249 lines
8.4 KiB
Python
249 lines
8.4 KiB
Python
import cv2
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
import tf2onnx
|
|
|
|
# ==================================================================================================
|
|
|
|
base_path = "/RapidPoseTriangulation/extras/mmdeploy/exports/"
|
|
det_target_size = (320, 320)
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
class BayerToRGB(tf.keras.layers.Layer):
|
|
"""Convert Bayer image to RGB
|
|
See: https://stanford.edu/class/ee367/reading/Demosaicing_ICASSP04.pdf
|
|
See: https://github.com/cheind/pytorch-debayer/blob/master/debayer/modules.py#L231
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layout = "RGGB"
|
|
self.max_val = 255.0
|
|
|
|
self.kernels = tf.constant(
|
|
np.array(
|
|
[
|
|
# G at R/B locations
|
|
[
|
|
[0, 0, -1, 0, 0],
|
|
[0, 0, 2, 0, 0],
|
|
[-1, 2, 4, 2, -1],
|
|
[0, 0, 2, 0, 0],
|
|
[0, 0, -1, 0, 0],
|
|
],
|
|
# R/B at G in R/B rows and B/R columns
|
|
[
|
|
[0, 0, 0.5, 0, 0],
|
|
[0, -1, 0, -1, 0],
|
|
[-1, 4, 5, 4, -1],
|
|
[0, -1, 0, -1, 0],
|
|
[0, 0, 0.5, 0, 0],
|
|
],
|
|
# R/B at G in B/R rows and R/B columns
|
|
[
|
|
[0, 0, 0.5, 0, 0],
|
|
[0, -1, 4, -1, 0],
|
|
[-1, 0, 5, 0, -1],
|
|
[0, -1, 4, -1, 0],
|
|
[0, 0, 0.5, 0, 0],
|
|
],
|
|
# R/B at B/R in B/R rows and B/R columns
|
|
[
|
|
[0, 0, -1.5, 0, 0],
|
|
[0, 2, 0, 2, 0],
|
|
[-1.5, 0, 6, 0, -1.5],
|
|
[0, 2, 0, 2, 0],
|
|
[0, 0, -1.5, 0, 0],
|
|
],
|
|
],
|
|
dtype=np.float32,
|
|
)
|
|
.reshape(1, 4, 5, 5)
|
|
.transpose(2, 3, 0, 1)
|
|
/ 8.0
|
|
)
|
|
self.index = tf.constant(
|
|
np.array(
|
|
# Describes the kernel indices that calculate the corresponding RGB values for
|
|
# the 2x2 layout (RGGB) sub-structure
|
|
[
|
|
# Destination R
|
|
[
|
|
[4, 1], # identity, R at G in R row B column
|
|
[2, 3], # R at G in B row R column, R at B in B row R column
|
|
],
|
|
# Destination G
|
|
[
|
|
[0, 4],
|
|
[4, 0],
|
|
],
|
|
# Destination B
|
|
[
|
|
[3, 2],
|
|
[1, 4],
|
|
],
|
|
]
|
|
).reshape(1, 3, 2, 2)
|
|
)
|
|
|
|
def call(self, img):
|
|
img = tf.cast(img, tf.float32)
|
|
H, W = tf.shape(img)[1], tf.shape(img)[2]
|
|
|
|
# Pad the image
|
|
tpad = img[:, 0:2, :, :]
|
|
bpad = img[:, H - 2 : H, :, :]
|
|
ipad = tf.concat([tpad, img, bpad], axis=1)
|
|
lpad = ipad[:, :, 0:2, :]
|
|
rpad = ipad[:, :, W - 2 : W, :]
|
|
ipad = tf.concat([lpad, ipad, rpad], axis=2)
|
|
|
|
# Convolve with kernels
|
|
planes = tf.nn.conv2d(ipad, self.kernels, strides=[1, 1, 1, 1], padding="VALID")
|
|
|
|
# Concatenate identity kernel
|
|
planes = tf.concat([planes, img], axis=-1)
|
|
|
|
# Gather values
|
|
index_repeated = tf.tile(self.index, multiples=[1, 1, H // 2, W // 2])
|
|
index_repeated = tf.transpose(index_repeated, perm=[0, 2, 3, 1])
|
|
row_indices, col_indices = tf.meshgrid(tf.range(H), tf.range(W), indexing="ij")
|
|
index_tensor = tf.stack([row_indices, col_indices], axis=-1)
|
|
index_tensor = tf.expand_dims(index_tensor, axis=0)
|
|
index_tensor = tf.expand_dims(index_tensor, axis=-2)
|
|
index_tensor = tf.repeat(index_tensor, repeats=3, axis=-2)
|
|
index_repeated = tf.expand_dims(index_repeated, axis=-1)
|
|
indices = tf.concat([tf.cast(index_tensor, tf.int64), index_repeated], axis=-1)
|
|
rgb = tf.gather_nd(planes, indices, batch_dims=1)
|
|
|
|
if self.max_val == 255.0:
|
|
# Make value range valid again
|
|
rgb = tf.round(rgb)
|
|
|
|
return rgb
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
class Letterbox(tf.keras.layers.Layer):
|
|
def __init__(self, target_size, fill_value=128):
|
|
"""Resize and pad image while keeping aspect ratio"""
