Merge remote-tracking branch 'origin/ros' into jetson
This commit is contained in:
@ -70,7 +70,8 @@ mv /mmdeploy/work_dir/end2end.onnx /RapidPoseTriangulation/extras/mmdeploy/expor
|
||||
```
|
||||
|
||||
```bash
|
||||
python3 /RapidPoseTriangulation/extras/mmdeploy/make_extra_graphs.py
|
||||
python3 /RapidPoseTriangulation/extras/mmdeploy/make_extra_graphs_pt.py
|
||||
python3 /RapidPoseTriangulation/extras/mmdeploy/make_extra_graphs_tf.py
|
||||
```
|
||||
|
||||
```bash
|
||||
|
||||
@ -54,6 +54,7 @@ def add_steps_to_onnx(model_path):
|
||||
inputs=[input_name],
|
||||
outputs=[casted_output],
|
||||
to=cast_type,
|
||||
name="Cast_Input",
|
||||
)
|
||||
|
||||
# Node to transpose
|
||||
@ -118,6 +119,90 @@ def add_steps_to_onnx(model_path):
|
||||
# Set input image type to int8
|
||||
model.graph.input[0].type.tensor_type.elem_type = TensorProto.UINT8
|
||||
|
||||
# Cast all outputs to fp32 to avoid half precision issues in cpp code
|
||||
for output in graph.output:
|
||||
orig_output_name = output.name
|
||||
internal_output_name = orig_output_name + "_internal"
|
||||
|
||||
# Rename the output tensor
|
||||
for node in model.graph.node:
|
||||
for idx, name in enumerate(node.output):
|
||||
if name == orig_output_name:
|
||||
node.output[idx] = internal_output_name
|
||||
|
||||
# Insert a Cast node that casts the internal output to fp32
|
||||
cast_fp32_name = orig_output_name
|
||||
cast_node_output = helper.make_node(
|
||||
"Cast",
|
||||
inputs=[internal_output_name],
|
||||
outputs=[cast_fp32_name],
|
||||
to=1,
|
||||
name="Cast_Output_" + orig_output_name,
|
||||
)
|
||||
# Append the cast node to the graph
|
||||
graph.node.append(cast_node_output)
|
||||
|
||||
# Update the output's data type info
|
||||
output.type.tensor_type.elem_type = TensorProto.FLOAT
|
||||
|
||||
# Merge the two outputs
|
||||
if "det" in model_path:
|
||||
r1_output = "dets"
|
||||
r2_output = "labels"
|
||||
out_name = "bboxes"
|
||||
out_dim = 6
|
||||
if "pose" in model_path:
|
||||
r1_output = "kpts"
|
||||
r2_output = "scores"
|
||||
out_name = "keypoints"
|
||||
out_dim = 3
|
||||
if "det" in model_path or "pose" in model_path:
|
||||
# Node to expand
|
||||
r2_expanded = r2_output + "_expanded"
|
||||
unsqueeze_node = helper.make_node(
|
||||
"Unsqueeze",
|
||||
inputs=[r2_output],
|
||||
outputs=[r2_expanded],
|
||||
axes=[2],
|
||||
name="Unsqueeze",
|
||||
)
|
||||
|
||||
# Node to concatenate
|
||||
r12_merged = out_name
|
||||
concat_node = helper.make_node(
|
||||
"Concat",
|
||||
inputs=[r1_output, r2_expanded],
|
||||
outputs=[r12_merged],
|
||||
axis=2,
|
||||
name="Merged",
|
||||
)
|
||||
|
||||
# Define the new concatenated output
|
||||
merged_output = helper.make_tensor_value_info(
|
||||
r12_merged,
|
||||
TensorProto.FLOAT,
|
||||
[
|
||||
(
|
||||
graph.input[0].type.tensor_type.shape.dim[0].dim_value
|
||||
if graph.input[0].type.tensor_type.shape.dim[0].dim_value > 0
|
||||
else None
|
||||
),
|
||||
(
|
||||
graph.output[0].type.tensor_type.shape.dim[1].dim_value
|
||||
if graph.output[0].type.tensor_type.shape.dim[1].dim_value > 0
|
||||
else None
|
||||
),
|
||||
out_dim,
|
||||
],
|
||||
)
|
||||
|
||||
# Update the graph
|
||||
graph.node.append(unsqueeze_node)
|
||||
graph.node.append(concat_node)
|
||||
graph.output.pop()
|
||||
graph.output.pop()
|
||||
graph.output.append(merged_output)
|
||||
|
||||
path = re.sub(r"(x)(\d+)x(\d+)x(\d+)", r"\1\3x\4x\2", model_path)
|
||||
path = path.replace(".onnx", "_extra-steps.onnx")
|
||||
onnx.save(model, path)
|
||||
|
||||
@ -34,5 +34,8 @@ RUN pip3 install --upgrade --no-cache-dir onnxconverter_common
|
||||
# Fix an error when profiling
|
||||
RUN pip3 install --upgrade --no-cache-dir "onnxruntime-gpu<1.17"
|
||||
|
||||
RUN pip3 install --upgrade --no-cache-dir tensorflow
|
||||
RUN pip3 install --upgrade --no-cache-dir tf2onnx
|
||||
|
||||
WORKDIR /mmdeploy/
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
276
extras/mmdeploy/make_extra_graphs_tf.py
Normal file
276
extras/mmdeploy/make_extra_graphs_tf.py
Normal file
@ -0,0 +1,276 @@
|
||||
import cv2
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import tf2onnx
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/"
|
||||
det_target_size = (320, 320)
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class BayerToRGB(tf.keras.layers.Layer):
|
||||
"""Convert Bayer image to RGB
|
||||
See: https://stanford.edu/class/ee367/reading/Demosaicing_ICASSP04.pdf
|
||||
See: https://github.com/cheind/pytorch-debayer/blob/master/debayer/modules.py#L231
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layout = "RGGB"
|
||||
self.max_val = 255.0
|
||||
|
||||
self.kernels = tf.constant(
|
||||
np.array(
|
||||
[
|
||||
# G at R/B locations
|
||||
[
|
||||
[0, 0, -1, 0, 0],
|
||||
[0, 0, 2, 0, 0],
|
||||
[-1, 2, 4, 2, -1],
|
||||
[0, 0, 2, 0, 0],
|
||||
[0, 0, -1, 0, 0],
|
||||
],
|
||||
# R/B at G in R/B rows and B/R columns
|
||||
[
|
||||
[0, 0, 0.5, 0, 0],
|
||||
[0, -1, 0, -1, 0],
|
||||
[-1, 4, 5, 4, -1],
|
||||
[0, -1, 0, -1, 0],
|
||||
[0, 0, 0.5, 0, 0],
|
||||
],
|
||||
# R/B at G in B/R rows and R/B columns
|
||||
[
|
||||
[0, 0, 0.5, 0, 0],
|
||||
[0, -1, 4, -1, 0],
|
||||
[-1, 0, 5, 0, -1],
|
||||
[0, -1, 4, -1, 0],
|
||||
[0, 0, 0.5, 0, 0],
|
||||
],
|
||||
# R/B at B/R in B/R rows and B/R columns
|
||||
[
|
||||
[0, 0, -1.5, 0, 0],
|
||||
[0, 2, 0, 2, 0],
|
||||
[-1.5, 0, 6, 0, -1.5],
|
||||
[0, 2, 0, 2, 0],
|
||||
[0, 0, -1.5, 0, 0],
|
||||
],
|
||||
],
|
||||
dtype=np.float32,
|
||||
)
|
||||
.reshape(1, 4, 5, 5)
|
||||
.transpose(2, 3, 0, 1)
|
||||
/ 8.0
|
||||
)
|
||||
self.index = tf.constant(
|
||||
np.array(
|
||||
# Describes the kernel indices that calculate the corresponding RGB values for
|
||||
# the 2x2 layout (RGGB) sub-structure
|
||||
[
|
||||
# Destination R
|
||||
[
|
||||
[4, 1], # identity, R at G in R row B column
|
||||
[2, 3], # R at G in B row R column, R at B in B row R column
|
||||
],
|
||||
# Destination G
|
||||
[
|
||||
[0, 4],
|
||||
[4, 0],
|
||||
],
|
||||
# Destination B
|
||||
[
|
||||
[3, 2],
|
||||
[1, 4],
|
||||
],
|
||||
]
|
||||
).reshape(1, 3, 2, 2)
|
||||
)
|
||||
|
||||
def call(self, img):
|
||||
H, W = tf.shape(img)[1], tf.shape(img)[2]
|
||||
|
||||
# Pad the image
|
||||
tpad = img[:, 0:2, :, :]
|
||||
bpad = img[:, H - 2 : H, :, :]
|
||||
ipad = tf.concat([tpad, img, bpad], axis=1)
|
||||
lpad = ipad[:, :, 0:2, :]
|
||||
rpad = ipad[:, :, W - 2 : W, :]
|
||||
ipad = tf.concat([lpad, ipad, rpad], axis=2)
|
||||
|
||||
# Convolve with kernels
|
||||
planes = tf.nn.conv2d(ipad, self.kernels, strides=[1, 1, 1, 1], padding="VALID")
|
||||
|
||||
# Concatenate identity kernel
|
||||
planes = tf.concat([planes, img], axis=-1)
|
||||
|
||||
# Gather values
|
||||
index_repeated = tf.tile(self.index, multiples=[1, 1, H // 2, W // 2])
|
||||
index_repeated = tf.transpose(index_repeated, perm=[0, 2, 3, 1])
|
||||
row_indices, col_indices = tf.meshgrid(tf.range(H), tf.range(W), indexing="ij")
|
||||
index_tensor = tf.stack([row_indices, col_indices], axis=-1)
|
||||
index_tensor = tf.expand_dims(index_tensor, axis=0)
|
||||
index_tensor = tf.expand_dims(index_tensor, axis=-2)
|
||||
index_tensor = tf.repeat(index_tensor, repeats=3, axis=-2)
|
||||
index_repeated = tf.expand_dims(index_repeated, axis=-1)
|
||||
indices = tf.concat([tf.cast(index_tensor, tf.int64), index_repeated], axis=-1)
|
||||
rgb = tf.gather_nd(planes, indices, batch_dims=1)
|
||||
|
||||
if self.max_val == 255.0:
|
||||
# Make value range valid again
|
||||
rgb = tf.round(rgb)
|
||||
|
||||
return rgb
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def bayer_resize(img, size):
|
||||
"""Resize a Bayer image by splitting color channels"""
|
||||
|
||||
# Split the image into 4 channels
|
||||
r = img[:, 0::2, 0::2, 0]
|
||||
g1 = img[:, 0::2, 1::2, 0]
|
||||
g2 = img[:, 1::2, 0::2, 0]
|
||||
b = img[:, 1::2, 1::2, 0]
|
||||
bsplit = tf.stack([r, g1, g2, b], axis=-1)
|
||||
|
||||
# Resize the image
|
||||
# Make sure the target size is divisible by 2
|
||||
size = (size[0] // 2, size[1] // 2)
|
||||
bsized = tf.image.resize(bsplit, size=size, method="bilinear")
|
||||
|
||||
# Create a bayer image again
|
||||
img = tf.nn.depth_to_space(bsized, block_size=2)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class Letterbox(tf.keras.layers.Layer):
|
||||
def __init__(self, target_size, fill_value=128):
|
||||
"""Resize and pad image while keeping aspect ratio"""
|
||||
super(Letterbox, self).__init__()
|
||||
|
||||
self.b2rgb = BayerToRGB()
|
||||
self.target_size = target_size
|
||||
self.fill_value = fill_value
|
||||
|
||||
def calc_params(self, ishape):
|
||||
img_h, img_w = ishape[1], ishape[2]
|
||||
target_h, target_w = self.target_size
|
||||
|
||||
scale = tf.minimum(target_w / img_w, target_h / img_h)
|
||||
new_w = tf.round(tf.cast(img_w, scale.dtype) * scale)
|
