diff --git a/media/RESULTS.md b/media/RESULTS.md index 92b120f..90c510f 100644 --- a/media/RESULTS.md +++ b/media/RESULTS.md @@ -7,9 +7,9 @@ Results of the model in various experiments on different datasets. (duration 00:01:20) ```json { - "avg_time_2d": 0.07035206899804584, - "avg_time_3d": 0.003138972945132498, - "avg_fps": 13.607100587486267 + "avg_time_2d": 0.07016186108023434, + "avg_time_3d": 0.001361288458614026, + "avg_fps": 13.981487203060627 } { "person_nums": { @@ -28,9 +28,9 @@ Results of the model in various experiments on different datasets. }, "mpjpe": { "count": 600, - "mean": 0.066893, - "median": 0.059279, - "std": 0.027761, + "mean": 0.066851, + "median": 0.059172, + "std": 0.027766, "sem": 0.001134, "min": 0.043707, "max": 0.189867, @@ -43,23 +43,23 @@ Results of the model in various experiments on different datasets. "num_labels": 600, "ap-0.025": 0.0, "ap-0.05": 0.002244, - "ap-0.1": 0.895111, - "ap-0.15": 0.917246, + "ap-0.1": 0.895131, + "ap-0.15": 0.917269, "ap-0.25": 1.0, "ap-0.5": 1.0 }, "nose": { "count": 600, - "mean": 0.117674, + "mean": 0.11743, "median": 0.101455, - "std": 0.042793, - "sem": 0.001748, - "min": 0.046466, + "std": 0.042492, + "sem": 0.001736, + "min": 0.046467, "max": 0.271134, "recall-0.025": 0.0, "recall-0.05": 0.003333, "recall-0.1": 0.486667, - "recall-0.15": 0.803333, + "recall-0.15": 0.806667, "recall-0.25": 0.995, "recall-0.5": 1.0, "num_labels": 600 @@ -82,10 +82,10 @@ Results of the model in various experiments on different datasets. }, "shoulder_right": { "count": 600, - "mean": 0.048174, + "mean": 0.048134, "median": 0.033305, - "std": 0.042712, - "sem": 0.001745, + "std": 0.04268, + "sem": 0.001744, "min": 0.003882, "max": 0.247363, "recall-0.025": 0.238333, @@ -130,10 +130,10 @@ Results of the model in various experiments on different datasets. }, "wrist_left": { "count": 600, - "mean": 0.040627, + "mean": 0.040641, "median": 0.024203, - "std": 0.042377, - "sem": 0.001731, + "std": 0.042385, + "sem": 0.001732, "min": 0.001517, "max": 0.18543, "recall-0.025": 0.516667, @@ -146,14 +146,14 @@ Results of the model in various experiments on different datasets. }, "wrist_right": { "count": 600, - "mean": 0.042646, + "mean": 0.042497, "median": 0.025673, - "std": 0.046896, - "sem": 0.001916, + "std": 0.046851, + "sem": 0.001914, "min": 0.001698, "max": 0.425617, "recall-0.025": 0.481667, - "recall-0.05": 0.771667, + "recall-0.05": 0.775, "recall-0.1": 0.896667, "recall-0.15": 0.921667, "recall-0.25": 0.998333, @@ -178,15 +178,15 @@ Results of the model in various experiments on different datasets. }, "hip_right": { "count": 600, - "mean": 0.114501, + "mean": 0.114452, "median": 0.114981, - "std": 0.026109, - "sem": 0.001067, + "std": 0.026143, + "sem": 0.001068, "min": 0.046173, "max": 0.234935, "recall-0.025": 0.0, "recall-0.05": 0.001667, - "recall-0.1": 0.248333, + "recall-0.1": 0.25, "recall-0.15": 0.948333, "recall-0.25": 1.0, "recall-0.5": 1.0, @@ -242,16 +242,16 @@ Results of the model in various experiments on different datasets. }, "ankle_right": { "count": 600, - "mean": 0.085539, + "mean": 0.08545, "median": 0.068594, - "std": 0.058554, - "sem": 0.002392, + "std": 0.058449, + "sem": 0.002388, "min": 0.032987, "max": 0.463238, "recall-0.025": 0.0, "recall-0.05": 0.015, "recall-0.1": 0.885, - "recall-0.15": 0.906667, + "recall-0.15": 0.908333, "recall-0.25": 0.978333, "recall-0.5": 1.0, "num_labels": 600 @@ -259,17 +259,17 @@ Results of the model in various experiments on different datasets. "joint_recalls": { "num_labels": 7800, "recall-0.025": 0.17949, - "recall-0.05": 0.47564, - "recall-0.1": 0.82154, - "recall-0.15": 0.92923, + "recall-0.05": 