420 lines
14 KiB
Python
420 lines
14 KiB
Python
import json
|
|
import os
|
|
import time
|
|
|
|
import cv2
|
|
import matplotlib
|
|
import numpy as np
|
|
import tqdm
|
|
|
|
import test_triangulate
|
|
import triangulate_poses
|
|
import utils_2d_pose
|
|
from skelda import evals, utils_pose
|
|
|
|
# ==================================================================================================
|
|
|
|
# dataset_use = "panoptic"
|
|
dataset_use = "human36m"
|
|
# dataset_use = "mvor"
|
|
# dataset_use = "shelf"
|
|
# dataset_use = "campus"
|
|
# dataset_use = "ikeaasm"
|
|
# dataset_use = "tsinghua"
|
|
# dataset_use = "human36m_wb"
|
|
datasets = {
|
|
"panoptic": {
|
|
"path": "/datasets/panoptic/skelda/test.json",
|
|
"cams": ["00_03", "00_06", "00_12", "00_13", "00_23"],
|
|
"take_interval": 3,
|
|
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
|
|
},
|
|
"human36m": {
|
|
"path": "/datasets/human36m/skelda/pose_test.json",
|
|
"take_interval": 5,
|
|
},
|
|
"mvor": {
|
|
"path": "/datasets/mvor/skelda/all.json",
|
|
"take_interval": 1,
|
|
"with_depth": False,
|
|
},
|
|
"ikeaasm": {
|
|
"path": "/datasets/ikeaasm/skelda/test.json",
|
|
"take_interval": 2,
|
|
},
|
|
"campus": {
|
|
"path": "/datasets/campus/skelda/test.json",
|
|
"take_interval": 1,
|
|
},
|
|
"shelf": {
|
|
"path": "/datasets/shelf/skelda/test.json",
|
|
"take_interval": 1,
|
|
},
|
|
"tsinghua": {
|
|
"path": "/datasets/tsinghua/skelda/test.json",
|
|
"take_interval": 3,
|
|
},
|
|
"human36m_wb": {
|
|
"path": "/datasets/human36m/skelda/wb/test.json",
|
|
"take_interval": 100,
|
|
},
|
|
}
|
|
|
|
joint_names_2d = test_triangulate.joint_names_2d
|
|
joint_names_3d = list(joint_names_2d)
|
|
eval_joints = [
|
|
"head",
|
|
"shoulder_left",
|
|
"shoulder_right",
|
|
"elbow_left",
|
|
"elbow_right",
|
|
"wrist_left",
|
|
"wrist_right",
|
|
"hip_left",
|
|
"hip_right",
|
|
"knee_left",
|
|
"knee_right",
|
|
"ankle_left",
|
|
"ankle_right",
|
|
]
|
|
if dataset_use in ["human36m", "panoptic"]:
|
|
eval_joints[eval_joints.index("head")] = "nose"
|
|
if dataset_use.endswith("_wb"):
|
|
# eval_joints[eval_joints.index("head")] = "nose"
|
|
eval_joints = list(joint_names_2d)
|
|
|
|
# output_dir = "/SimplePoseTriangulation/data/testoutput/"
|
|
output_dir = ""
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def load_json(path: str):
|
|
with open(path, "r", encoding="utf-8") as file:
|
|
data = json.load(file)
|
|
return data
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def load_labels(dataset: dict):
|
|
"""Load labels by dataset description"""
|
|
|
|
if "panoptic" in dataset:
|
|
labels = load_json(dataset["panoptic"]["path"])
|
|
labels = [lb for i, lb in enumerate(labels) if i % 1500 < 90]
|
|
|
|
# Filter by maximum number of persons
|
|
labels = [l for l in labels if len(l["bodies3D"]) <= 10]
|
|
|
|
# Filter scenes
|
|
if "use_scenes" in dataset["panoptic"]:
|
|
labels = [
|
|
l for l in labels if l["scene"] in dataset["panoptic"]["use_scenes"]
|
|
]
|
|
|
|
# Filter cameras
|
|
if not "cameras_depth" in labels[0]:
|
|
for label in labels:
|
|
for i, cam in reversed(list(enumerate(label["cameras"]))):
|
|
if cam["name"] not in dataset["panoptic"]["cams"]:
|
|
label["cameras"].pop(i)
|
|
label["imgpaths"].pop(i)
|
|
|
|
elif "human36m" in dataset:
|
|
labels = load_json(dataset["human36m"]["path"])
|
|
labels = [lb for lb in labels if lb["subject"] == "S9"]
|
|
labels = [lb for i, lb in enumerate(labels) if i % 4000 < 150]
|
|
|
|
for label in labels:
|
|
label.pop("action")
|
|
label.pop("frame")
|
|
|
|
elif "mvor" in dataset:
|
|
labels = load_json(dataset["mvor"]["path"])
|
|
|
|
# Rename keys
|
|
for label in labels:
|
|
label["cameras_color"] = label["cameras"]
|
|
label["imgpaths_color"] = label["imgpaths"]
|
|
|
|
elif "ikeaasm" in dataset:
|
|
labels = load_json(dataset["ikeaasm"]["path"])
|
|
labels = [lb for i, lb in enumerate(labels) if i % 300 < 72]
|
|
|
|
elif "shelf" in dataset:
|
|
labels = load_json(dataset["shelf"]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
|
|
elif "campus" in dataset:
|
|
labels = load_json(dataset["campus"]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
|
|
elif "tsinghua" in dataset:
|
|
labels = load_json(dataset["tsinghua"]["path"])
|
|
labels = [lb for lb in labels if "test" in lb["splits"]]
|
|
labels = [lb for i, lb in enumerate(labels) if i % 800 < 90]
|
|
|
|
for label in labels:
|
|
label["bodyids"] = list(range(len(label["bodies3D"])))
|
|
|
|
elif "human36m_wb" in dataset:
|
|
labels = load_json(dataset["human36m_wb"]["path"])
|
|
|
|
else:
|
|
raise ValueError("Dataset not available")
|
|
|
|
# Optionally drop samples to speed up train/eval
|
|
if "take_interval" in dataset:
|
|
take_interval = dataset["take_interval"]
|
|
if take_interval > 1:
|
|
labels = [l for i, l in enumerate(labels) if i % take_interval == 0]
|
|
|
|
# Filter joints
|
|
fj_func = lambda x: utils_pose.filter_joints_3d(x, eval_joints)
|
|
labels = list(map(fj_func, labels))
|
|
|
|
return labels
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def add_extra_joints(poses3D, poses2D, joint_names_3d):
|
|
|
|
# Update "head" joint as average of "ear" joints
|
|
idx_h = joint_names_3d.index("head")
|
|
idx_el = joint_names_3d.index("ear_left")
|
|
idx_er = joint_names_3d.index("ear_right")
|
|
for i in range(len(poses3D)):
|
|
if poses3D[i, idx_h, 3] == 0:
|
|
ear_left = poses3D[i, idx_el]
|
|
ear_right = poses3D[i, idx_er]
|
|
if ear_left[3] > 0.1 and ear_right[3] > 0.1:
|
|
head = (ear_left + ear_right) / 2
|
|
head[3] = min(ear_left[3], ear_right[3])
|
|
poses3D[i, idx_h] = head
|
|
|
|
for j in range(len(poses2D)):
|
|
ear_left = poses2D[j][i, idx_el]
|
|
ear_right = poses2D[j][i, idx_er]
|
|
if ear_left[2] > 0.1 and ear_right[2] > 0.1:
|
|
head = (ear_left + ear_right) / 2
|
|
head[2] = min(ear_left[2], ear_right[2])
|
|
poses2D[j][i, idx_h] = head
|
|
|
|
return poses3D, poses2D
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def add_missing_joints(poses3D, joint_names_3d):
|
|
"""Replace missing joints with their nearest adjacent joints"""
|
|
|