||||
new_h = tf.round(tf.cast(img_h, scale.dtype) * scale)
|
||||
new_w = tf.cast(new_w, tf.int32)
|
||||
new_h = tf.cast(new_h, tf.int32)
|
||||
new_w = new_w - (new_w % 2)
|
||||
new_h = new_h - (new_h % 2)
|
||||
|
||||
pad_w = target_w - new_w
|
||||
pad_h = target_h - new_h
|
||||
pad_left = tf.cast(tf.floor(tf.cast(pad_w, tf.float32) / 2.0), tf.int32)
|
||||
pad_top = tf.cast(tf.floor(tf.cast(pad_h, tf.float32) / 2.0), tf.int32)
|
||||
pad_right = pad_w - pad_left
|
||||
pad_bottom = pad_h - pad_top
|
||||
paddings = [pad_top, pad_bottom, pad_left, pad_right]
|
||||
|
||||
return paddings, scale, (new_w, new_h)
|
||||
|
||||
def call(self, img):
|
||||
paddings, _, (nw, nh) = self.calc_params(tf.shape(img))
|
||||
|
||||
# Resize the image and convert to RGB
|
||||
img = bayer_resize(img, (nh, nw))
|
||||
img = self.b2rgb(img)
|
||||
|
||||
# Pad the image
|
||||
pad_top, pad_bottom, pad_left, pad_right = paddings
|
||||
img = tf.pad(
|
||||
img,
|
||||
paddings=[[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]],
|
||||
mode="CONSTANT",
|
||||
constant_values=self.fill_value,
|
||||
)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
class DetPreprocess(tf.keras.layers.Layer):
|
||||
def __init__(self, target_size, fill_value=114):
|
||||
super(DetPreprocess, self).__init__()
|
||||
self.letterbox = Letterbox(target_size, fill_value)
|
||||
|
||||
def call(self, img):
|
||||
"""img: tf.Tensor of shape [batch, H, W, C], dtype=tf.uint8"""
|
||||
|
||||
# Cast to float32 since TensorRT does not support uint8 layers
|
||||
img = tf.cast(img, tf.float32)
|
||||
|
||||
img = self.letterbox(img)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def rgb2bayer(img):
|
||||
bayer = np.zeros((img.shape[0], img.shape[1]), dtype=img.dtype)
|
||||
bayer[0::2, 0::2] = img[0::2, 0::2, 0]
|
||||
bayer[0::2, 1::2] = img[0::2, 1::2, 1]
|
||||
bayer[1::2, 0::2] = img[1::2, 0::2, 1]
|
||||
bayer[1::2, 1::2] = img[1::2, 1::2, 2]
|
||||
return bayer
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
img_path = "/RapidPoseTriangulation/scripts/../data/h1/54138969-img_003201.jpg"
|
||||
image = cv2.imread(img_path, 3)
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
image = rgb2bayer(image)
|
||||
image = np.expand_dims(image, axis=-1)
|
||||
image = np.asarray(image, dtype=np.uint8)
|
||||
|
||||
# Initialize the DetPreprocess module
|
||||
preprocess_model = tf.keras.Sequential()
|
||||
preprocess_model.add(DetPreprocess(target_size=det_target_size))
|
||||
det_dummy_input_a0 = tf.convert_to_tensor(
|
||||
np.expand_dims(image, axis=0), dtype=tf.uint8
|
||||
)
|
||||
det_dummy_output_a0 = preprocess_model(det_dummy_input_a0)
|
||||
print("\n", det_dummy_output_a0.shape, "\n")
|
||||
|
||||
output_a0 = det_dummy_output_a0.numpy()
|
||||
output_a0 = np.squeeze(output_a0, axis=0)
|
||||
output_a0 = np.asarray(output_a0, dtype=np.uint8)
|
||||
output_a0 = cv2.cvtColor(output_a0, cv2.COLOR_RGB2BGR)
|
||||
cv2.imwrite(base_path + "det_preprocess.jpg", output_a0)
|
||||
|
||||
# Export to ONNX
|
||||
input_signature = [tf.TensorSpec([None, None, None, 1], tf.uint8, name="x")]
|
||||
_, _ = tf2onnx.convert.from_keras(
|
||||
preprocess_model,
|
||||
input_signature,
|
||||
opset=11,
|
||||
output_path=base_path + "det_preprocess.onnx",
|
||||
target=["tensorrt"],
|
||||
)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
9242
media/RESULTS.md
9242
media/RESULTS.md
File diff suppressed because it is too large
Load Diff
45
ros/README.md
Normal file
45
ros/README.md
Normal file
@ -0,0 +1,45 @@
|
||||
# ROS-Wrapper
|
||||
|
||||
Run pose estimator with ros topics as inputs and publish detected poses.
|
||||
|
||||
<br>
|
||||
|
||||
- Build container:
|
||||
```bash
|
||||
docker build --progress=plain -t rapidposetriangulation_ros -f ros/dockerfile .
|
||||
```
|
||||
|
||||
- Update or remove the `ROS_DOMAIN_ID` in `docker-compose.yml` to fit your environment
|
||||
|
||||
- Run and test:
|
||||
```bash
|
||||
xhost +; docker compose -f ros/docker-compose.yml up
|
||||
|
||||
docker exec -it ros-test_node-1 bash
|
||||
export ROS_DOMAIN_ID=18
|
||||
```
|
||||
|
||||
### Debugging
|
||||
|
||||
```bash
|
||||
cd /RapidPoseTriangulation/ros/rpt2D_wrapper_cpp/tests/
|
||||
|
||||
g++ -std=c++17 -O3 -march=native -Wall -DCOMPILE_EXAMPLE_MAIN \
|
||||
$(pkg-config --cflags opencv4) \
|
||||
-I /onnxruntime/include \
|
||||
-I /onnxruntime/include/onnxruntime/core/session \
|
||||
-I /onnxruntime/include/onnxruntime/core/providers/tensorrt \
|
||||
-L /onnxruntime/build/Linux/Release \
|
||||
my_app.cpp \
|
||||
-o my_app \
|
||||
-Wl,--start-group \
|
||||
-lonnxruntime_providers_tensorrt \
|
||||
-lonnxruntime_providers_shared \
|
||||
-lonnxruntime_providers_cuda \
|
||||
-lonnxruntime \
|
||||
-Wl,--end-group \
|
||||
$(pkg-config --libs opencv4) \
|
||||
-Wl,-rpath,/onnxruntime/build/Linux/Release
|
||||
|
||||
./my_app
|
||||
```
|
||||
71
ros/docker-compose.yml
Normal file
71
ros/docker-compose.yml
Normal file
@ -0,0 +1,71 @@
|
||||
version: "2.3"
|
||||
# runtime: nvidia needs version 2 else change standard runtime at host pc
|
||||
|
||||
services:
|
||||
|
||||
test_node:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- ../:/RapidPoseTriangulation/
|
||||
- ../skelda/:/skelda/
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'sleep infinity'
|
||||
|
||||
estimator:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- ../:/RapidPoseTriangulation/
|
||||
- ../skelda/:/skelda/
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
# command: /bin/bash -i -c 'export ROS_DOMAIN_ID=18 && ros2 run rpt2D_wrapper_py rpt2D_wrapper'
|
||||
command: /bin/bash -i -c 'export ROS_DOMAIN_ID=18 && ros2 run rpt2D_wrapper_cpp rpt2D_wrapper'
|
||||
|
||||
pose_visualizer:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- ../:/RapidPoseTriangulation/
|
||||
- ../skelda/:/skelda/
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'sleep 2 && export ROS_DOMAIN_ID=18 && ros2 run pose2D_visualizer pose2D_visualizer'
|
||||
|
||||
pose_viewer:
|
||||
image: rapidposetriangulation_ros
|
||||
network_mode: "host"
|
||||
ipc: "host"
|
||||
runtime: nvidia
|
||||
privileged: true
|
||||
volumes:
|
||||
- /tmp/.X11-unix:/tmp/.X11-unix
|
||||
- /dev/shm:/dev/shm
|
||||
environment:
|
||||
- DISPLAY
|
||||
- QT_X11_NO_MITSHM=1
|
||||
- "PYTHONUNBUFFERED=1"
|
||||
command: /bin/bash -i -c 'sleep 2 && export ROS_DOMAIN_ID=18 && ros2 run image_view image_view --ros-args --remap image:=/camera01/img_with_pose -p autosize:=True -p window_name:=MyImage'
|
||||
82
ros/dockerfile
Normal file
82
ros/dockerfile
Normal file
@ -0,0 +1,82 @@
|
||||
FROM rapidposetriangulation
|
||||
WORKDIR /
|
||||
|
||||
# Install ONNX runtime
|
||||
# See: https://github.com/microsoft/onnxruntime/blob/main/dockerfiles/Dockerfile.tensorrt
|
||||
RUN pip3 uninstall -y onnxruntime-gpu
|
||||
RUN git clone --recursive --depth=1 --branch=v1.20.1 https://github.com/Microsoft/onnxruntime.git
|
||||
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/cmake-3.30.1-linux-x86_64/bin:${PATH}
|
||||
ARG CMAKE_CUDA_ARCHITECTURES=75;80;90
|
||||
ENV TRT_VERSION=10.5.0.18
|
||||
RUN /bin/sh onnxruntime/dockerfiles/scripts/install_common_deps.sh
|
||||
RUN /bin/sh onnxruntime/dockerfiles/scripts/checkout_submodules.sh ${trt_version}
|
||||
RUN ls
|
||||
RUN cd onnxruntime && \
|
||||
/bin/sh build.sh --allow_running_as_root --parallel --build_shared_lib \
|
||||
--cuda_home /usr/local/cuda --cudnn_home /usr/lib/x86_64-linux-gnu/ --use_tensorrt \
|
||||
--tensorrt_home /usr/lib/x86_64-linux-gnu/ --config Release --build_wheel --skip_tests \
|
||||
--skip_submodule_sync --cmake_extra_defines '"CMAKE_CUDA_ARCHITECTURES='${CMAKE_CUDA_ARCHITECTURES}'"'
|
||||
RUN cd onnxruntime && pip install build/Linux/Release/dist/*.whl
|
||||
|
||||
# Install ROS2
|
||||
# https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends locales
|
||||
RUN locale-gen en_US en_US.UTF-8 && update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends software-properties-common
|
||||
RUN add-apt-repository universe
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends curl
|
||||
RUN curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg
|
||||
RUN echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-release && echo $UBUNTU_CODENAME) main" > /etc/apt/sources.list.d/ros2.list
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends ros-humble-ros-base python3-argcomplete
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends ros-dev-tools
|
||||
RUN echo "source /opt/ros/humble/setup.bash" >> ~/.bashrc
|
||||
|
||||
# Create ROS2 workspace for basic packages
|
||||
RUN mkdir -p /project/base/src/
|
||||
RUN cd /project/base/; colcon build
|
||||
RUN echo "source /project/base/install/setup.bash" >> ~/.bashrc
|
||||
|
||||
# Install opencv and cv_bridge
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libboost-dev