0.4759, + "recall-0.1": 0.82179, + "recall-0.15": 0.92962, "recall-0.25": 0.99397, "recall-0.5": 0.99974 } } { "total_parts": 8400, - "correct_parts": 8091, - "pcp": 0.963214 + "correct_parts": 8092, + "pcp": 0.963333 } ``` @@ -278,9 +278,9 @@ Results of the model in various experiments on different datasets. (duration 00:00:56) ```json { - "avg_time_2d": 0.10030525082984741, - "avg_time_3d": 0.00994173521848069, - "avg_fps": 9.07054274990917 + "avg_time_2d": 0.10439699048438843, + "avg_time_3d": 0.003671272513792687, + "avg_fps": 9.253410504218346 } { "person_nums": { @@ -299,31 +299,31 @@ Results of the model in various experiments on different datasets. }, "mpjpe": { "count": 477, - "mean": 0.048235, + "mean": 0.04824, "median": 0.04301, - "std": 0.014642, + "std": 0.014639, "sem": 0.000671, "min": 0.029586, - "max": 0.106122, + "max": 0.106389, "recall-0.025": 0.0, - "recall-0.05": 0.675052, + "recall-0.05": 0.677149, "recall-0.1": 0.991614, "recall-0.15": 1.0, "recall-0.25": 1.0, "recall-0.5": 1.0, "num_labels": 477, "ap-0.025": 0.0, - "ap-0.05": 0.340912, - "ap-0.1": 0.6919, - "ap-0.15": 0.701795, - "ap-0.25": 0.701795, - "ap-0.5": 0.701795 + "ap-0.05": 0.342452, + "ap-0.1": 0.692315, + "ap-0.15": 0.702141, + "ap-0.25": 0.702141, + "ap-0.5": 0.702141 }, "head": { "count": 477, - "mean": 0.055384, + "mean": 0.055391, "median": 0.049788, - "std": 0.025996, + "std": 0.026004, "sem": 0.001192, "min": 0.006374, "max": 0.147303, @@ -353,9 +353,9 @@ Results of the model in various experiments on different datasets. }, "shoulder_right": { "count": 477, - "mean": 0.050381, + "mean": 0.050386, "median": 0.045185, - "std": 0.024432, + "std": 0.024435, "sem": 0.00112, "min": 0.00639, "max": 0.15065, @@ -369,10 +369,10 @@ Results of the model in various experiments on different datasets. }, "elbow_left": { "count": 477, - "mean": 0.040845, + "mean": 0.040857, "median": 0.034194, - "std": 0.025928, - "sem": 0.001188, + "std": 0.025942, + "sem": 0.001189, "min": 0.005533, "max": 0.152226, "recall-0.025": 0.301887, @@ -385,15 +385,15 @@ Results of the model in various experiments on different datasets. }, "elbow_right": { "count": 477, - "mean": 0.053498, + "mean": 0.053459, "median": 0.043749, - "std": 0.042037, - "sem": 0.001927, + "std": 0.041996, + "sem": 0.001925, "min": 0.002858, "max": 0.244706, "recall-0.025": 0.259958, "recall-0.05": 0.561845, - "recall-0.1": 0.888889, + "recall-0.1": 0.890985, "recall-0.15": 0.958071, "recall-0.25": 1.0, "recall-0.5": 1.0, @@ -401,15 +401,15 @@ Results of the model in various experiments on different datasets. }, "wrist_left": { "count": 477, - "mean": 0.060633, - "median": 0.053257, - "std": 0.043196, - "sem": 0.00198, + "mean": 0.060765, + "median": 0.053276, + "std": 0.043274, + "sem": 0.001983, "min": 0.003745, "max": 0.359369, "recall-0.025": 0.12369, - "recall-0.05": 0.415094, - "recall-0.1": 0.916143, + "recall-0.05": 0.412998, + "recall-0.1": 0.914046, "recall-0.15": 0.962264, "recall-0.25": 0.985325, "recall-0.5": 1.0, @@ -417,9 +417,9 @@ Results of the model in various experiments on different datasets. }, "wrist_right": { "count": 477, - "mean": 0.057929, + "mean": 0.057975, "median": 0.053722, - "std": 0.029957, + "std": 0.02995, "sem": 0.001373, "min": 0.009013, "max": 0.202256, @@ -433,15 +433,15 @@ Results of the model in various experiments on different datasets. }, "hip_left": { "count": 477, - "mean": 0.048001, + "mean": 0.0479, "median": 0.042849, - "std": 0.026773, - "sem": 0.001227, + "std": 0.026619, + "sem": 0.00122, "min": 0.005757, "max": 0.140667, "recall-0.025": 0.213836, - "recall-0.05": 0.618449, - "recall-0.1": 0.949686, + "recall-0.05": 0.620545, + "recall-0.1": 