import os import numpy as np from mmpose.apis import MMPoseInferencer # ================================================================================================== filepath = os.path.dirname(os.path.realpath(__file__)) + "/" # ================================================================================================== def load_model(): print("Loading mmpose model ...") model = MMPoseInferencer( pose2d="/mmpose/projects/rtmpose/rtmpose/body_2d_keypoint/rtmpose-l_8xb256-420e_coco-384x288.py", pose2d_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-body7_pt-body7_420e-384x288-3f5a1437_20230504.pth", det_model="/mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-person.py", det_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth", det_cat_ids=[0], ) print("Loaded mmpose model") return model def load_wb_model(): print("Loading mmpose whole body model ...") model = MMPoseInferencer( pose2d="/mmpose/projects/rtmpose/rtmpose/wholebody_2d_keypoint/rtmpose-l_8xb32-270e_coco-wholebody-384x288.py", pose2d_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmposev1/rtmpose-l_simcc-coco-wholebody_pt-aic-coco_270e-384x288-eaeb96c8_20230125.pth", det_model="/mmpose/projects/rtmpose/rtmdet/person/rtmdet_nano_320-8xb32_coco-person.py", det_weights="https://download.openmmlab.com/mmpose/v1/projects/rtmpose/rtmdet_nano_8xb32-100e_coco-obj365-person-05d8511e.pth", det_cat_ids=[0], ) print("Loaded mmpose model") return model # ================================================================================================== def get_2d_pose(model, imgs, num_joints=17): """See: https://mmpose.readthedocs.io/en/latest/user_guides/inference.html#basic-usage""" result_generator = model(imgs, show=False) new_poses = [] for _ in range(len(imgs)): result = next(result_generator) poses = [] for i in range(len(result["predictions"][0])): kpts = result["predictions"][0][i]["keypoints"] scores = result["predictions"][0][i]["keypoint_scores"] kpts = np.array(kpts) scores = np.array(scores).reshape(-1, 1) scores = np.clip(scores, 0, 1) pose = np.concatenate((kpts, scores), axis=-1) poses.append(pose) if len(poses) == 0: poses.append(np.zeros([num_joints, 3])) poses = np.array(poses) new_poses.append(poses) return new_poses