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libboost-python-dev
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libopencv-dev
|
||||
RUN cd /project/base/src/; git clone --branch humble --depth=1 https://github.com/ros-perception/vision_opencv.git
|
||||
RUN /bin/bash -i -c 'cd /project/base/; colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release'
|
||||
|
||||
# Install ROS2 image viewer
|
||||
RUN cd /project/base/src/; git clone --branch=humble --depth=1 https://github.com/ros-perception/image_pipeline.git
|
||||
RUN cd /project/base/src/; git clone --branch=humble --depth=1 https://github.com/ros-perception/image_common.git
|
||||
RUN /bin/bash -i -c 'cd /project/base/; colcon build --symlink-install --packages-select camera_calibration_parsers image_transport image_view --cmake-args -DCMAKE_BUILD_TYPE=Release'
|
||||
|
||||
# Fix module not found error when displaying images
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends libcanberra-gtk-module libcanberra-gtk3-module
|
||||
|
||||
# Create ROS2 workspace for project packages
|
||||
RUN mkdir -p /project/dev_ws/src/
|
||||
RUN cd /project/dev_ws/; colcon build
|
||||
RUN echo "source /project/dev_ws/install/setup.bash" >> ~/.bashrc
|
||||
|
||||
# Fix ros package building error
|
||||
RUN pip3 install --no-cache-dir "setuptools<=58.2.0"
|
||||
|
||||
# Copy modules
|
||||
COPY ./ros/pose2D_visualizer /RapidPoseTriangulation/ros/pose2D_visualizer/
|
||||
COPY ./ros/rpt2D_wrapper_py /RapidPoseTriangulation/ros/rpt2D_wrapper_py/
|
||||
COPY ./ros/rpt2D_wrapper_cpp /RapidPoseTriangulation/ros/rpt2D_wrapper_cpp/
|
||||
|
||||
# Link and build as ros package
|
||||
RUN ln -s /RapidPoseTriangulation/ros/pose2D_visualizer/ /project/dev_ws/src/pose2D_visualizer
|
||||
RUN ln -s /RapidPoseTriangulation/ros/rpt2D_wrapper_py/ /project/dev_ws/src/rpt2D_wrapper_py
|
||||
RUN ln -s /RapidPoseTriangulation/ros/rpt2D_wrapper_cpp/ /project/dev_ws/src/rpt2D_wrapper_cpp
|
||||
RUN /bin/bash -i -c 'cd /project/dev_ws/; colcon build --symlink-install --cmake-args -DCMAKE_BUILD_TYPE=Release'
|
||||
|
||||
# Update ros packages -> autocompletion and check
|
||||
RUN /bin/bash -i -c 'ros2 pkg list'
|
||||
|
||||
# Clear cache to save space, only has an effect if image is squashed
|
||||
RUN apt-get autoremove -y \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
WORKDIR /RapidPoseTriangulation/
|
||||
CMD ["/bin/bash"]
|
||||
18
ros/pose2D_visualizer/package.xml
Normal file
18
ros/pose2D_visualizer/package.xml
Normal file
@ -0,0 +1,18 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>pose2D_visualizer</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="root@todo.todo">root</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
<test_depend>python3-pytest</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_python</build_type>
|
||||
</export>
|
||||
</package>
|
||||
0
ros/pose2D_visualizer/pose2D_visualizer/__init__.py
Normal file
0
ros/pose2D_visualizer/pose2D_visualizer/__init__.py
Normal file
152
ros/pose2D_visualizer/pose2D_visualizer/pose2D_visualizer.py
Normal file
152
ros/pose2D_visualizer/pose2D_visualizer/pose2D_visualizer.py
Normal file
@ -0,0 +1,152 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
|
||||
import cv2
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
import rclpy
|
||||
from cv_bridge import CvBridge
|
||||
from rclpy.qos import QoSHistoryPolicy, QoSProfile, QoSReliabilityPolicy
|
||||
from sensor_msgs.msg import Image
|
||||
from std_msgs.msg import String
|
||||
|
||||
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||
sys.path.append(filepath + "../../../scripts/")
|
||||
import test_triangulate
|
||||
|
||||
from skelda import utils_view
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
bridge = CvBridge()
|
||||
node = None
|
||||
publisher_img = None
|
||||
|
||||
cam_id = "camera01"
|
||||
img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw"
|
||||
pose_input_topic = "/poses/" + cam_id
|
||||
img_output_topic = "/" + cam_id + "/img_with_pose"
|
||||
|
||||
last_input_image = None
|
||||
lock = threading.Lock()
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_images(image_data):
|
||||
global last_input_image, lock
|
||||
|
||||
# Convert into cv images from image string
|
||||
if image_data.encoding == "bayer_rggb8":
|
||||
bayer_image = bridge.imgmsg_to_cv2(image_data, "bayer_rggb8")
|
||||
color_image = test_triangulate.bayer2rgb(bayer_image)
|
||||
elif image_data.encoding == "mono8":
|
||||
gray_image = bridge.imgmsg_to_cv2(image_data, "mono8")
|
||||
color_image = cv2.cvtColor(gray_image, cv2.COLOR_GRAY2RGB)
|
||||
elif image_data.encoding == "rgb8":
|
||||
color_image = bridge.imgmsg_to_cv2(image_data, "rgb8")
|
||||
else:
|
||||
raise ValueError("Unknown image encoding:", image_data.encoding)
|
||||
|
||||
time_stamp = image_data.header.stamp.sec + image_data.header.stamp.nanosec / 1.0e9
|
||||
|
||||
with lock:
|
||||
last_input_image = (color_image, time_stamp)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_poses(pose_data):
|
||||
global last_input_image, lock
|
||||
|
||||
ptime = time.time()
|
||||
if last_input_image is None:
|
||||
return
|
||||
|
||||
# Convert pose data from json string
|
||||
poses = json.loads(pose_data.data)
|
||||
|
||||
# Collect inputs
|
||||
images_2d = []
|
||||
timestamps = []
|
||||
with lock:
|
||||
img = np.copy(last_input_image[0])
|
||||
ts = last_input_image[1]
|
||||
images_2d.append(img)
|
||||
timestamps.append(ts)
|
||||
|
||||
# Visualize 2D poses
|
||||
bodies2D = poses["bodies2D"]
|
||||
colors = plt.cm.hsv(np.linspace(0, 1, len(bodies2D), endpoint=False)).tolist()
|
||||
colors = [[int(c[0] * 255), int(c[1] * 255), int(c[2] * 255)] for c in colors]
|
||||
for i, body in enumerate(bodies2D):
|
||||
color = list(reversed(colors[i]))
|
||||
img = utils_view.draw_body_in_image(img, body, poses["joints"], color)
|
||||
|
||||
# Publish image with poses
|
||||
publish(img)
|
||||
|
||||
msg = "Visualization time: {:.3f}s"
|
||||
print(msg.format(time.time() - ptime))
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def publish(img):
|
||||
# Publish image data
|
||||
msg = bridge.cv2_to_imgmsg(img, "rgb8")
|
||||
publisher_img.publish(msg)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
global node, publisher_img
|
||||
|
||||
# Start node
|
||||
rclpy.init(args=sys.argv)
|
||||
node = rclpy.create_node("pose2D_visualizer")
|
||||
|
||||
# Quality of service settings
|
||||
qos_profile = QoSProfile(
|
||||
reliability=QoSReliabilityPolicy.RELIABLE,
|
||||
history=QoSHistoryPolicy.KEEP_LAST,
|
||||
depth=1,
|
||||
)
|
||||
|
||||
# Create subscribers
|
||||
_ = node.create_subscription(
|
||||
Image,
|
||||
img_input_topic,
|
||||
callback_images,
|
||||
qos_profile,
|
||||
)
|
||||
_ = node.create_subscription(
|
||||
String,
|
||||
pose_input_topic,
|
||||
callback_poses,
|
||||
qos_profile,
|
||||
)
|
||||
|
||||
# Create publishers
|
||||
publisher_img = node.create_publisher(Image, img_output_topic, qos_profile)
|
||||
|
||||
node.get_logger().info("Finished initialization of pose visualizer")
|
||||
|
||||
# Run ros update thread
|
||||
rclpy.spin(node)
|
||||
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
0
ros/pose2D_visualizer/resource/pose2D_visualizer
Normal file
0
ros/pose2D_visualizer/resource/pose2D_visualizer
Normal file
4
ros/pose2D_visualizer/setup.cfg
Normal file
4
ros/pose2D_visualizer/setup.cfg
Normal file
@ -0,0 +1,4 @@
|
||||
[develop]
|
||||
script_dir=$base/lib/pose2D_visualizer
|
||||
[install]
|
||||
install_scripts=$base/lib/pose2D_visualizer
|
||||
23
ros/pose2D_visualizer/setup.py
Normal file
23
ros/pose2D_visualizer/setup.py
Normal file
@ -0,0 +1,23 @@
|
||||
from setuptools import setup
|
||||
|
||||
package_name = "pose2D_visualizer"
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version="0.0.0",
|
||||
packages=[package_name],
|
||||
data_files=[
|
||||
("share/ament_index/resource_index/packages", ["resource/" + package_name]),
|
||||
("share/" + package_name, ["package.xml"]),
|
||||
],
|
||||
install_requires=["setuptools"],
|
||||
zip_safe=True,
|
||||
maintainer="root",
|
||||
maintainer_email="root@todo.todo",
|
||||
description="TODO: Package description",
|
||||
license="TODO: License declaration",
|
||||
tests_require=["pytest"],
|
||||
entry_points={
|
||||
"console_scripts": ["pose2D_visualizer = pose2D_visualizer.pose2D_visualizer:main"],
|
||||
},
|
||||
)
|
||||
27
ros/pose2D_visualizer/test/test_copyright.py
Normal file
27
ros/pose2D_visualizer/test/test_copyright.py
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_copyright.main import main
|
||||
|
||||
|
||||
# Remove the `skip` decorator once the source file(s) have a copyright header
|
||||
@pytest.mark.skip(
|
||||
reason="No copyright header has been placed in the generated source file."