0.951782, "recall-0.15": 1.0, "recall-0.25": 1.0, "recall-0.5": 1.0, @@ -449,14 +449,14 @@ Results of the model in various experiments on different datasets. }, "hip_right": { "count": 477, - "mean": 0.057906, - "median": 0.056146, - "std": 0.025472, + "mean": 0.057871, + "median": 0.056052, + "std": 0.025477, "sem": 0.001168, "min": 0.005189, "max": 0.136207, "recall-0.025": 0.109015, - "recall-0.05": 0.419287, + "recall-0.05": 0.421384, "recall-0.1": 0.930818, "recall-0.15": 1.0, "recall-0.25": 1.0, @@ -465,13 +465,13 @@ Results of the model in various experiments on different datasets. }, "knee_left": { "count": 477, - "mean": 0.039986, - "median": 0.037315, - "std": 0.02438, - "sem": 0.001117, + "mean": 0.040016, + "median": 0.03745, + "std": 0.024403, + "sem": 0.001118, "min": 0.005407, "max": 0.195502, - "recall-0.025": 0.259958, + "recall-0.025": 0.262055, "recall-0.05": 0.763103, "recall-0.1": 0.974843, "recall-0.15": 0.989518, @@ -513,10 +513,10 @@ Results of the model in various experiments on different datasets. }, "ankle_right": { "count": 477, - "mean": 0.041445, + "mean": 0.041454, "median": 0.031787, - "std": 0.038031, - "sem": 0.001743, + "std": 0.038012, + "sem": 0.001742, "min": 0.005439, "max": 0.298397, "recall-0.025": 0.312369, @@ -529,9 +529,9 @@ Results of the model in various experiments on different datasets. }, "joint_recalls": { "num_labels": 6201, - "recall-0.025": 0.21045, - "recall-0.05": 0.62006, - "recall-0.1": 0.93824, + "recall-0.025": 0.21077, + "recall-0.05": 0.62038, + "recall-0.1": 0.93807, "recall-0.15": 0.98742, "recall-0.25": 0.99871, "recall-0.5": 1.0 @@ -549,16 +549,16 @@ Results of the model in various experiments on different datasets. (duration 00:00:29) ```json { - "avg_time_2d": 0.056824864081616674, - "avg_time_3d": 0.0035331103036988455, - "avg_fps": 16.56781908577916 + "avg_time_2d": 0.05871032543902127, + "avg_time_3d": 0.0016240331361878594, + "avg_fps": 16.574303988886548 } { "person_nums": { "total_frames": 222, "total_labels": 376, - "total_preds": 466, - "considered_empty": 3, + "total_preds": 464, + "considered_empty": 1, "valid_preds": 376, "invalid_preds": 87, "missing": 0, @@ -820,189 +820,189 @@ Results of the model in various experiments on different datasets. (duration 00:02:31) ```json { - "avg_time_2d": 0.054314954600542156, - "avg_time_3d": 0.0029571287466366573, - "avg_fps": 17.460513771396784 + "avg_time_2d": 0.05640246679401552, + "avg_time_3d": 0.0013555948876795361, + "avg_fps": 17.31360040284947 } { "person_nums": { "total_frames": 629, "total_labels": 1061, - "total_preds": 1049, - "considered_empty": 119, - "valid_preds": 711, + "total_preds": 1047, + "considered_empty": 118, + "valid_preds": 710, "invalid_preds": 219, - "missing": 350, - "invalid_fraction": 0.23548, - "precision": 0.76452, - "recall": 0.67012, - "f1": 0.71421, - "non_empty": 930 + "missing": 351, + "invalid_fraction": 0.23574, + "precision": 0.76426, + "recall": 0.66918, + "f1": 0.71357, + "non_empty": 929 }, "mpjpe": { - "count": 711, - "mean": 0.113411, - "median": 0.094476, - "std": 0.065788, - "sem": 0.002469, + "count": 710, + "mean": 0.11365, + "median": 0.094542, + "std": 0.066461, + "sem": 0.002496, "min": 0.040489, "max": 0.497874, "recall-0.025": 0.0, "recall-0.05": 0.006598, - "recall-0.1": 0.367578, + "recall-0.1": 0.366635, "recall-0.15": 0.570217, - "recall-0.25": 0.645617, - "recall-0.5": 0.670123, + "recall-0.25": 0.64279, + "recall-0.5": 0.66918, "num_labels": 1061, "ap-0.025": 0.0, "ap-0.05": 0.000155, - "ap-0.1": 0.23825, - "ap-0.15": 0.474984, - "ap-0.25": 0.574206, - "ap-0.5": 0.603097 + "ap-0.1": 0.237214, + "ap-0.15": 0.475129, + "ap-0.25": 