Files
RapidPoseTriangulation/scripts/test_triangulate.py
2025-04-24 15:54:05 +02:00

145 lines
4.2 KiB
Python

import copy
import json
import os
import numpy as np
import utils_pipeline
from skelda import utils_pose, utils_view
from skelda.writers import json_writer
# ==================================================================================================
filepath = os.path.dirname(os.path.realpath(__file__)) + "/"
test_img_dir = filepath + "../data/"
whole_body = {
"foots": False,
"face": False,
"hands": False,
}
config = {
"min_match_score": 0.94,
"min_group_size": 1,
"min_bbox_score": 0.3,
"min_bbox_area": 0.1 * 0.1,
"batch_poses": True,
"whole_body": whole_body,
"take_interval": 1,
"fps": -1,
"max_movement_speed": 0,
"max_track_distance": 0,
}
joint_names_2d = utils_pipeline.get_joint_names(whole_body)
joint_names_3d = list(joint_names_2d)
# ==================================================================================================
def update_sample(sample, new_dir=""):
sample = copy.deepcopy(sample)
# Rename image paths
sample["imgpaths"] = [
os.path.join(new_dir, os.path.basename(v)) for v in sample["imgpaths"]
]
# Add placeholders for missing keys
if not "scene" in sample:
sample["scene"] = "default"
if not "id" in sample:
sample["id"] = "0"
if not "index" in sample:
sample["index"] = 0
for cam in sample["cameras"]:
if not "type" in cam:
cam["type"] = "pinhole"
return sample
# ==================================================================================================
def main():
for dirname in sorted(os.listdir(test_img_dir)):
dirpath = os.path.join(test_img_dir, dirname)
if not os.path.isdir(dirpath):
continue
if (dirname[0] not in ["p", "h", "e", "q"]) or len(dirname) != 2:
continue
# Load sample infos
print("\n" + dirpath)
with open(os.path.join(dirpath, "sample.json"), "r", encoding="utf-8") as file:
sample = json.load(file)
sample = update_sample(sample, dirpath)
if len(sample["imgpaths"]) == 1:
# At least two images are required
continue
# Save dataset
labels = [sample]
tmp_export_dir = "/tmp/rpt/"
for label in labels:
if "splits" in label:
label.pop("splits")
json_writer.save_dataset(labels, tmp_export_dir)
# Save config
config_path = tmp_export_dir + "config.json"
utils_pipeline.save_json(config, config_path)
# Call the CPP binary
os.system("/RapidPoseTriangulation/scripts/test_skelda_dataset.bin")
# Load the results
print("Loading exports ...")
res_path = tmp_export_dir + "results.json"
results = utils_pipeline.load_json(res_path)
poses_3d = results["all_poses_3d"][0]
poses_2d = results["all_poses_2d"][0]
joint_names_3d = results["joint_names_3d"]
# Visualize the 2D results
fig1 = utils_view.draw_many_images(
sample["imgpaths"], [], [], poses_2d, joint_names_2d, "2D detections"
)
fig1.savefig(os.path.join(dirpath, "2d-k.png"), dpi=fig1.dpi)
# Visualize the 3D results
print("Detected 3D poses:")
poses_3d = np.array(poses_3d)
print(poses_3d.round(3))
if len(poses_3d) == 0:
utils_view.show_plots()
continue
camparams = sample["cameras"]
roomparams = {
"room_size": sample["room_size"],
"room_center": sample["room_center"],
}
poses_2d_proj = []
for cam in camparams:
poses_2d_cam, _ = utils_pose.project_poses(poses_3d, cam)
poses_2d_proj.append(poses_2d_cam)
fig2 = utils_view.draw_poses3d(poses_3d, joint_names_3d, roomparams, camparams)
fig3 = utils_view.draw_many_images(
sample["imgpaths"], [], [], poses_2d_proj, joint_names_3d, "2D projections"
)
fig2.savefig(os.path.join(dirpath, "3d-p.png"), dpi=fig2.dpi)
fig3.savefig(os.path.join(dirpath, "2d-p.png"), dpi=fig3.dpi)
utils_view.show_plots()
# ==================================================================================================
if __name__ == "__main__":
main()