|
||||
)
|
||||
@pytest.mark.copyright
|
||||
@pytest.mark.linter
|
||||
def test_copyright():
|
||||
rc = main(argv=[".", "test"])
|
||||
assert rc == 0, "Found errors"
|
||||
25
ros/pose2D_visualizer/test/test_flake8.py
Normal file
25
ros/pose2D_visualizer/test/test_flake8.py
Normal file
@ -0,0 +1,25 @@
|
||||
# Copyright 2017 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_flake8.main import main_with_errors
|
||||
|
||||
|
||||
@pytest.mark.flake8
|
||||
@pytest.mark.linter
|
||||
def test_flake8():
|
||||
rc, errors = main_with_errors(argv=[])
|
||||
assert rc == 0, "Found %d code style errors / warnings:\n" % len(
|
||||
errors
|
||||
) + "\n".join(errors)
|
||||
23
ros/pose2D_visualizer/test/test_pep257.py
Normal file
23
ros/pose2D_visualizer/test/test_pep257.py
Normal file
@ -0,0 +1,23 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_pep257.main import main
|
||||
|
||||
|
||||
@pytest.mark.linter
|
||||
@pytest.mark.pep257
|
||||
def test_pep257():
|
||||
rc = main(argv=[".", "test"])
|
||||
assert rc == 0, "Found code style errors / warnings"
|
||||
65
ros/rpt2D_wrapper_cpp/CMakeLists.txt
Normal file
65
ros/rpt2D_wrapper_cpp/CMakeLists.txt
Normal file
@ -0,0 +1,65 @@
|
||||
cmake_minimum_required(VERSION 3.5)
|
||||
project(rpt2D_wrapper_cpp)
|
||||
|
||||
# Default to C99
|
||||
if(NOT CMAKE_C_STANDARD)
|
||||
set(CMAKE_C_STANDARD 99)
|
||||
endif()
|
||||
|
||||
# Default to C++17
|
||||
if(NOT CMAKE_CXX_STANDARD)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
endif()
|
||||
|
||||
if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
|
||||
add_compile_options(-Wall -Wextra -Wpedantic)
|
||||
endif()
|
||||
|
||||
# find dependencies
|
||||
find_package(ament_cmake REQUIRED)
|
||||
find_package(rclcpp REQUIRED)
|
||||
find_package(std_msgs REQUIRED)
|
||||
find_package(sensor_msgs REQUIRED)
|
||||
find_package(cv_bridge REQUIRED)
|
||||
find_package(OpenCV REQUIRED)
|
||||
|
||||
### 3) ONNX Runtime
|
||||
include_directories(/onnxruntime/include
|
||||
/onnxruntime/include/onnxruntime/core/session
|
||||
/onnxruntime/include/onnxruntime/core/providers/tensorrt)
|
||||
link_directories(/onnxruntime/build/Linux/Release)
|
||||
|
||||
add_executable(rpt2D_wrapper src/rpt2D_wrapper.cpp)
|
||||
ament_target_dependencies(rpt2D_wrapper rclcpp std_msgs sensor_msgs cv_bridge)
|
||||
target_include_directories(rpt2D_wrapper PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
|
||||
$<INSTALL_INTERFACE:include>)
|
||||
|
||||
target_link_libraries(rpt2D_wrapper
|
||||
${OpenCV_LIBS}
|
||||
onnxruntime_providers_tensorrt
|
||||
onnxruntime_providers_shared
|
||||
onnxruntime_providers_cuda
|
||||
onnxruntime
|
||||
)
|
||||
|
||||
set_target_properties(rpt2D_wrapper PROPERTIES
|
||||
BUILD_WITH_INSTALL_RPATH TRUE
|
||||
INSTALL_RPATH "/onnxruntime/build/Linux/Release"
|
||||
)
|
||||
|
||||
install(TARGETS rpt2D_wrapper
|
||||
DESTINATION lib/${PROJECT_NAME})
|
||||
|
||||
if(BUILD_TESTING)
|
||||
find_package(ament_lint_auto REQUIRED)
|
||||
# the following line skips the linter which checks for copyrights
|
||||
# uncomment the line when a copyright and license is not present in all source files
|
||||
#set(ament_cmake_copyright_FOUND TRUE)
|
||||
# the following line skips cpplint (only works in a git repo)
|
||||
# uncomment the line when this package is not in a git repo
|
||||
#set(ament_cmake_cpplint_FOUND TRUE)
|
||||
ament_lint_auto_find_test_dependencies()
|
||||
endif()
|
||||
|
||||
ament_package()
|
||||
24674
ros/rpt2D_wrapper_cpp/include/nlohmann/json.hpp
Normal file
24674
ros/rpt2D_wrapper_cpp/include/nlohmann/json.hpp
Normal file
File diff suppressed because it is too large
Load Diff
25
ros/rpt2D_wrapper_cpp/package.xml
Normal file
25
ros/rpt2D_wrapper_cpp/package.xml
Normal file
@ -0,0 +1,25 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>rpt2D_wrapper_cpp</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="root@todo.todo">root</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<buildtool_depend>ament_cmake</buildtool_depend>
|
||||
|
||||
<depend>rclcpp</depend>
|
||||
<depend>std_msgs</depend>
|
||||
<depend>sensor_msgs</depend>
|
||||
|
||||
<depend>cv_bridge</depend>
|
||||
<depend>OpenCV</depend>
|
||||
|
||||
<test_depend>ament_lint_auto</test_depend>
|
||||
<test_depend>ament_lint_common</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_cmake</build_type>
|
||||
</export>
|
||||
</package>
|
||||
261
ros/rpt2D_wrapper_cpp/src/rpt2D_wrapper.cpp
Normal file
261
ros/rpt2D_wrapper_cpp/src/rpt2D_wrapper.cpp
Normal file
@ -0,0 +1,261 @@
|
||||
#include <chrono>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <mutex>
|
||||
#include <atomic>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
// ROS2
|
||||
#include <rclcpp/rclcpp.hpp>
|
||||
#include <sensor_msgs/msg/image.hpp>
|
||||
#include <std_msgs/msg/string.hpp>
|
||||
|
||||
// OpenCV / cv_bridge
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <cv_bridge/cv_bridge.h>
|
||||
|
||||
// JSON library
|
||||
#include "nlohmann/json.hpp"
|
||||
using json = nlohmann::json;
|
||||
|
||||
#include "test_triangulate.hpp"
|
||||
#include "utils_2d_pose.hpp"
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
static const std::string cam_id = "camera01";
|
||||
static const std::string img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw";
|
||||
static const std::string pose_out_topic = "/poses/" + cam_id;
|
||||
|
||||
static const float min_bbox_score = 0.4;
|
||||
static const float min_bbox_area = 0.1 * 0.1;
|
||||
static const bool batch_poses = true;
|
||||
|
||||
// =================================================================================================
|
||||
// =================================================================================================
|
||||
|
||||
class Rpt2DWrapperNode : public rclcpp::Node
|
||||
{
|
||||
public:
|
||||
Rpt2DWrapperNode(const std::string &node_name)
|
||||
: Node(node_name)
|
||||
{
|
||||
this->stop_flag = false;
|
||||
this->last_input_image = cv::Mat();
|
||||
this->last_input_time = 0.0;
|
||||
|
||||
// QoS
|
||||
rclcpp::QoS qos_profile(1);
|
||||
qos_profile.reliable();
|
||||
qos_profile.keep_last(1);
|
||||
|
||||
// Setup subscriber
|
||||
image_sub_ = this->create_subscription<sensor_msgs::msg::Image>(
|
||||
img_input_topic, qos_profile,
|
||||
std::bind(&Rpt2DWrapperNode::callbackImages, this, std::placeholders::_1));
|
||||
|
||||
// Setup publisher
|
||||
pose_pub_ = this->create_publisher<std_msgs::msg::String>(pose_out_topic, qos_profile);
|
||||
|
||||
// Load model
|
||||
bool whole_body = test_triangulate::use_whole_body();
|
||||
this->kpt_model = std::make_unique<utils_2d_pose::PosePredictor>(
|
||||
whole_body, min_bbox_score, min_bbox_area, batch_poses);
|
||||
|
||||
RCLCPP_INFO(this->get_logger(), "Finished initialization of pose estimator.");
|
||||
|
||||
// Start background prediction thread
|
||||
model_thread = std::thread(&Rpt2DWrapperNode::callbackWrapper, this);
|
||||
}
|
||||
|
||||
~Rpt2DWrapperNode()
|
||||
{
|
||||
stop_flag = true;
|
||||
if (model_thread.joinable())
|
||||
{
|
||||
model_thread.join();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr image_sub_;
|
||||
rclcpp::Publisher<std_msgs::msg::String>::SharedPtr pose_pub_;
|
||||
|
||||
// Pose model pointer
|
||||
std::unique_ptr<utils_2d_pose::PosePredictor> kpt_model;
|
||||
|
||||
// Threading
|
||||
std::thread model_thread;
|
||||
std::mutex mutex;
|
||||
std::atomic<bool> stop_flag;
|
||||
|
||||
cv::Mat last_input_image;
|
||||
double last_input_time;
|
||||
|
||||
void callbackImages(const sensor_msgs::msg::Image::SharedPtr msg);
|
||||
void callbackModel();
|
||||
|
||||
void callbackWrapper()
|
||||
{
|
||||
using namespace std::chrono_literals;
|
||||
while (!stop_flag)
|
||||
{
|
||||
callbackModel();
|
||||
std::this_thread::sleep_for(std::chrono::microseconds(100));
|
||||
}
|
||||
}
|
||||
|
||||
void publish(const json &data)
|
||||
{
|
||||
std_msgs::msg::String msg;
|
||||
msg.data = data.dump();
|
||||
pose_pub_->publish(msg);
|
||||
}
|
||||
};
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
void Rpt2DWrapperNode::callbackImages(const sensor_msgs::msg::Image::SharedPtr msg)
|
||||
{
|
||||
// Load or convert image to Bayer format
|
||||
cv::Mat bayer_image;
|
||||
try
|
||||
{
|
||||
if (msg->encoding == "mono8")
|
||||
{
|
||||
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, msg->encoding);
|
||||
bayer_image = cv_ptr->image;
|
||||
}
|
||||