0.571172, + "ap-0.5": 0.602435 }, "head": { - "count": 710, - "mean": 0.062288, - "median": 0.049204, - "std": 0.0522, - "sem": 0.00196, + "count": 709, + "mean": 0.062285, + "median": 0.049078, + "std": 0.052765, + "sem": 0.001983, "min": 0.006565, "max": 0.436815, - "recall-0.025": 0.081056, - "recall-0.05": 0.340245, + "recall-0.025": 0.080113, + "recall-0.05": 0.341188, "recall-0.1": 0.591894, - "recall-0.15": 0.633365, - "recall-0.25": 0.655985, - "recall-0.5": 0.66918, + "recall-0.15": 0.632422, + "recall-0.25": 0.6541, + "recall-0.5": 0.668238, "num_labels": 1061 }, "shoulder_left": { - "count": 709, - "mean": 0.06144, - "median": 0.043151, - "std": 0.064106, - "sem": 0.002409, + "count": 708, + "mean": 0.062058, + "median": 0.043195, + "std": 0.066177, + "sem": 0.002489, "min": 0.003155, - "max": 0.48718, - "recall-0.025": 0.144204, - "recall-0.05": 0.400566, - "recall-0.1": 0.579642, - "recall-0.15": 0.62771, - "recall-0.25": 0.649387, - "recall-0.5": 0.668238, + "max": 0.498748, + "recall-0.025": 0.142319, + "recall-0.05": 0.401508, + "recall-0.1": 0.577757, + "recall-0.15": 0.625825, + "recall-0.25": 0.647502, + "recall-0.5": 0.667295, "num_labels": 1061 }, "shoulder_right": { - "count": 709, - "mean": 0.058254, - "median": 0.03951, - "std": 0.063443, - "sem": 0.002384, - "min": 0.001883, + "count": 708, + "mean": 0.05826, + "median": 0.039432, + "std": 0.064247, + "sem": 0.002416, + "min": 0.001884, "max": 0.470146, - "recall-0.025": 0.148916, + "recall-0.025": 0.147031, "recall-0.05": 0.428841, "recall-0.1": 0.588124, "recall-0.15": 0.630537, - "recall-0.25": 0.647502, - "recall-0.5": 0.668238, + "recall-0.25": 0.64656, + "recall-0.5": 0.667295, "num_labels": 1061 }, "elbow_left": { - "count": 697, - "mean": 0.100689, - "median": 0.073042, - "std": 0.081503, - "sem": 0.003089, + "count": 696, + "mean": 0.100812, + "median": 0.073006, + "std": 0.081769, + "sem": 0.003102, "min": 0.005709, "max": 0.481769, "recall-0.025": 0.067861, "recall-0.05": 0.216777, "recall-0.1": 0.399623, - "recall-0.15": 0.518379, - "recall-0.25": 0.617342, - "recall-0.5": 0.656927, + "recall-0.15": 0.516494, + "recall-0.25": 0.615457, + "recall-0.5": 0.655985, "num_labels": 1061 }, "elbow_right": { - "count": 700, - "mean": 0.079932, - "median": 0.056737, - "std": 0.074413, - "sem": 0.002815, + "count": 699, + "mean": 0.079988, + "median": 0.05676, + "std": 0.074464, + "sem": 0.002819, "min": 0.003313, "max": 0.498068, - "recall-0.025": 0.088596, - "recall-0.05": 0.29689, + "recall-0.025": 0.087653, + "recall-0.05": 0.295947, "recall-0.1": 0.499529, "recall-0.15": 0.585297, - "recall-0.25": 0.633365, - "recall-0.5": 0.659755, + "recall-0.25": 0.632422, + "recall-0.5": 0.658812, "num_labels": 1061 }, "wrist_left": { - "count": 703, - "mean": 0.127245, - "median": 0.091393, - "std": 0.103887, - "sem": 0.003921, + "count": 702, + "mean": 0.12747, + "median": 0.091245, + "std": 0.104152, + "sem": 0.003934, "min": 0.004181, "max": 0.497384, "recall-0.025": 0.06409, "recall-0.05": 0.173421, "recall-0.1": 0.351555, - "recall-0.15": 0.448633, - "recall-0.25": 0.569274, - "recall-0.5": 0.662582, + "recall-0.15": 0.446748, + "recall-0.25": 0.567389, + "recall-0.5": 0.66164, "num_labels": 1061 }, "wrist_right": { - "count": 698, - "mean": 0.112384, - "median": 0.078226, - "std": 0.098965, - "sem": 0.003749, + "count": 697, + "mean": 0.112895, + "median": 0.078236, + "std": 0.100097, + "sem": 0.003794, "min": 0.006423, - "max": 0.485199, + "max": 0.494757, "recall-0.025": 0.071631, "recall-0.05": 0.218662, - "recall-0.1": 0.39868, + "recall-0.1": 0.397738, "recall-0.15": 0.485391, - "recall-0.25": 0.583412, - "recall-0.5": 0.65787, + "recall-0.25": 