|
adjacents = {
|
|
"hip_right": ["hip_middle", "hip_left"],
|
|
"hip_left": ["hip_middle", "hip_right"],
|
|
"knee_right": ["hip_right", "knee_left"],
|
|
"knee_left": ["hip_left", "knee_right"],
|
|
"ankle_right": ["knee_right", "ankle_left"],
|
|
"ankle_left": ["knee_left", "ankle_right"],
|
|
"shoulder_right": ["shoulder_middle", "shoulder_left"],
|
|
"shoulder_left": ["shoulder_middle", "shoulder_right"],
|
|
"elbow_right": ["shoulder_right", "hip_right"],
|
|
"elbow_left": ["shoulder_left", "hip_left"],
|
|
"wrist_right": ["elbow_right"],
|
|
"wrist_left": ["elbow_left"],
|
|
"nose": ["shoulder_middle", "shoulder_right", "shoulder_left"],
|
|
"head": ["shoulder_middle", "shoulder_right", "shoulder_left"],
|
|
"foot_*_left_*": ["ankle_left"],
|
|
"foot_*_right_*": ["ankle_right"],
|
|
"face_*": ["nose"],
|
|
"hand_*_left_*": ["wrist_left"],
|
|
"hand_*_right_*": ["wrist_right"],
|
|
}
|
|
|
|
for i in range(len(poses3D)):
|
|
valid_joints = np.where(poses3D[i, :, 3] > 0.1)[0]
|
|
body_center = np.mean(poses3D[i, valid_joints, :3], axis=0)
|
|
|
|
for j in range(len(joint_names_3d)):
|
|
adname = ""
|
|
if joint_names_3d[j][0:5] == "foot_" and "_left" in joint_names_3d[j]:
|
|
adname = "foot_*_left_*"
|
|
elif joint_names_3d[j][0:5] == "foot_" and "_right" in joint_names_3d[j]:
|
|
adname = "foot_*_right_*"
|
|
elif joint_names_3d[j][0:5] == "face_":
|
|
adname = "face_*"
|
|
elif joint_names_3d[j][0:5] == "hand_" and "_left" in joint_names_3d[j]:
|
|
adname = "hand_*_left_*"
|
|
elif joint_names_3d[j][0:5] == "hand_" and "_right" in joint_names_3d[j]:
|
|
adname = "hand_*_right_*"
|
|
elif joint_names_3d[j] in adjacents:
|
|
adname = joint_names_3d[j]
|
|
|
|
if adname == "":
|
|
continue
|
|
|
|
if poses3D[i, j, 3] == 0:
|
|
if joint_names_3d[j] in adjacents or joint_names_3d[j][0:5] in [
|
|
"foot_",
|
|
"face_",
|
|
"hand_",
|
|
]:
|
|
adjacent_joints = [
|
|
poses3D[i, joint_names_3d.index(a), :]
|
|
for a in adjacents[adname]
|
|
]
|
|
adjacent_joints = [a[0:3] for a in adjacent_joints if a[3] > 0.1]
|
|
if len(adjacent_joints) > 0:
|
|
poses3D[i, j, :3] = np.mean(adjacent_joints, axis=0)
|
|
else:
|
|
poses3D[i, j, :3] = body_center
|
|
|
|
else:
|
|
poses3D[i, j, :3] = body_center
|
|
poses3D[i, j, 3] = 0.1
|
|
|
|
return poses3D
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def main():
|
|
global joint_names_3d, eval_joints
|
|
|
|
whole_body = test_triangulate.whole_body
|
|
if any((whole_body[k] for k in whole_body)):
|
|
kpt_model = utils_2d_pose.load_wb_model()
|
|
else:
|
|
kpt_model = utils_2d_pose.load_model()
|
|
|
|
# Manually set matplotlib backend
|
|
try:
|
|
matplotlib.use("TkAgg")
|
|
except ImportError:
|
|
print("WARNING: Using headless mode, no visualizations will be shown.")
|
|
|
|
print("Loading dataset ...")
|
|
labels = load_labels(
|
|
{
|
|
dataset_use: datasets[dataset_use],
|
|
"take_interval": datasets[dataset_use]["take_interval"],
|
|
}
|
|
)
|
|
|
|
# Print a dataset sample for debugging
|
|
print(labels[0])
|
|
|
|
print("\nRunning predictions ...")