else if (msg->encoding == "bayer_rggb8")
|
||||
{
|
||||
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, msg->encoding);
|
||||
bayer_image = cv_ptr->image;
|
||||
}
|
||||
else if (msg->encoding == "rgb8")
|
||||
{
|
||||
cv_bridge::CvImageConstPtr cv_ptr = cv_bridge::toCvShare(msg, "rgb8");
|
||||
cv::Mat color_image = cv_ptr->image;
|
||||
bayer_image = test_triangulate::rgb2bayer(color_image);
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Unknown image encoding: " + msg->encoding);
|
||||
}
|
||||
}
|
||||
catch (const std::exception &e)
|
||||
{
|
||||
RCLCPP_ERROR(this->get_logger(), "cv_bridge exception: %s", e.what());
|
||||
return;
|
||||
}
|
||||
|
||||
// Get timestamp
|
||||
double time_stamp = msg->header.stamp.sec + msg->header.stamp.nanosec / 1.0e9;
|
||||
|
||||
// Store in member variables with lock
|
||||
{
|
||||
std::lock_guard<std::mutex> lk(mutex);
|
||||
this->last_input_image = std::move(bayer_image);
|
||||
this->last_input_time = time_stamp;
|
||||
}
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
void Rpt2DWrapperNode::callbackModel()
|
||||
{
|
||||
auto ptime = std::chrono::high_resolution_clock::now();
|
||||
|
||||
// Check if we have an image
|
||||
cv::Mat local_image;
|
||||
double local_timestamp = 0.0;
|
||||
{
|
||||
std::lock_guard<std::mutex> lk(mutex);
|
||||
if (last_input_time == 0.0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
local_image = std::move(last_input_image);
|
||||
local_timestamp = last_input_time;
|
||||
|
||||
last_input_image = cv::Mat();
|
||||
last_input_time = 0.0;
|
||||
}
|
||||
|
||||
// Create image vector
|
||||
cv::Mat rgb_image = test_triangulate::bayer2rgb(local_image);
|
||||
std::vector<cv::Mat> images_2d;
|
||||
images_2d.push_back(rgb_image);
|
||||
|
||||
// Predict 2D poses
|
||||
auto poses_2d_all = kpt_model->predict(images_2d);
|
||||
auto poses_2d_upd = test_triangulate::update_keypoints(
|
||||
poses_2d_all, test_triangulate::joint_names_2d);
|
||||
auto &poses_2d = poses_2d_upd[0];
|
||||
|
||||
// Drop persons with no joints
|
||||
std::vector<std::vector<std::array<float, 3>>> valid_poses;
|
||||
for (auto &person : poses_2d)
|
||||
{
|
||||
float sum_conf = 0.0;
|
||||
for (auto &kp : person)
|
||||
{
|
||||
sum_conf += kp[2];
|
||||
}
|
||||
if (sum_conf > 0.0)
|
||||
{
|
||||
valid_poses.push_back(person);
|
||||
}
|
||||
}
|
||||
|
||||
// Round poses to 3 decimal places
|
||||
for (auto &person : valid_poses)
|
||||
{
|
||||
for (auto &kp : person)
|
||||
{
|
||||
kp[0] = std::round(kp[0] * 1000.0) / 1000.0;
|
||||
kp[1] = std::round(kp[1] * 1000.0) / 1000.0;
|
||||
kp[2] = std::round(kp[2] * 1000.0) / 1000.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Build JSON
|
||||
auto ts_pose = std::chrono::high_resolution_clock::now();
|
||||
double ts_pose_sec = std::chrono::duration<double>(ts_pose.time_since_epoch()).count();
|
||||
double z_images_pose = ts_pose_sec - local_timestamp;
|
||||
|
||||
json poses_msg;
|
||||
poses_msg["bodies2D"] = valid_poses; // shape: persons x keypoints x 3
|
||||
poses_msg["joints"] = test_triangulate::joint_names_2d;
|
||||
poses_msg["num_persons"] = valid_poses.size();
|
||||
poses_msg["timestamps"] = {
|
||||
{"image", local_timestamp},
|
||||
{"pose", ts_pose_sec},
|
||||
{"z-images-pose", z_images_pose}};
|
||||
|
||||
// Publish
|
||||
publish(poses_msg);
|
||||
|
||||
// Print info
|
||||
double elapsed_time = std::chrono::duration<double>(
|
||||
std::chrono::high_resolution_clock::now() - ptime)
|
||||
.count();
|
||||
std::cout << "Detected persons: " << valid_poses.size()
|
||||
<< " - Prediction time: " << elapsed_time << "s" << std::endl;
|
||||
}
|
||||
|
||||
// =================================================================================================
|
||||
// =================================================================================================
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
rclcpp::init(argc, argv);
|
||||
|
||||
auto node = std::make_shared<Rpt2DWrapperNode>("rpt2D_wrapper");
|
||||
rclcpp::spin(node);
|
||||
|
||||
rclcpp::shutdown();
|
||||
return 0;
|
||||
}
|
||||
296
ros/rpt2D_wrapper_cpp/src/test_triangulate.hpp
Normal file
296
ros/rpt2D_wrapper_cpp/src/test_triangulate.hpp
Normal file
@ -0,0 +1,296 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
// =================================================================================================
|
||||
|
||||
namespace test_triangulate
|
||||
{
|
||||
// If any part shall be disabled, also update the joint names list
|
||||
static const std::map<std::string, bool> whole_body = {
|
||||
{"foots", true},
|
||||
{"face", true},
|
||||
{"hands", true},
|
||||
};
|
||||
|
||||
static const std::vector<std::string> joint_names_2d = {
|
||||
// coco
|
||||
"nose",
|
||||
"eye_left",
|
||||
"eye_right",
|
||||
"ear_left",
|
||||
"ear_right",
|
||||
"shoulder_left",
|
||||
"shoulder_right",
|
||||
"elbow_left",
|
||||
"elbow_right",
|
||||
"wrist_left",
|
||||
"wrist_right",
|
||||
"hip_left",
|
||||
"hip_right",
|
||||
"knee_left",
|
||||
"knee_right",
|
||||
"ankle_left",
|
||||
"ankle_right",
|
||||
// foot
|
||||
"foot_toe_big_left",
|
||||
"foot_toe_small_left",
|
||||
"foot_heel_left",
|
||||
"foot_toe_big_right",
|
||||
"foot_toe_small_right",
|
||||
"foot_heel_right",
|
||||
// face
|
||||
"face_jaw_right_1",
|
||||
"face_jaw_right_2",
|
||||
"face_jaw_right_3",
|
||||
"face_jaw_right_4",
|
||||
"face_jaw_right_5",
|
||||
"face_jaw_right_6",
|
||||
"face_jaw_right_7",
|
||||
"face_jaw_right_8",
|
||||
"face_jaw_middle",
|
||||
"face_jaw_left_1",
|
||||
"face_jaw_left_2",
|
||||
"face_jaw_left_3",
|
||||
"face_jaw_left_4",
|
||||
"face_jaw_left_5",
|
||||
"face_jaw_left_6",
|
||||
"face_jaw_left_7",
|
||||
"face_jaw_left_8",
|
||||
"face_eyebrow_right_1",
|
||||
"face_eyebrow_right_2",
|
||||
"face_eyebrow_right_3",
|
||||
"face_eyebrow_right_4",
|
||||
"face_eyebrow_right_5",
|
||||
"face_eyebrow_left_1",
|
||||
"face_eyebrow_left_2",
|
||||
"face_eyebrow_left_3",
|
||||
"face_eyebrow_left_4",
|
||||
"face_eyebrow_left_5",
|
||||
"face_nose_1",
|
||||
"face_nose_2",
|
||||
"face_nose_3",
|
||||
"face_nose_4",
|
||||
"face_nose_5",
|
||||
"face_nose_6",
|
||||
"face_nose_7",
|
||||
"face_nose_8",
|
||||
"face_nose_9",
|
||||
"face_eye_right_1",
|
||||
"face_eye_right_2",
|
||||
"face_eye_right_3",
|
||||
"face_eye_right_4",
|
||||
"face_eye_right_5",
|
||||
"face_eye_right_6",
|
||||
"face_eye_left_1",
|
||||
"face_eye_left_2",
|
||||
"face_eye_left_3",
|
||||
"face_eye_left_4",
|
||||
"face_eye_left_5",
|
||||
"face_eye_left_6",
|
||||
"face_mouth_1",
|
||||
"face_mouth_2",
|
||||
"face_mouth_3",
|
||||
"face_mouth_4",
|
||||
"face_mouth_5",
|
||||
"face_mouth_6",
|
||||
"face_mouth_7",
|
||||
"face_mouth_8",
|
||||
"face_mouth_9",
|
||||
"face_mouth_10",
|
||||
"face_mouth_11",
|
||||
"face_mouth_12",
|
||||
"face_mouth_13",
|
||||
"face_mouth_14",
|
||||
"face_mouth_15",
|
||||
"face_mouth_16",
|
||||
"face_mouth_17",
|
||||
"face_mouth_18",
|
||||
"face_mouth_19",
|
||||
"face_mouth_20",
|
||||
// hand
|
||||
"hand_wrist_left",
|
||||
"hand_finger_thumb_left_1",
|
||||
"hand_finger_thumb_left_2",
|
||||
"hand_finger_thumb_left_3",
|
||||
"hand_finger_thumb_left_4",
|
||||
"hand_finger_index_left_1",
|
||||
"hand_finger_index_left_2",
|
||||
"hand_finger_index_left_3",
|
||||
"hand_finger_index_left_4",
|
||||
"hand_finger_middle_left_1",
|
||||
"hand_finger_middle_left_2",
|
||||
"hand_finger_middle_left_3",
|
||||
"hand_finger_middle_left_4",
|
||||
"hand_finger_ring_left_1",
|
||||
"hand_finger_ring_left_2",
|
||||
"hand_finger_ring_left_3",
|
||||
"hand_finger_ring_left_4",
|
||||
"hand_finger_pinky_left_1",
|
||||
"hand_finger_pinky_left_2",
|
||||
"hand_finger_pinky_left_3",
|
||||
"hand_finger_pinky_left_4",
|
||||
"hand_wrist_right",
|
||||
"hand_finger_thumb_right_1",
|
||||
"hand_finger_thumb_right_2",
|
||||
"hand_finger_thumb_right_3",
|
||||
"hand_finger_thumb_right_4",
|
||||
"hand_finger_index_right_1",
|
||||
"hand_finger_index_right_2",
|
||||
"hand_finger_index_right_3",
|
||||
"hand_finger_index_right_4",
|
||||
"hand_finger_middle_right_1",
|
||||
"hand_finger_middle_right_2",
|
||||
"hand_finger_middle_right_3",
|
||||
"hand_finger_middle_right_4",
|
||||
"hand_finger_ring_right_1",
|
||||
"hand_finger_ring_right_2",
|
||||
"hand_finger_ring_right_3",
|
||||
"hand_finger_ring_right_4",
|
||||
"hand_finger_pinky_right_1",
|
||||
"hand_finger_pinky_right_2",
|
||||
"hand_finger_pinky_right_3",