0.581527, + "recall-0.5": 0.656927, "num_labels": 1061 }, "hip_left": { - "count": 697, - "mean": 0.18656, - "median": 0.167596, - "std": 0.084805, - "sem": 0.003215, + "count": 696, + "mean": 0.186824, + "median": 0.167605, + "std": 0.084772, + "sem": 0.003216, "min": 0.021758, "max": 0.499358, "recall-0.025": 0.000943, "recall-0.05": 0.005655, - "recall-0.1": 0.066918, + "recall-0.1": 0.065975, "recall-0.15": 0.249764, - "recall-0.25": 0.542884, - "recall-0.5": 0.656927, + "recall-0.25": 0.540999, + "recall-0.5": 0.655985, "num_labels": 1061 }, "hip_right": { - "count": 696, - "mean": 0.177844, - "median": 0.163941, - "std": 0.077814, - "sem": 0.002952, + "count": 695, + "mean": 0.178149, + "median": 0.163969, + "std": 0.078021, + "sem": 0.002962, "min": 0.024563, "max": 0.492847, "recall-0.025": 0.000943, "recall-0.05": 0.00377, - "recall-0.1": 0.077286, - "recall-0.15": 0.272385, - "recall-0.25": 0.558907, - "recall-0.5": 0.655985, + "recall-0.1": 0.076343, + "recall-0.15": 0.271442, + "recall-0.25": 0.557964, + "recall-0.5": 0.655042, "num_labels": 1061 }, "knee_left": {}, @@ -1011,18 +1011,18 @@ Results of the model in various experiments on different datasets. "ankle_right": {}, "joint_recalls": { "num_labels": 9549, - "recall-0.025": 0.07404, + "recall-0.025": 0.0732, "recall-0.05": 0.23123, - "recall-0.1": 0.39428, - "recall-0.15": 0.49419, - "recall-0.25": 0.60593, - "recall-0.5": 0.66133 + "recall-0.1": 0.39376, + "recall-0.15": 0.49314, + "recall-0.25": 0.60425, + "recall-0.5": 0.66028 } } { "total_parts": 10610, - "correct_parts": 5509, - "pcp": 0.519227 + "correct_parts": 5503, + "pcp": 0.518662 } ``` @@ -1031,56 +1031,56 @@ Results of the model in various experiments on different datasets. (duration 00:02:28) ```json { - "avg_time_2d": 0.11225916583363603, - "avg_time_3d": 0.012731300912252287, - "avg_fps": 8.000610174798759 + "avg_time_2d": 0.11131117460204334, + "avg_time_3d": 0.004892377737091808, + "avg_fps": 8.605588898707179 } { "person_nums": { "total_frames": 420, "total_labels": 1466, - "total_preds": 1553, - "considered_empty": 9, + "total_preds": 1545, + "considered_empty": 6, "valid_preds": 1463, - "invalid_preds": 81, + "invalid_preds": 76, "missing": 3, - "invalid_fraction": 0.05246, - "precision": 0.94754, + "invalid_fraction": 0.04938, + "precision": 0.95062, "recall": 0.99795, - "f1": 0.97209, - "non_empty": 1544 + "f1": 0.97371, + "non_empty": 1539 }, "mpjpe": { "count": 1463, - "mean": 0.042892, - "median": 0.038001, - "std": 0.020419, - "sem": 0.000534, + "mean": 0.042929, + "median": 0.038037, + "std": 0.02037, + "sem": 0.000533, "min": 0.01189, "max": 0.154352, - "recall-0.025": 0.152797, - "recall-0.05": 0.738745, - "recall-0.1": 0.982265, + "recall-0.025": 0.152115, + "recall-0.05": 0.738063, + "recall-0.1": 0.981583, "recall-0.15": 0.997271, "recall-0.25": 0.997954, "recall-0.5": 0.997954, "num_labels": 1466, - "ap-0.025": 0.063255, - "ap-0.05": 0.66489, - "ap-0.1": 0.960737, - "ap-0.15": 0.982534, - "ap-0.25": 0.983185, - "ap-0.5": 0.983185 + "ap-0.025": 0.063073, + "ap-0.05": 0.663867, + "ap-0.1": 0.960176, + "ap-0.15": 0.982657, + "ap-0.25": 0.98331, + "ap-0.5": 0.98331 }, "nose": { "count": 1461, - "mean": 0.016222, - "median": 0.0125, - "std": 0.018762, + "mean": 0.016212, + "median": 0.012492, + "std": 0.01876, "sem": 0.000491, "min": 0.001407, "max": 0.282177, - "recall-0.025": 0.898838, + "recall-0.025": 0.899522, "recall-0.05": 0.963773, "recall-0.1": 0.995215, "recall-0.15": 0.995899, @@ -1090,14 +1090,14 @@ Results of the model in various experiments on different datasets. }, "shoulder_left": { "count": 1463, - "mean": 0.021439, - "median": 0.019011, - "std": 