|
|
super(Letterbox, self).__init__()
|
|
|
|
self.target_size = target_size
|
|
self.fill_value = fill_value
|
|
|
|
def calc_params(self, ishape):
|
|
img_h, img_w = ishape[1], ishape[2]
|
|
target_h, target_w = self.target_size
|
|
|
|
scale = tf.minimum(target_w / img_w, target_h / img_h)
|
|
new_w = tf.round(tf.cast(img_w, scale.dtype) * scale)
|
|
new_h = tf.round(tf.cast(img_h, scale.dtype) * scale)
|
|
new_w = tf.cast(new_w, tf.int32)
|
|
new_h = tf.cast(new_h, tf.int32)
|
|
|
|
pad_w = target_w - new_w
|
|
pad_h = target_h - new_h
|
|
pad_left = tf.cast(tf.floor(tf.cast(pad_w, tf.float32) / 2.0), tf.int32)
|
|
pad_top = tf.cast(tf.floor(tf.cast(pad_h, tf.float32) / 2.0), tf.int32)
|
|
pad_right = pad_w - pad_left
|
|
pad_bottom = pad_h - pad_top
|
|
paddings = [pad_top, pad_bottom, pad_left, pad_right]
|
|
|
|
return paddings, scale, (new_w, new_h)
|
|
|
|
def call(self, img):
|
|
paddings, _, (nw, nh) = self.calc_params(tf.shape(img))
|
|
|
|
# Resize the image
|
|
img = tf.cast(img, tf.float32)
|
|
img = tf.image.resize(img, size=(nh, nw), method="bilinear")
|
|
|
|
# Pad the image
|
|
pad_top, pad_bottom, pad_left, pad_right = paddings
|
|
img = tf.pad(
|
|
img,
|
|
paddings=[[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]],
|
|
mode="CONSTANT",
|
|
constant_values=self.fill_value,
|
|
)
|
|
|
|
return img
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
class DetPreprocess(tf.keras.layers.Layer):
|
|
def __init__(self, target_size, fill_value=114):
|
|
super(DetPreprocess, self).__init__()
|
|
|
|
self.b2rgb = BayerToRGB()
|
|
self.letterbox = Letterbox(target_size, fill_value)
|
|
|
|
def call(self, img):
|
|
# img: tf.Tensor of shape [batch, H, W, C], dtype=tf.uint8
|
|
img = self.b2rgb(img)
|
|
img = self.letterbox(img)
|
|
return img
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def rgb2bayer(img):
|
|
bayer = np.zeros((img.shape[0], img.shape[1]), dtype=img.dtype)
|
|
bayer[0::2, 0::2] = img[0::2, 0::2, 0]
|
|
bayer[0::2, 1::2] = img[0::2, 1::2, 1]
|
|
bayer[1::2, 0::2] = img[1::2, 0::2, 1]
|
|
bayer[1::2, 1::2] = img[1::2, 1::2, 2]
|
|
return bayer
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
|
|
def main():
|
|
|
|
img_path = "/RapidPoseTriangulation/scripts/../data/h1/54138969-img_003201.jpg"
|
|
image = cv2.imread(img_path, 3)
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
image = rgb2bayer(image)
|
|
image = np.expand_dims(image, axis=-1)
|
|
image = np.asarray(image, dtype=np.uint8)
|
|
|
|
# Initialize the DetPreprocess module
|
|
preprocess_model = tf.keras.Sequential()
|
|
preprocess_model.add(DetPreprocess(target_size=det_target_size))
|
|
det_dummy_input_a0 = tf.convert_to_tensor(
|
|
np.expand_dims(image, axis=0), dtype=tf.uint8
|
|
)
|
|
det_dummy_output_a0 = preprocess_model(det_dummy_input_a0)
|
|
print("\n", det_dummy_output_a0.shape, "\n")
|
|
|
|
output_a0 = det_dummy_output_a0.numpy()
|
|
output_a0 = np.squeeze(output_a0, axis=0)
|
|
output_a0 = np.asarray(output_a0, dtype=np.uint8)
|
|
output_a0 = cv2.cvtColor(output_a0, cv2.COLOR_RGB2BGR)
|
|
cv2.imwrite(base_path + "det_preprocess.jpg", output_a0)
|
|
|
|
# Export to ONNX
|
|
input_signature = [tf.TensorSpec([None, None, None, 1], tf.uint8, name="x")]
|
|
_, _ = tf2onnx.convert.from_keras(
|
|
preprocess_model,
|
|
input_signature,
|
|
opset=11,
|
|
output_path=base_path + "det_preprocess.onnx",
|
|
)
|
|
|
|
|
|
# ==================================================================================================
|
|
|
|
if __name__ == "__main__":
|
|
main()
|