|
||||
"hand_finger_pinky_right_4",
|
||||
// extras
|
||||
"hip_middle",
|
||||
"shoulder_middle",
|
||||
"head",
|
||||
};
|
||||
|
||||
// =============================================================================================
|
||||
// =============================================================================================
|
||||
|
||||
[[maybe_unused]] static bool use_whole_body()
|
||||
{
|
||||
for (const auto &pair : whole_body)
|
||||
{
|
||||
if (pair.second)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// =============================================================================================
|
||||
|
||||
cv::Mat bayer2rgb(const cv::Mat &bayer)
|
||||
{
|
||||
cv::Mat rgb;
|
||||
cv::cvtColor(bayer, rgb, cv::COLOR_BayerBG2RGB);
|
||||
return rgb;
|
||||
}
|
||||
|
||||
cv::Mat rgb2bayer(const cv::Mat &img)
|
||||
{
|
||||
CV_Assert(img.type() == CV_8UC3);
|
||||
cv::Mat bayer(img.rows, img.cols, CV_8UC1);
|
||||
|
||||
for (int r = 0; r < img.rows; ++r)
|
||||
{
|
||||
const uchar *imgData = img.ptr<uchar>(r);
|
||||
uchar *bayerRowPtr = bayer.ptr<uchar>(r);
|
||||
|
||||
for (int c = 0; c < img.cols; ++c)
|
||||
{
|
||||
int pixelIndex = 3 * c;
|
||||
|
||||
// Use faster bit operation instead of modulo+if
|
||||
// Even row, even col => R = 0
|
||||
// Even row, odd col => G = 1
|
||||
// Odd row, even col => G = 1
|
||||
// Odd row, odd col => B = 2
|
||||
int row_mod = r & 1;
|
||||
int col_mod = c & 1;
|
||||
int component = row_mod + col_mod;
|
||||
|
||||
bayerRowPtr[c] = imgData[pixelIndex + component];
|
||||
}
|
||||
}
|
||||
|
||||
return bayer;
|
||||
}
|
||||
|
||||
// =============================================================================================
|
||||
|
||||
inline int find_index(const std::vector<std::string> &vec, const std::string &key)
|
||||
{
|
||||
auto it = std::find(vec.begin(), vec.end(), key);
|
||||
if (it == vec.end())
|
||||
{
|
||||
throw std::runtime_error("Cannot find \"" + key + "\" in joint_names.");
|
||||
}
|
||||
return static_cast<int>(std::distance(vec.begin(), it));
|
||||
}
|
||||
|
||||
std::vector<std::vector<std::vector<std::array<float, 3>>>> update_keypoints(
|
||||
const std::vector<std::vector<std::vector<std::array<float, 3>>>> &poses_2d,
|
||||
const std::vector<std::string> &joint_names)
|
||||
{
|
||||
std::vector<std::vector<std::vector<std::array<float, 3>>>> new_views;
|
||||
new_views.reserve(poses_2d.size());
|
||||
|
||||
for (const auto &view : poses_2d)
|
||||
{
|
||||
// "view" is a list of bodies => each body is Nx3
|
||||
std::vector<std::vector<std::array<float, 3>>> new_bodies;
|
||||
new_bodies.reserve(view.size());
|
||||
|
||||
for (const auto &body : view)
|
||||
{
|
||||
// 1) Copy first 17 keypoints
|
||||
std::vector<std::array<float, 3>> new_body;
|
||||
new_body.insert(new_body.end(), body.begin(), body.begin() + 17);
|
||||
|
||||
// 2) Optionally append extra keypoints
|
||||
if (whole_body.at("foots"))
|
||||
{
|
||||
new_body.insert(new_body.end(), body.begin() + 17, body.begin() + 23);
|
||||
}
|
||||
if (whole_body.at("face"))
|
||||
{
|
||||
new_body.insert(new_body.end(), body.begin() + 23, body.begin() + 91);
|
||||
}
|
||||
if (whole_body.at("hands"))
|
||||
{
|
||||
new_body.insert(new_body.end(), body.begin() + 91, body.end());
|
||||
}
|
||||
|
||||
// 3) Compute mid_hip
|
||||
int hlid = find_index(joint_names, "hip_left");
|
||||
int hrid = find_index(joint_names, "hip_right");
|
||||
float mid_hip_x = 0.5 * (new_body[hlid][0] + new_body[hrid][0]);
|
||||
float mid_hip_y = 0.5 * (new_body[hlid][1] + new_body[hrid][1]);
|
||||
float mid_hip_c = std::min(new_body[hlid][2], new_body[hrid][2]);
|
||||
new_body.push_back({mid_hip_x, mid_hip_y, mid_hip_c});
|
||||
|
||||
// 4) Compute mid_shoulder
|
||||
int slid = find_index(joint_names, "shoulder_left");
|
||||
int srid = find_index(joint_names, "shoulder_right");
|
||||
float mid_shoulder_x = 0.5 * (new_body[slid][0] + new_body[srid][0]);
|
||||
float mid_shoulder_y = 0.5 * (new_body[slid][1] + new_body[srid][1]);
|
||||
float mid_shoulder_c = std::min(new_body[slid][2], new_body[srid][2]);
|
||||
new_body.push_back({mid_shoulder_x, mid_shoulder_y, mid_shoulder_c});
|
||||
|
||||
// 5) Compute head
|
||||
int elid = find_index(joint_names, "ear_left");
|
||||
int erid = find_index(joint_names, "ear_right");
|
||||
float head_x = 0.5 * (new_body[elid][0] + new_body[erid][0]);
|
||||
float head_y = 0.5 * (new_body[elid][1] + new_body[erid][1]);
|
||||
float head_c = std::min(new_body[elid][2], new_body[erid][2]);
|
||||
new_body.push_back({head_x, head_y, head_c});
|
||||
|
||||
// Add this updated body into new_bodies
|
||||
new_bodies.push_back(new_body);
|
||||
}
|
||||
|
||||
// Add all updated bodies for this view
|
||||
new_views.push_back(new_bodies);
|
||||
}
|
||||
|
||||
return new_views;
|
||||
}
|
||||
}
|
||||
1054
ros/rpt2D_wrapper_cpp/src/utils_2d_pose.hpp
Normal file
1054
ros/rpt2D_wrapper_cpp/src/utils_2d_pose.hpp
Normal file
File diff suppressed because it is too large
Load Diff
1
ros/rpt2D_wrapper_cpp/tests/.gitignore
vendored
Normal file
1
ros/rpt2D_wrapper_cpp/tests/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
my_app
|
||||
96
ros/rpt2D_wrapper_cpp/tests/my_app.cpp
Normal file
96
ros/rpt2D_wrapper_cpp/tests/my_app.cpp
Normal file
@ -0,0 +1,96 @@
|
||||
#include <filesystem>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
|
||||
#include "../src/utils_2d_pose.hpp"
|
||||
|
||||
// =================================================================================================
|
||||
// =================================================================================================
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
using namespace utils_2d_pose;
|
||||
|
||||
std::string base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/";
|
||||
std::string model_path1 = base_path + "rtmdet-nano_1x320x320x3_fp16_extra-steps.onnx";
|
||||
std::string model_path2 = base_path + "rtmpose-m_1x384x288x3_fp16_extra-steps.onnx";
|
||||
|
||||
std::vector<std::string> img_paths = {
|
||||
"/RapidPoseTriangulation/data/h1/54138969-img_003201.jpg",
|
||||
"/RapidPoseTriangulation/data/h1/55011271-img_003201.jpg",
|
||||
"/RapidPoseTriangulation/data/h1/58860488-img_003201.jpg",
|
||||
"/RapidPoseTriangulation/data/h1/60457274-img_003201.jpg",
|
||||
};
|
||||
|
||||
// {
|
||||
// std::cout << "\nTesting RTMDet and RTMPose" << std::endl;
|
||||
// RTMDet model1(model_path1, 0.3, 0.1 * 0.1, 30);
|
||||
// RTMPose model2(model_path2, 30);
|
||||
// for (size_t i = 0; i < img_paths.size(); i++)
|
||||
// {
|
||||
// cv::Mat img = cv::imread(img_paths[i]);
|
||||
// cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// auto outputs1 = model1.call(img);
|
||||
// std::cout << "Model1 outputs: " << outputs1[0][0] << " " << outputs1[0][1] << " "
|
||||
// << outputs1[0][2] << " " << outputs1[0][3] << " " << outputs1[0][4] << " "
|
||||
// << std::endl;
|
||||
|
||||
// for (size_t j = 0; j < outputs1.size(); j++)
|
||||
// {
|
||||
// std::vector<std::array<float, 5>> bboxes = {outputs1[j]};
|
||||
// auto outputs2 = model2.call(img, bboxes);
|
||||
// std::cout << "Model2 outputs: " << outputs2[0][0][0] << " "
|
||||
// << outputs2[0][0][1] << " " << outputs2[0][0][2] << " " << std::endl;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
// {
|
||||
// std::cout << "\nTesting TopDown" << std::endl;
|
||||
// TopDown model3(model_path1, model_path2, 0.3, 0.1 * 0.1, false, 30);
|
||||
// for (size_t i = 0; i < img_paths.size(); i++)
|
||||
// {
|
||||
// cv::Mat img = cv::imread(img_paths[i]);
|
||||
// cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
|
||||
// auto outputs3 = model3.predict(img);
|
||||
// std::cout << "Model3 outputs: " << outputs3[0][0][0] << " "
|
||||
// << outputs3[0][0][1] << " " << outputs3[0][0][2] << " " << std::endl;
|
||||
// }
|
||||
// }
|
||||
|
||||
{
|
||||
std::cout << "\nTesting PosePredictor 1" << std::endl;
|
||||
PosePredictor model4(false, 0.3, 0.1 * 0.1, false);
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < img_paths.size(); i++)
|
||||
{
|
||||
cv::Mat img = cv::imread(img_paths[i]);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
images.push_back(img);
|
||||
}
|
||||
auto outputs4 = model4.predict(images);
|
||||
std::cout << "Model4 outputs: " << outputs4[0][0][0][0] << " "
|
||||
<< outputs4[0][0][0][1] << " " << outputs4[0][0][0][2] << " " << std::endl;
|
||||
}
|
||||
|
||||
{
|
||||