0.011407, - "sem": 0.000298, + "mean": 0.021455, + "median": 0.019023, + "std": 0.011436, + "sem": 0.000299, "min": 0.002677, - "max": 0.095793, - "recall-0.025": 0.70191, - "recall-0.05": 0.976126, + "max": 0.095794, + "recall-0.025": 0.702592, + "recall-0.05": 0.975443, "recall-0.1": 0.997954, "recall-0.15": 0.997954, "recall-0.25": 0.997954, @@ -1106,14 +1106,14 @@ Results of the model in various experiments on different datasets. }, "shoulder_right": { "count": 1462, - "mean": 0.02267, - "median": 0.019712, - "std": 0.014213, + "mean": 0.022691, + "median": 0.019716, + "std": 0.014235, "sem": 0.000372, "min": 0.00112, "max": 0.146597, - "recall-0.025": 0.712628, - "recall-0.05": 0.955631, + "recall-0.025": 0.711945, + "recall-0.05": 0.954949, "recall-0.1": 0.995904, "recall-0.15": 0.997952, "recall-0.25": 0.997952, @@ -1122,15 +1122,15 @@ Results of the model in various experiments on different datasets. }, "elbow_left": { "count": 1462, - "mean": 0.026445, - "median": 0.017876, - "std": 0.028559, - "sem": 0.000747, + "mean": 0.026381, + "median": 0.017863, + "std": 0.028393, + "sem": 0.000743, "min": 0.001846, "max": 0.323155, "recall-0.025": 0.701706, "recall-0.05": 0.880546, - "recall-0.1": 0.975427, + "recall-0.1": 0.976792, "recall-0.15": 0.985666, "recall-0.25": 0.996587, "recall-0.5": 0.997952, @@ -1138,14 +1138,14 @@ Results of the model in various experiments on different datasets. }, "elbow_right": { "count": 1461, - "mean": 0.02379, + "mean": 0.023727, "median": 0.018347, - "std": 0.01872, - "sem": 0.00049, + "std": 0.018642, + "sem": 0.000488, "min": 0.001407, "max": 0.219498, "recall-0.025": 0.684211, - "recall-0.05": 0.919344, + "recall-0.05": 0.920711, "recall-0.1": 0.992481, "recall-0.15": 0.997266, "recall-0.25": 0.998633, @@ -1154,47 +1154,47 @@ Results of the model in various experiments on different datasets. }, "wrist_left": { "count": 1431, - "mean": 0.036589, - "median": 0.017197, - "std": 0.053668, - "sem": 0.001419, + "mean": 0.036984, + "median": 0.017216, + "std": 0.05458, + "sem": 0.001443, "min": 0.000713, "max": 0.397255, - "recall-0.025": 0.669456, - "recall-0.05": 0.817992, - "recall-0.1": 0.905858, - "recall-0.15": 0.949791, - "recall-0.25": 0.98675, + "recall-0.025": 0.668759, + "recall-0.05": 0.816597, + "recall-0.1": 0.904463, + "recall-0.15": 0.948396, + "recall-0.25": 0.986053, "recall-0.5": 0.997908, "num_labels": 1434 }, "wrist_right": { "count": 1455, - "mean": 0.025451, - "median": 0.016755, - "std": 0.026894, - "sem": 0.000705, + "mean": 0.025496, + "median": 0.016754, + "std": 0.027589, + "sem": 0.000724, "min": 0.001905, "max": 0.394822, - "recall-0.025": 0.688874, + "recall-0.025": 0.68956, "recall-0.05": 0.882555, - "recall-0.1": 0.96978, + "recall-0.1": 0.970467, "recall-0.15": 0.993132, - "recall-0.25": 0.998626, + "recall-0.25": 0.99794, "recall-0.5": 0.999313, "num_labels": 1456 }, "hip_left": { "count": 1462, - "mean": 0.059024, - "median": 0.053496, - "std": 0.029585, - "sem": 0.000774, + "mean": 0.059122, + "median": 0.053514, + "std": 0.029657, + "sem": 0.000776, "min": 0.005563, "max": 0.17979, - "recall-0.025": 0.068942, - "recall-0.05": 0.423208, - "recall-0.1": 0.902389, + "recall-0.025": 0.068259, + "recall-0.05": 0.423891, + "recall-0.1": 0.901706, "recall-0.15": 0.969283, "recall-0.25": 0.997952, "recall-0.5": 0.997952, @@ -1202,98 +1202,98 @@ Results of the model in various experiments on different datasets. }, "hip_right": { "count": 1463, - "mean": 0.058525, - "median": 0.054915, - "std": 0.028493, - "sem": 0.000745, + "mean": 0.058599, + "median": 0.054934, + "std": 0.028583, + "sem": 0.000748, "min": 0.003776, "max": 0.304524, "recall-0.025": 