
|
||||
"face_jaw_left_3",
|
||||
"face_jaw_left_4",
|
||||
"face_jaw_left_5",
|
||||
"face_jaw_left_6",
|
||||
"face_jaw_left_7",
|
||||
"face_jaw_left_8",
|
||||
"face_eyebrow_right_1",
|
||||
"face_eyebrow_right_2",
|
||||
"face_eyebrow_right_3",
|
||||
"face_eyebrow_right_4",
|
||||
"face_eyebrow_right_5",
|
||||
"face_eyebrow_left_1",
|
||||
"face_eyebrow_left_2",
|
||||
"face_eyebrow_left_3",
|
||||
"face_eyebrow_left_4",
|
||||
"face_eyebrow_left_5",
|
||||
"face_nose_1",
|
||||
"face_nose_2",
|
||||
"face_nose_3",
|
||||
"face_nose_4",
|
||||
"face_nose_5",
|
||||
"face_nose_6",
|
||||
"face_nose_7",
|
||||
"face_nose_8",
|
||||
"face_nose_9",
|
||||
"face_eye_right_1",
|
||||
"face_eye_right_2",
|
||||
"face_eye_right_3",
|
||||
"face_eye_right_4",
|
||||
"face_eye_right_5",
|
||||
"face_eye_right_6",
|
||||
"face_eye_left_1",
|
||||
"face_eye_left_2",
|
||||
"face_eye_left_3",
|
||||
"face_eye_left_4",
|
||||
"face_eye_left_5",
|
||||
"face_eye_left_6",
|
||||
"face_mouth_1",
|
||||
"face_mouth_2",
|
||||
"face_mouth_3",
|
||||
"face_mouth_4",
|
||||
"face_mouth_5",
|
||||
"face_mouth_6",
|
||||
"face_mouth_7",
|
||||
"face_mouth_8",
|
||||
"face_mouth_9",
|
||||
"face_mouth_10",
|
||||
"face_mouth_11",
|
||||
"face_mouth_12",
|
||||
"face_mouth_13",
|
||||
"face_mouth_14",
|
||||
"face_mouth_15",
|
||||
"face_mouth_16",
|
||||
"face_mouth_17",
|
||||
"face_mouth_18",
|
||||
"face_mouth_19",
|
||||
"face_mouth_20",
|
||||
]
|
||||
)
|
||||
if whole_body["hands"]:
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"hand_wrist_left",
|
||||
"hand_finger_thumb_left_1",
|
||||
"hand_finger_thumb_left_2",
|
||||
"hand_finger_thumb_left_3",
|
||||
"hand_finger_thumb_left_4",
|
||||
"hand_finger_index_left_1",
|
||||
"hand_finger_index_left_2",
|
||||
"hand_finger_index_left_3",
|
||||
"hand_finger_index_left_4",
|
||||
"hand_finger_middle_left_1",
|
||||
"hand_finger_middle_left_2",
|
||||
"hand_finger_middle_left_3",
|
||||
"hand_finger_middle_left_4",
|
||||
"hand_finger_ring_left_1",
|
||||
"hand_finger_ring_left_2",
|
||||
"hand_finger_ring_left_3",
|
||||
"hand_finger_ring_left_4",
|
||||
"hand_finger_pinky_left_1",
|
||||
"hand_finger_pinky_left_2",
|
||||
"hand_finger_pinky_left_3",
|
||||
"hand_finger_pinky_left_4",
|
||||
"hand_wrist_right",
|
||||
"hand_finger_thumb_right_1",
|
||||
"hand_finger_thumb_right_2",
|
||||
"hand_finger_thumb_right_3",
|
||||
"hand_finger_thumb_right_4",
|
||||
"hand_finger_index_right_1",
|
||||
"hand_finger_index_right_2",
|
||||
"hand_finger_index_right_3",
|
||||
"hand_finger_index_right_4",
|
||||
"hand_finger_middle_right_1",
|
||||
"hand_finger_middle_right_2",
|
||||
"hand_finger_middle_right_3",
|
||||
"hand_finger_middle_right_4",
|
||||
"hand_finger_ring_right_1",
|
||||
"hand_finger_ring_right_2",
|
||||
"hand_finger_ring_right_3",
|
||||