std::cout << "\nTesting PosePredictor 2" << std::endl;
|
||||
PosePredictor model5(false, 0.3, 0.1 * 0.1, true);
|
||||
std::vector<cv::Mat> images;
|
||||
for (size_t i = 0; i < img_paths.size(); i++)
|
||||
{
|
||||
cv::Mat img = cv::imread(img_paths[i]);
|
||||
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
|
||||
images.push_back(img);
|
||||
}
|
||||
auto outputs5 = model5.predict(images);
|
||||
std::cout << "Model5 outputs: " << outputs5[0][0][0][0] << " "
|
||||
<< outputs5[0][0][0][1] << " " << outputs5[0][0][0][2] << " " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
18
ros/rpt2D_wrapper_py/package.xml
Normal file
18
ros/rpt2D_wrapper_py/package.xml
Normal file
@ -0,0 +1,18 @@
|
||||
<?xml version="1.0"?>
|
||||
<?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens="http://www.w3.org/2001/XMLSchema"?>
|
||||
<package format="3">
|
||||
<name>rpt2D_wrapper_py</name>
|
||||
<version>0.0.0</version>
|
||||
<description>TODO: Package description</description>
|
||||
<maintainer email="root@todo.todo">root</maintainer>
|
||||
<license>TODO: License declaration</license>
|
||||
|
||||
<test_depend>ament_copyright</test_depend>
|
||||
<test_depend>ament_flake8</test_depend>
|
||||
<test_depend>ament_pep257</test_depend>
|
||||
<test_depend>python3-pytest</test_depend>
|
||||
|
||||
<export>
|
||||
<build_type>ament_python</build_type>
|
||||
</export>
|
||||
</package>
|
||||
0
ros/rpt2D_wrapper_py/resource/rpt2D_wrapper_py
Normal file
0
ros/rpt2D_wrapper_py/resource/rpt2D_wrapper_py
Normal file
0
ros/rpt2D_wrapper_py/rpt2D_wrapper_py/__init__.py
Normal file
0
ros/rpt2D_wrapper_py/rpt2D_wrapper_py/__init__.py
Normal file
196
ros/rpt2D_wrapper_py/rpt2D_wrapper_py/rpt2D_wrapper.py
Normal file
196
ros/rpt2D_wrapper_py/rpt2D_wrapper_py/rpt2D_wrapper.py
Normal file
@ -0,0 +1,196 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
import rclpy
|
||||
from cv_bridge import CvBridge
|
||||
from rclpy.qos import QoSHistoryPolicy, QoSProfile, QoSReliabilityPolicy
|
||||
from sensor_msgs.msg import Image
|
||||
from std_msgs.msg import String
|
||||
|
||||
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
|
||||
sys.path.append(filepath + "../../../scripts/")
|
||||
import test_triangulate
|
||||
import utils_2d_pose
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
bridge = CvBridge()
|
||||
node = None
|
||||
publisher_pose = None
|
||||
|
||||
cam_id = "camera01"
|
||||
img_input_topic = "/" + cam_id + "/pylon_ros2_camera_node/image_raw"
|
||||
pose_out_topic = "/poses/" + cam_id
|
||||
|
||||
last_input_image = None
|
||||
last_input_time = 0.0
|
||||
kpt_model = None
|
||||
joint_names_2d = test_triangulate.joint_names_2d
|
||||
|
||||
lock = threading.Lock()
|
||||
stop_flag = False
|
||||
|
||||
# Model config
|
||||
min_bbox_score = 0.4
|
||||
min_bbox_area = 0.1 * 0.1
|
||||
batch_poses = True
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_images(image_data):
|
||||
global last_input_image, last_input_time, lock
|
||||
|
||||
# Convert into cv images from image string
|
||||
if image_data.encoding == "bayer_rggb8":
|
||||
bayer_image = bridge.imgmsg_to_cv2(image_data, "bayer_rggb8")
|
||||
elif image_data.encoding == "mono8":
|
||||
bayer_image = bridge.imgmsg_to_cv2(image_data, "mono8")
|
||||
elif image_data.encoding == "rgb8":
|
||||
color_image = bridge.imgmsg_to_cv2(image_data, "rgb8")
|
||||
bayer_image = test_triangulate.rgb2bayer(color_image)
|
||||
else:
|
||||
raise ValueError("Unknown image encoding:", image_data.encoding)
|
||||
|
||||
time_stamp = image_data.header.stamp.sec + image_data.header.stamp.nanosec / 1.0e9
|
||||
|
||||
with lock:
|
||||
last_input_image = bayer_image
|
||||
last_input_time = time_stamp
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_model():
|
||||
global last_input_image, last_input_time, kpt_model, lock
|
||||
|
||||
ptime = time.time()
|
||||
if last_input_time == 0.0:
|
||||
time.sleep(0.0001)
|
||||
return
|
||||
|
||||
# Collect inputs
|
||||
images_2d = []
|
||||
timestamps = []
|
||||
with lock:
|
||||
img = last_input_image
|
||||
ts = last_input_time
|
||||
images_2d.append(img)
|
||||
timestamps.append(ts)
|
||||
last_input_image = None
|
||||
last_input_time = 0.0
|
||||
|
||||
# Predict 2D poses
|
||||
images_2d = [test_triangulate.bayer2rgb(img) for img in images_2d]
|
||||
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
||||
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
|
||||
poses_2d = poses_2d[0]
|
||||
|
||||
# Drop persons with no joints
|
||||
poses_2d = np.asarray(poses_2d)
|
||||
mask = np.sum(poses_2d[..., 2], axis=1) > 0
|
||||
poses_2d = poses_2d[mask]
|
||||
|
||||
# Round poses
|
||||
poses2D = [np.array(p).round(3).tolist() for p in poses_2d]
|
||||
|
||||
# Publish poses
|
||||
ts_pose = time.time()
|
||||
poses = {
|
||||
"bodies2D": poses2D,
|
||||
"joints": joint_names_2d,
|
||||
"num_persons": len(poses2D),
|
||||
"timestamps": {
|
||||
"image": timestamps[0],
|
||||
"pose": ts_pose,
|
||||
"z-images-pose": ts_pose - timestamps[0],
|
||||
},
|
||||
}
|
||||
publish(poses)
|
||||
|
||||
msg = "Detected persons: {} - Prediction time: {:.4f}s"
|
||||
print(msg.format(poses["num_persons"], time.time() - ptime))
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def callback_wrapper():
|
||||
global stop_flag
|
||||
while not stop_flag:
|
||||
callback_model()
|
||||
time.sleep(0.001)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def publish(data):
|
||||
# Publish json data
|
||||
msg = String()
|
||||
msg.data = json.dumps(data)
|
||||
publisher_pose.publish(msg)
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def main():
|
||||
global node, publisher_pose, kpt_model, stop_flag
|
||||
|
||||
# Start node
|
||||
rclpy.init(args=sys.argv)
|
||||
node = rclpy.create_node("rpt2D_wrapper")
|
||||
|
||||
# Quality of service settings
|
||||
qos_profile = QoSProfile(
|
||||
reliability=QoSReliabilityPolicy.RELIABLE,
|
||||
history=QoSHistoryPolicy.KEEP_LAST,
|
||||
depth=1,
|
||||
)
|
||||
|
||||
# Create subscribers
|
||||
_ = node.create_subscription(
|
||||
Image,
|
||||
img_input_topic,
|
||||
callback_images,
|
||||
qos_profile,
|
||||
)
|
||||
|
||||
# Create publishers
|
||||
publisher_pose = node.create_publisher(String, pose_out_topic, qos_profile)
|
||||
|
||||
# Load 2D pose model
|
||||
whole_body = test_triangulate.whole_body
|
||||
if any((whole_body[k] for k in whole_body)):
|
||||
kpt_model = utils_2d_pose.load_wb_model(
|
||||
min_bbox_score, min_bbox_area, batch_poses
|
||||
)
|
||||
else:
|
||||
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
|
||||
|
||||
node.get_logger().info("Finished initialization of pose estimator")
|
||||
|
||||
# Start prediction thread
|
||||
p1 = threading.Thread(target=callback_wrapper)
|
||||
p1.start()
|
||||
|
||||
# Run ros update thread
|
||||
rclpy.spin(node)
|
||||
|
||||
stop_flag = True
|
||||
p1.join()
|
||||
node.destroy_node()
|
||||
rclpy.shutdown()
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
4
ros/rpt2D_wrapper_py/setup.cfg
Normal file
4
ros/rpt2D_wrapper_py/setup.cfg
Normal file
@ -0,0 +1,4 @@
|
||||
[develop]
|
||||
script_dir=$base/lib/rpt2D_wrapper_py
|
||||
[install]
|
||||
install_scripts=$base/lib/rpt2D_wrapper_py
|
||||
23
ros/rpt2D_wrapper_py/setup.py
Normal file
23
ros/rpt2D_wrapper_py/setup.py
Normal file
@ -0,0 +1,23 @@
|
||||
from setuptools import setup
|
||||
|
||||
package_name = "rpt2D_wrapper_py"
|
||||
|
||||
setup(
|
||||
name=package_name,
|
||||
version="0.0.0",
|
||||
packages=[package_name],
|
||||
data_files=[
|
||||
("share/ament_index/resource_index/packages", ["resource/" + package_name]),
|
||||
("share/" + package_name, ["package.xml"]),
|
||||
],
|
||||
install_requires=["setuptools"],
|
||||
zip_safe=True,
|
||||
maintainer="root",
|
||||
maintainer_email="root@todo.todo",
|
||||
description="TODO: Package description",
|
||||
license="TODO: License declaration",
|
||||
tests_require=["pytest"],
|
||||
entry_points={
|
||||
"console_scripts": ["rpt2D_wrapper = rpt2D_wrapper_py.rpt2D_wrapper:main"],
|
||||
},
|
||||
)
|
||||
27
ros/rpt2D_wrapper_py/test/test_copyright.py
Normal file
27
ros/rpt2D_wrapper_py/test/test_copyright.py
Normal file
@ -0,0 +1,27 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_copyright.main import main
|
||||
|
||||
|
||||
# Remove the `skip` decorator once the source file(s) have a copyright header
|
||||
@pytest.mark.skip(
|
||||
reason="No copyright header has been placed in the generated source file."