|
|
all_poses = []
|
|
all_ids = []
|
|
all_paths = []
|
|
times = []
|
|
for label in tqdm.tqdm(labels):
|
|
images_2d = []
|
|
|
|
try:
|
|
start = time.time()
|
|
for i in range(len(label["imgpaths"])):
|
|
imgpath = label["imgpaths"][i]
|
|
img = test_triangulate.load_image(imgpath)
|
|
images_2d.append(img)
|
|
print("IMG time:", time.time() - start)
|
|
except cv2.error:
|
|
print("One of the paths not found:", label["imgpaths"])
|
|
continue
|
|
|
|
if dataset_use == "human36m":
|
|
for i in range(len(images_2d)):
|
|
# Since the images don't have the same shape, rescale some of them
|
|
img = images_2d[i]
|
|
ishape = img.shape
|
|
if ishape != (1000, 1000, 3):
|
|
cam = label["cameras"][i]
|
|
cam["K"][1][1] = cam["K"][1][1] * (1000 / ishape[0])
|
|
cam["K"][1][2] = cam["K"][1][2] * (1000 / ishape[0])
|
|
cam["K"][0][0] = cam["K"][0][0] * (1000 / ishape[1])
|
|
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
|
|
images_2d[i] = cv2.resize(img, (1000, 1000))
|
|
|
|
roomparams = {
|
|
"room_size": label["room_size"],
|
|
"room_center": label["room_center"],
|
|
}
|
|
|
|
start = time.time()
|
|
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
|
|
poses_2d = test_triangulate.update_keypoints(poses_2d, joint_names_2d)
|
|
time_2d = time.time() - start
|
|
print("2D time:", time_2d)
|
|
|
|
start = time.time()
|
|
if sum(np.sum(p) for p in poses_2d) == 0:
|
|
poses3D = np.zeros([1, len(joint_names_3d), 4])
|
|
poses2D = np.zeros([len(images_2d), 1, len(joint_names_3d), 3])
|
|
else:
|
|
poses3D = triangulate_poses.get_3d_pose(
|
|
poses_2d, label["cameras"], roomparams, joint_names_2d
|
|
)
|
|
poses2D = []
|
|
for cam in label["cameras"]:
|
|
poses_2d, _ = utils_pose.project_poses(poses3D, cam)
|
|
poses2D.append(poses_2d)
|
|
poses3D, poses2D = add_extra_joints(poses3D, poses2D, joint_names_3d)
|
|
poses3D, poses2D = test_triangulate.filter_poses(
|
|
poses3D,
|
|
poses2D,
|
|
roomparams,
|
|
joint_names_3d,
|
|
drop_few_limbs=(dataset_use != "mvor"),
|
|
)
|
|
poses3D = add_missing_joints(poses3D, joint_names_3d)
|
|
|
|
time_3d = time.time() - start
|
|
print("3D time:", time_3d)
|
|
|
|
all_poses.append(poses3D)
|
|
all_ids.append(label["id"])
|
|
all_paths.append(label["imgpaths"])
|
|
times.append((time_2d, time_3d))
|
|
|
|
warmup_iters = 10
|
|
if len(times) > warmup_iters:
|
|
times = times[warmup_iters:]
|
|
avg_time_2d = np.mean([t[0] for t in times])
|
|
avg_time_3d = np.mean([t[1] for t in times])
|
|
tstats = {
|
|
"avg_time_2d": avg_time_2d,
|
|
"avg_time_3d": avg_time_3d,
|
|
"avg_fps": 1.0 / (avg_time_2d + avg_time_3d),
|
|
}
|
|
print("\nMetrics:")
|
|
print(json.dumps(tstats, indent=2))
|
|
|
|
_ = evals.mpjpe.run_eval(
|
|
labels,
|
|
all_poses,
|
|
all_ids,
|
|
joint_names_net=joint_names_3d,
|
|
joint_names_use=eval_joints,
|
|
save_error_imgs=output_dir,
|
|
)
|
|
_ = evals.pcp.run_eval(
|
|
labels,
|
|
all_poses,
|
|
all_ids,
|
|
joint_names_net=joint_names_3d,
|
|
joint_names_use=eval_joints,
|
|
replace_head_with_nose=True,
|
|
)
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
if __name__ == "__main__":
|
|
main()
|