"hand_finger_ring_right_4",
|
||||
"hand_finger_pinky_right_1",
|
||||
"hand_finger_pinky_right_2",
|
||||
"hand_finger_pinky_right_3",
|
||||
"hand_finger_pinky_right_4",
|
||||
]
|
||||
)
|
||||
|
||||
joint_names_2d.extend(
|
||||
[
|
||||
"hip_middle",
|
||||
"shoulder_middle",
|
||||
"head",
|
||||
]
|
||||
)
|
||||
|
||||
return joint_names_2d
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def load_image(path: str):
|
||||
image = cv2.imread(path, 3)
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
image = np.asarray(image, dtype=np.uint8)
|
||||
return image
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def rgb2bayer(img):
|
||||
bayer = np.zeros((img.shape[0], img.shape[1]), dtype=img.dtype)
|
||||
bayer[0::2, 0::2] = img[0::2, 0::2, 0]
|
||||
bayer[0::2, 1::2] = img[0::2, 1::2, 1]
|
||||
bayer[1::2, 0::2] = img[1::2, 0::2, 1]
|
||||
bayer[1::2, 1::2] = img[1::2, 1::2, 2]
|
||||
return bayer
|
||||
|
||||
|
||||
def bayer2rgb(bayer):
|
||||
img = cv2.cvtColor(bayer, cv2.COLOR_BayerBG2RGB)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def update_keypoints(poses_2d: list, joint_names: List[str], whole_body: dict) -> list:
|
||||
new_views = []
|
||||
for view in poses_2d:
|
||||
new_bodies = []
|
||||
for body in view:
|
||||
body = body.tolist()
|
||||
|
||||
new_body = body[:17]
|
||||
if whole_body["foots"]:
|
||||
new_body.extend(body[17:23])
|
||||
if whole_body["face"]:
|
||||
new_body.extend(body[23:91])
|
||||
if whole_body["hands"]:
|
||||
new_body.extend(body[91:])
|
||||
body = new_body
|
||||
|
||||
hlid = joint_names.index("hip_left")
|
||||
hrid = joint_names.index("hip_right")
|
||||
mid_hip = [
|
||||
float(((body[hlid][0] + body[hrid][0]) / 2.0)),
|
||||
float(((body[hlid][1] + body[hrid][1]) / 2.0)),
|
||||
min(body[hlid][2], body[hrid][2]),
|
||||
]
|
||||
body.append(mid_hip)
|
||||
|
||||
slid = joint_names.index("shoulder_left")
|
||||
srid = joint_names.index("shoulder_right")
|
||||
mid_shoulder = [
|
||||
float(((body[slid][0] + body[srid][0]) / 2.0)),
|
||||
float(((body[slid][1] + body[srid][1]) / 2.0)),
|
||||
min(body[slid][2], body[srid][2]),
|
||||
]
|
||||
body.append(mid_shoulder)
|
||||
|
||||
elid = joint_names.index("ear_left")
|
||||
erid = joint_names.index("ear_right")
|
||||
head = [
|
||||
float(((body[elid][0] + body[erid][0]) / 2.0)),
|
||||
float(((body[elid][1] + body[erid][1]) / 2.0)),
|
||||
min(body[elid][2], body[erid][2]),
|
||||
]
|
||||
body.append(head)
|
||||
|
||||
new_bodies.append(body)
|
||||
new_views.append(new_bodies)
|
||||
|
||||
return new_views
|
||||
34
tests/README.md
Normal file
34
tests/README.md
Normal file
@ -0,0 +1,34 @@
|
||||
# Tests
|
||||
|
||||
Various module tests
|
||||
|
||||
### Triangulator
|
||||
|
||||
```bash
|
||||
cd /RapidPoseTriangulation/tests/ && python3 test_interface.py && cd ..