|
||||
)
|
||||
@pytest.mark.copyright
|
||||
@pytest.mark.linter
|
||||
def test_copyright():
|
||||
rc = main(argv=[".", "test"])
|
||||
assert rc == 0, "Found errors"
|
||||
25
ros/rpt2D_wrapper_py/test/test_flake8.py
Normal file
25
ros/rpt2D_wrapper_py/test/test_flake8.py
Normal file
@ -0,0 +1,25 @@
|
||||
# Copyright 2017 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_flake8.main import main_with_errors
|
||||
|
||||
|
||||
@pytest.mark.flake8
|
||||
@pytest.mark.linter
|
||||
def test_flake8():
|
||||
rc, errors = main_with_errors(argv=[])
|
||||
assert rc == 0, "Found %d code style errors / warnings:\n" % len(
|
||||
errors
|
||||
) + "\n".join(errors)
|
||||
23
ros/rpt2D_wrapper_py/test/test_pep257.py
Normal file
23
ros/rpt2D_wrapper_py/test/test_pep257.py
Normal file
@ -0,0 +1,23 @@
|
||||
# Copyright 2015 Open Source Robotics Foundation, Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import pytest
|
||||
from ament_pep257.main import main
|
||||
|
||||
|
||||
@pytest.mark.linter
|
||||
@pytest.mark.pep257
|
||||
def test_pep257():
|
||||
rc = main(argv=[".", "test"])
|
||||
assert rc == 0, "Found code style errors / warnings"
|
||||
@ -61,7 +61,7 @@ datasets = {
|
||||
"human36m": {
|
||||
"path": "/datasets/human36m/skelda/pose_test.json",
|
||||
"take_interval": 5,
|
||||
"min_match_score": 0.94,
|
||||
"min_match_score": 0.95,
|
||||
"min_group_size": 1,
|
||||
"min_bbox_score": 0.4,
|
||||
"min_bbox_area": 0.1 * 0.1,
|
||||
@ -73,6 +73,7 @@ datasets = {
|
||||
# "cams": ["00_03", "00_06", "00_12"],
|
||||
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
|
||||
"take_interval": 3,
|
||||
"min_match_score": 0.95,
|
||||
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
|
||||
"min_group_size": 1,
|
||||
# "min_group_size": 4,
|
||||
@ -88,6 +89,7 @@ datasets = {
|
||||
"campus": {
|
||||
"path": "/datasets/campus/skelda/test.json",
|
||||
"take_interval": 1,
|
||||
"min_match_score": 0.90,
|
||||
"min_bbox_score": 0.5,
|
||||
},
|
||||
"shelf": {
|
||||
@ -109,6 +111,7 @@ datasets = {
|
||||
"tsinghua": {
|
||||
"path": "/datasets/tsinghua/skelda/test.json",
|
||||
"take_interval": 3,
|
||||
"min_match_score": 0.95,
|
||||
"min_group_size": 2,
|
||||
},
|
||||
"human36m_wb": {
|
||||
@ -122,7 +125,7 @@ datasets = {
|
||||
"take_interval": 2,
|
||||
"subset": "tagging",
|
||||
"min_group_size": 2,
|
||||
"min_bbox_score": 0.25,
|
||||
"min_bbox_score": 0.2,
|
||||
"min_bbox_area": 0.05 * 0.05,
|
||||
},
|
||||
"egohumans_legoassemble": {
|
||||
@ -343,19 +346,32 @@ def main():
|
||||
# Print a dataset sample for debugging
|
||||
print(labels[0])
|
||||
|
||||
print("\nPrefetching images ...")
|
||||
for label in tqdm.tqdm(labels):
|
||||
# If the images are stored on a HDD, it sometimes takes a while to load them
|
||||
# Prefetching them results in more stable timings of the following steps
|
||||
# To prevent memory overflow, the code only loads the images, but does not store them
|
||||
try:
|
||||
for i in range(len(label["imgpaths"])):
|
||||
imgpath = label["imgpaths"][i]
|
||||
img = test_triangulate.load_image(imgpath)
|
||||
except cv2.error:
|
||||
print("One of the paths not found:", label["imgpaths"])
|
||||
continue
|
||||
time.sleep(3)
|
||||
|
||||
print("\nCalculating 2D predictions ...")
|
||||
all_poses_2d = []
|
||||
times = []
|
||||
for label in tqdm.tqdm(labels):
|
||||
images_2d = []
|
||||
|
||||
try:
|
||||
start = time.time()
|
||||
try:
|
||||
for i in range(len(label["imgpaths"])):
|
||||
imgpath = label["imgpaths"][i]
|
||||
img = test_triangulate.load_image(imgpath)
|
||||
images_2d.append(img)
|
||||
time_imgs = time.time() - start
|
||||
except cv2.error:
|
||||
print("One of the paths not found:", label["imgpaths"])
|
||||
continue
|
||||
@ -373,7 +389,16 @@ def main():
|
||||
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
|
||||
images_2d[i] = cv2.resize(img, (1000, 1000))
|
||||
|
||||
# Convert image format to Bayer encoding to simulate real camera input
|
||||
# This also resulted in notably better MPJPE results in most cases, presumbly since the
|
||||
# demosaicing algorithm from OpenCV is better than the default one from the cameras
|
||||
for i in range(len(images_2d)):
|
||||
images_2d[i] = test_triangulate.rgb2bayer(images_2d[i])
|
||||
time_imgs = time.time() - start
|
||||
|
||||
start = time.time()
|
||||
for i in range(len(images_2d)):
|
||||
images_2d[i] = test_triangulate.bayer2rgb(images_2d[i])
|
||||
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
||||
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
|
||||
time_2d = time.time() - start
|
||||
|
||||
@ -227,6 +227,23 @@ def load_image(path: str):
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def rgb2bayer(img):
|
||||
bayer = np.zeros((img.shape[0], img.shape[1]), dtype=img.dtype)
|
||||
bayer[0::2, 0::2] = img[0::2, 0::2, 0]
|
||||
bayer[0::2, 1::2] = img[0::2, 1::2, 1]
|
||||
bayer[1::2, 0::2] = img[1::2, 0::2, 1]
|
||||
bayer[1::2, 1::2] = img[1::2, 1::2, 2]
|
||||
return bayer
|
||||
|
||||
|
||||
def bayer2rgb(bayer):
|
||||
img = cv2.cvtColor(bayer, cv2.COLOR_BayerBG2RGB)
|
||||
return img
|
||||
|
||||
|
||||
# ==================================================================================================
|
||||
|
||||
|
||||
def update_keypoints(poses_2d: list, joint_names: List[str]) -> list:
|
||||
new_views = []
|
||||
for view in poses_2d:
|
||||
@ -236,11 +253,11 @@ def update_keypoints(poses_2d: list, joint_names: List[str]) -> list:
|
||||
|
||||
new_body = body[:17]
|
||||
if whole_body["foots"]:
|
||||
new_body.extend(body[17:22])
|
||||
new_body.extend(body[17:23])
|
||||
if whole_body["face"]:
|
||||
new_body.extend(body[22:90])
|
||||
new_body.extend(body[23:91])
|
||||
if whole_body["hands"]:
|
||||
new_body.extend(body[90:])
|
||||
new_body.extend(body[91:])
|
||||
body = new_body
|
||||
|
||||
hlid = joint_names.index("hip_left")
|
||||
@ -314,6 +331,8 @@ def main():
|
||||
for i in range(len(sample["cameras_color"])):
|
||||
imgpath = sample["imgpaths_color"][i]
|
||||
img = load_image(imgpath)
|
||||
img = rgb2bayer(img)
|
||||
img = bayer2rgb(img)
|
||||
images_2d.append(img)
|
||||
|
||||
# Get 2D poses
|
||||
|
||||
@ -189,9 +189,15 @@ class BoxCrop:
|
||||
self.fill_value = fill_value
|
||||
|
||||
def calc_params(self, ishape, bbox):
|
||||
start_x, start_y, end_x, end_y = bbox[0], bbox[1], bbox[2], bbox[3]
|
||||
img_h, img_w = ishape[:2]
|
||||
target_h, target_w = self.target_size
|
||||
|
||||
# Round the bounding box coordinates
|
||||
start_x = math.floor(bbox[0])
|
||||
start_y = math.floor(bbox[1])
|
||||
end_x = math.ceil(bbox[2])
|
||||
end_y = math.ceil(bbox[3])
|
||||
|
||||
# Calculate original bounding box center
|
||||
center_x = (start_x + end_x) / 2.0
|
||||
center_y = (start_y + end_y) / 2.0
|
||||
@ -231,8 +237,8 @@ class BoxCrop:
|
||||
# Define the new box coordinates
|
||||
new_start_x = max(0, start_x)
|
||||
new_start_y = max(0, start_y)
|
||||
new_end_x = min(ishape[1] - 1, end_x)
|
||||
new_end_y = min(ishape[0] - 1, end_y)
|
||||
new_end_x = min(img_w - 1, end_x)
|
||||
new_end_y = min(img_h - 1, end_y)
|
||||
new_box = [new_start_x, new_start_y, new_end_x, new_end_y]
|
||||
|
||||
# Calculate resized crop size
|
||||
@ -332,9 +338,8 @@ class RTMDet(BaseModel):
|
||||
|
||||
def postprocess(self, result: List[np.ndarray], image: np.ndarray):
|
||||
boxes = np.squeeze(result[0], axis=0)
|
||||
classes = np.squeeze(result[1], axis=0)
|
||||
|
||||
human_class = classes[:] == 0
|
||||
human_class = boxes[:, 5] == 0
|
||||
boxes = boxes[human_class]
|
||||
|
||||
keep = boxes[:, 4] > self.conf_threshold
|
||||
@ -344,7 +349,6 @@ class RTMDet(BaseModel):
|
||||
return np.array([])
|
||||
|
||||
# Drop boxes with too small area
|
||||
boxes = boxes.astype(np.float32)
|
||||
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
||||
keep = areas >= self.min_area
|
||||
boxes = boxes[keep]
|
||||
@ -386,10 +390,7 @@ class RTMPose(BaseModel):
|
||||
def preprocess(self, image: np.ndarray, bboxes: np.ndarray):
|
||||
cutouts = []
|
||||
for i in range(len(bboxes)):
|
||||
bbox = np.asarray(bboxes[i])[0:4]
|
||||
bbox += np.array([-0.5, -0.5, 0.5 - 1e-8, 0.5 - 1e-8])
|
||||
bbox = bbox.round().astype(np.int32)
|
||||
region = self.boxcrop.crop_resize_box(image, bbox)
|
||||
region = self.boxcrop.crop_resize_box(image, bboxes[i])
|
||||
tensor = np.asarray(region).astype(self.input_types[0], copy=False)
|
||||
cutouts.append(tensor)
|
||||
|
||||
@ -406,10 +407,7 @@ class RTMPose(BaseModel):
|
||||
):
|
||||
kpts = []
|
||||
for i in range(len(bboxes)):
|
||||
scores = np.clip(result[1][i], 0, 1)
|
||||
kp = np.concatenate(
|
||||
[result[0][i], np.expand_dims(scores, axis=-1)], axis=-1
|
||||
)
|
||||
kp = result[0][i]
|
||||
|
||||
paddings, scale, bbox, _ = self.boxcrop.calc_params(image.shape, bboxes[i])
|
||||
kp[:, 0] -= paddings[0]
|
||||
|
||||
Reference in New Issue
Block a user