0.05457, - "recall-0.05": 0.414052, - "recall-0.1": 0.91337, - "recall-0.15": 0.985675, + "recall-0.05": 0.412688, + "recall-0.1": 0.912688, + "recall-0.15": 0.984993, "recall-0.25": 0.997271, "recall-0.5": 0.997954, "num_labels": 1466 }, "knee_left": { "count": 1462, - "mean": 0.051154, + "mean": 0.051285, "median": 0.042752, - "std": 0.041788, - "sem": 0.001093, + "std": 0.04192, + "sem": 0.001097, "min": 0.001938, "max": 0.353024, - "recall-0.025": 0.187031, - "recall-0.05": 0.636177, - "recall-0.1": 0.931741, - "recall-0.15": 0.970648, + "recall-0.025": 0.185666, + "recall-0.05": 0.634812, + "recall-0.1": 0.931058, + "recall-0.15": 0.969966, "recall-0.25": 0.9843, "recall-0.5": 0.997952, "num_labels": 1465 }, "knee_right": { "count": 1456, - "mean": 0.048236, - "median": 0.042754, - "std": 0.02839, - "sem": 0.000744, + "mean": 0.048348, + "median": 0.042693, + "std": 0.029301, + "sem": 0.000768, "min": 0.003542, - "max": 0.269652, - "recall-0.025": 0.208362, - "recall-0.05": 0.59013, - "recall-0.1": 0.938314, - "recall-0.15": 0.993146, - "recall-0.25": 0.996573, + "max": 0.305725, + "recall-0.025": 0.210418, + "recall-0.05": 0.590816, + "recall-0.1": 0.938999, + "recall-0.15": 0.991775, + "recall-0.25": 0.995888, "recall-0.5": 0.997944, "num_labels": 1459 }, "ankle_left": { "count": 1453, - "mean": 0.08407, - "median": 0.037492, - "std": 0.106553, - "sem": 0.002796, + "mean": 0.083857, + "median": 0.037654, + "std": 0.106287, + "sem": 0.002789, "min": 0.002453, "max": 0.495773, - "recall-0.025": 0.362269, - "recall-0.05": 0.585099, - "recall-0.1": 0.725906, - "recall-0.15": 0.816131, + "recall-0.025": 0.360902, + "recall-0.05": 0.583732, + "recall-0.1": 0.726589, + "recall-0.15": 0.817498, "recall-0.25": 0.910458, "recall-0.5": 0.993165, "num_labels": 1463 }, "ankle_right": { "count": 1446, - "mean": 0.077209, - "median": 0.033338, - "std": 0.103299, - "sem": 0.002717, + "mean": 0.077158, + "median": 0.033178, + "std": 0.103249, + "sem": 0.002716, "min": 0.001061, "max": 0.493086, "recall-0.025": 0.372603, - "recall-0.05": 0.682877, - "recall-0.1": 0.778082, + "recall-0.05": 0.685616, + "recall-0.1": 0.777397, "recall-0.15": 0.815753, - "recall-0.25": 0.893836, + "recall-0.25": 0.893151, "recall-0.5": 0.990411, "num_labels": 1460 }, "joint_recalls": { "num_labels": 18990, - "recall-0.025": 0.48489, - "recall-0.05": 0.74776, - "recall-0.1": 0.92454, - "recall-0.15": 0.95882, - "recall-0.25": 0.98062, + "recall-0.025": 0.48468, + "recall-0.05": 0.74771, + "recall-0.1": 0.92428, + "recall-0.15": 0.95856, + "recall-0.25": 0.98052, "recall-0.5": 0.99695 } } { "total_parts": 20444, - "correct_parts": 19973, - "pcp": 0.976961 + "correct_parts": 19964, + "pcp": 0.976521 } ``` diff --git a/scripts/test_skelda_dataset.py b/scripts/test_skelda_dataset.py index 67065f4..3f37856 100644 --- a/scripts/test_skelda_dataset.py +++ b/scripts/test_skelda_dataset.py @@ -1,5 +1,6 @@ import json import os +import sys import time import cv2 @@ -8,10 +9,12 @@ import numpy as np import tqdm import test_triangulate -import triangulate_poses import utils_2d_pose from skelda import evals, utils_pose +sys.path.append("/SimplePoseTriangulation/swig/") +import spt + # ================================================================================================== # dataset_use = "panoptic" @@ -316,12 +319,27 @@ def main(): # Print a dataset sample for debugging print(labels[0]) + minscores = { + # Choose this depending on the fraction of invalid/missing persons + # A higher value reduces the number of proposals + "panoptic": 0.94, + "human36m": 0.94, + "mvor": 0.86, + "campus": 0.96, + "shelf": 0.96, + "ikeaasm": 0.89, + "tsinghua": 