|
||||
```
|
||||
|
||||
### Onnx C++ Interface
|
||||
|
||||
```bash
|
||||
cd /RapidPoseTriangulation/tests/
|
||||
|
||||
g++ -std=c++17 -O3 -march=native -Wall \
|
||||
$(pkg-config --cflags opencv4) \
|
||||
-I /onnxruntime/include \
|
||||
-I /onnxruntime/include/onnxruntime/core/session \
|
||||
-I /onnxruntime/include/onnxruntime/core/providers/tensorrt \
|
||||
-L /onnxruntime/build/Linux/Release \
|
||||
test_utils2d.cpp \
|
||||
-o my_app.bin \
|
||||
-Wl,--start-group \
|
||||
-lonnxruntime_providers_tensorrt \
|
||||
-lonnxruntime_providers_shared \
|
||||
-lonnxruntime_providers_cuda \
|
||||
-lonnxruntime \
|
||||
-Wl,--end-group \
|
||||
$(pkg-config --libs opencv4) \
|
||||
-Wl,-rpath,/onnxruntime/build/Linux/Release
|
||||
|
||||
./my_app.bin
|
||||
```
|
||||
96
tests/test_utils2d.cpp
Normal file
96
tests/test_utils2d.cpp
Normal file
@ -0,0 +1,96 @@
|
||||
#include <filesystem>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
#include "/RapidPoseTriangulation/scripts/utils_2d_pose.hpp"
|
||||
|
||||
// =================================================================================================
|
||||
// =================================================================================================
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
using namespace utils_2d_pose;
|
||||
|
||||
std::string base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/";
|
||||
std::string model_path1 = base_path + "rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx";
|
||||
std::string model_path2 = base_path + "rtmpose-m_1x384x288x3_fp16_extra-steps.onnx";
|
||||
|
||||
std::vector<std::string> img_paths = {
|
||||
"/RapidPoseTriangulation/data/h1/54138969-img_003201.jpg",
|
||||
"/RapidPoseTriangulation/data/h1/55011271-img_003201.jpg",
|
||||
"/RapidPoseTriangulation/data/h1/58860488-img_003201.jpg",
|
||||
"/RapidPoseTriangulation/data/h1/60457274-img_003201.jpg",
|
||||
};
|
||||
|
||||
// {
|
||||
// std::cout << "\nTesting RTMDet and RTMPose" << std::endl;
|
||||
// RTMDet model1(model_path1, 0.3, 0.1 * 0.1, 30);
|
||||
// RTMPose model2(model_path2, 30);
|
||||
// for (size_t i = 0; i < img_paths.size(); i++)
|
||||
// {
|
||||
// cv::Mat img = cv::imread(img_paths[i]);
|
||||
// cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// auto outputs1 = model1.call(img);
|
||||
// std::cout << "Model1 outputs: " << outputs1[0][0] << " " << outputs1[0][1] << " "
|
||||
// << outputs1[0][2] << " " << outputs1[0][3] << " " << outputs1[0][4] << " "
|
||||
// << std::endl;
|
||||
|
||||
// for (size_t j = 0; j < outputs1.size(); j++)
|
||||
// {
|
||||
// std::vector<std::array<float, 5>> bboxes = {outputs1[j]};
|
||||
// auto outputs2 = model2.call(img, bboxes);
|
||||
// std::cout << "Model2 outputs: " << outputs2[0][0][0] << " "
|
||||
// << outputs2[0][0][1] << " " << outputs2[0][0][2] << " " << std::endl;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// {
|
||||
// std::cout << "\nTesting TopDown" << std::endl;
|
||||
// TopDown model3(model_path1, model_path2, 0.3, 0.1 * 0.1, false, 30);
|
||||
// for (size_t i = 0; i < img_paths.size(); i++)
|
||||
// {
|
||||
// cv::Mat img = cv::imread(img_paths[i]);
|
||||
// cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// auto outputs3 = model3.predict(img);
|
||||
// std::cout << "Model3 outputs: " << outputs3[0][0][0] << " "
|
||||
// << outputs3[0][0][1] << " " << outputs3[0][0][2] << " " << std::endl;
|
||||
// }
|
||||
// }
|
||||
|
||||
{
|
||||
std::cout << "\nTesting PosePredictor 1" << std::endl;
|
||||
PosePredictor model4(false, 0.3, 0.1 * 0.1, false);
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < img_paths.size(); i++)
|
||||
{
|
||||
cv::Mat img = cv::imread(img_paths[i]);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
images.push_back(img);
|
||||
}
|
||||
auto outputs4 = model4.predict(images);
|
||||
std::cout << "Model4 outputs: " << outputs4[0][0][0][0] << " "
|
||||
<< outputs4[0][0][0][1] << " " << outputs4[0][0][0][2] << " " << std::endl;
|
||||
}
|
||||
|
||||
{
|
||||
std::cout << "\nTesting PosePredictor 2" << std::endl;
|
||||
PosePredictor model5(false, 0.3, 0.1 * 0.1, true);
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < img_paths.size(); i++)
|
||||
{
|
||||
cv::Mat img = cv::imread(img_paths[i]);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
images.push_back(img);
|
||||
}
|
||||
auto outputs5 = model5.predict(images);
|
||||
std::cout << "Model5 outputs: " << outputs5[0][0][0][0] << " "
|
||||
<< outputs5[0][0][0][1] << " " << outputs5[0][0][0][2] << " " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user