0.96, + "human36m_wb": 0.94, + "koarob": 0.91, + } + minscore = minscores.get(dataset_use, 0.95) + print("\nRunning predictions ...") all_poses = [] all_ids = [] all_paths = [] times = [] - last_poses_3d = np.array([]) + triangulator = spt.Triangulator(min_score=minscore) old_scene = "" for label in tqdm.tqdm(labels): images_2d = [] @@ -329,7 +347,7 @@ def main(): if old_scene != label.get("scene", ""): # Reset last poses if scene changes old_scene = label.get("scene", "") - last_poses_3d = np.array([]) + triangulator.reset() try: start = time.time() @@ -366,28 +384,20 @@ def main(): time_2d = time.time() - start print("2D time:", time_2d) - minscores = { - # Choose this depending on the fraction of invalid/missing persons - # A higher value reduces the number of proposals - "panoptic": 0.94, - "human36m": 0.94, - "mvor": 0.86, - "campus": 0.96, - "shelf": 0.96, - "ikeaasm": 0.89, - "tsinghua": 0.96, - "human36m_wb": 0.94, - } - minscore = minscores.get(dataset_use, 0.95) - start = time.time() if sum(np.sum(p) for p in poses_2d) == 0: poses3D = np.zeros([1, len(joint_names_3d), 4]) poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3]) else: - poses3D = triangulate_poses.get_3d_pose( - poses_2d, label["cameras"], roomparams, joint_names_2d, last_poses_3d, minscore + cameras = spt.convert_cameras(label["cameras"]) + roomp = [roomparams["room_center"], roomparams["room_size"]] + poses_3d = triangulator.triangulate_poses( + poses_2d, cameras, roomp, joint_names_2d ) + poses3D = np.array(poses_3d) + if len(poses3D) == 0: + poses3D = np.zeros([1, len(joint_names_3d), 4]) + poses2D = [] for cam in label["cameras"]: poses_2d, _ = utils_pose.project_poses(poses3D, cam) @@ -401,7 +411,6 @@ def main(): drop_few_limbs=(dataset_use != "mvor"), ) poses3D = add_missing_joints(poses3D, joint_names_3d) - last_poses_3d = poses3D time_3d = time.time() - start print("3D time:", time_3d) diff --git a/scripts/test_triangulate.py b/scripts/test_triangulate.py index 7a38f5a..ea6f594 100644 --- a/scripts/test_triangulate.py +++ b/scripts/test_triangulate.py @@ -1,6 +1,7 @@ import copy import json import os +import sys import time from typing import List @@ -9,10 +10,12 @@ import matplotlib import numpy as np import draw_utils -import triangulate_poses import utils_2d_pose from skelda import utils_pose +sys.path.append("/SimplePoseTriangulation/swig/") +import spt + # ================================================================================================== filepath = os.path.dirname(os.path.realpath(__file__)) + "/" @@ -437,7 +440,7 @@ def main(): poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d) poses_2d = update_keypoints(poses_2d, joint_names_2d) print("2D time:", time.time() - stime) - # print(np.array(poses_2d).round(3).tolist()) + # print([np.array(p).round(6).tolist() for p in poses_2d]) fig1 = draw_utils.show_poses2d( poses_2d, np.array(images_2d), joint_names_2d, "2D detections" @@ -454,11 +457,19 @@ def main(): poses3D = np.zeros([1, len(joint_names_3d), 4]) poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3]) else: + cameras = spt.convert_cameras(camparams) + roomp = [roomparams["room_center"], roomparams["room_size"]] + triangulator = spt.Triangulator(min_score=0.95) + stime = time.time() - poses3D = triangulate_poses.get_3d_pose( - poses_2d, camparams, roomparams, joint_names_2d + poses_3d = triangulator.triangulate_poses( + poses_2d, cameras, roomp, joint_names_2d ) + poses3D = np.array(poses_3d) + if len(poses3D) == 0: + poses3D = np.zeros([1, len(joint_names_3d), 4]) print("3D time:", time.time() - stime) + poses2D = [] for cam in camparams: poses_2d, _ = utils_pose.project_poses(poses3D, cam)