Files
RapidPoseTriangulation/scripts/test_skelda_dataset.py
2025-01-20 18:00:37 +01:00

490 lines
16 KiB
Python

import json
import os
import sys
import time
import cv2
import matplotlib
import numpy as np
import tqdm
import utils_2d_pose
import utils_pipeline
from skelda import evals
sys.path.append("/RapidPoseTriangulation/swig/")
import rpt
# ==================================================================================================
whole_body = {
"foots": False,
"face": False,
"hands": False,
}
dataset_use = "human36m"
# dataset_use = "panoptic"
# dataset_use = "mvor"
# dataset_use = "shelf"
# dataset_use = "campus"
# dataset_use = "ikeaasm"
# dataset_use = "chi3d"
# dataset_use = "tsinghua"
# dataset_use = "human36m_wb"
# dataset_use = "egohumans_tagging"
# dataset_use = "egohumans_legoassemble"
# dataset_use = "egohumans_fencing"
# dataset_use = "egohumans_basketball"
# dataset_use = "egohumans_volleyball"
# dataset_use = "egohumans_badminton"
# dataset_use = "egohumans_tennis"
# dataset_use = "ntu"
# dataset_use = "koarob"
# Describes the minimum area as fraction of the image size for a 2D bounding box to be considered
# If the persons are small in the image, use a lower value
default_min_bbox_area = 0.1 * 0.1
# Describes how confident a 2D bounding box needs to be to be considered
# If the persons are small in the image, or poorly recognizable, use a lower value
default_min_bbox_score = 0.3
# Describes how good two 2D poses need to match each other to create a valid triangulation
# If the quality of the 2D detections is poor, use a lower value
default_min_match_score = 0.94
# Describes the minimum number of camera pairs that need to detect the same person
# If the number of cameras is high, and the views are not occluded, use a higher value
default_min_group_size = 1
# Batch poses per image for faster processing
# If most of the time only one person is in a image, disable it, because it is slightly slower then
default_batch_poses = True
datasets = {
"human36m": {
"path": "/datasets/human36m/skelda/pose_test.json",
"take_interval": 5,
"min_match_score": 0.95,
"min_group_size": 1,
"min_bbox_score": 0.4,
"min_bbox_area": 0.1 * 0.1,
"batch_poses": False,
},
"panoptic": {
"path": "/datasets/panoptic/skelda/test.json",
"cams": ["00_03", "00_06", "00_12", "00_13", "00_23"],
# "cams": ["00_03", "00_06", "00_12"],
# "cams": ["00_03", "00_06", "00_12", "00_13", "00_23", "00_15", "00_10", "00_21", "00_09", "00_01"],
"take_interval": 3,
"min_match_score": 0.95,
"use_scenes": ["160906_pizza1", "160422_haggling1", "160906_ian5"],
"min_group_size": 1,
# "min_group_size": 4,
"min_bbox_area": 0.05 * 0.05,
},
"mvor": {
"path": "/datasets/mvor/skelda/all.json",
"take_interval": 1,
"with_depth": False,
"min_match_score": 0.85,
"min_bbox_score": 0.25,
},
"campus": {
"path": "/datasets/campus/skelda/test.json",
"take_interval": 1,
"min_match_score": 0.90,
"min_bbox_score": 0.5,
},
"shelf": {
"path": "/datasets/shelf/skelda/test.json",
"take_interval": 1,
"min_match_score": 0.96,
"min_group_size": 2,
},
"ikeaasm": {
"path": "/datasets/ikeaasm/skelda/test.json",
"take_interval": 2,
"min_match_score": 0.92,
"min_bbox_score": 0.20,
},
"chi3d": {
"path": "/datasets/chi3d/skelda/all.json",
"take_interval": 5,
},
"tsinghua": {
"path": "/datasets/tsinghua/skelda/test.json",
"take_interval": 3,
"min_match_score": 0.95,
"min_group_size": 2,
},
"human36m_wb": {
"path": "/datasets/human36m/skelda/wb/test.json",
"take_interval": 100,
"min_bbox_score": 0.4,
"batch_poses": False,
},
"egohumans_tagging": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "tagging",
"min_group_size": 2,
"min_bbox_score": 0.2,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_legoassemble": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "legoassemble",
"min_group_size": 2,
},
"egohumans_fencing": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "fencing",
"min_group_size": 7,
"min_bbox_score": 0.5,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_basketball": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "basketball",
"min_group_size": 7,
"min_bbox_score": 0.25,
"min_bbox_area": 0.025 * 0.025,
},
"egohumans_volleyball": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "volleyball",
"min_group_size": 11,
"min_bbox_score": 0.25,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_badminton": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "badminton",
"min_group_size": 7,
"min_bbox_score": 0.25,
"min_bbox_area": 0.05 * 0.05,
},
"egohumans_tennis": {
"path": "/datasets/egohumans/skelda/all.json",
"take_interval": 2,
"subset": "tennis",
"min_group_size": 11,
"min_bbox_area": 0.025 * 0.025,
},
}
joint_names_2d = utils_pipeline.get_joint_names(whole_body)
joint_names_3d = list(joint_names_2d)
eval_joints = [
"head",
"shoulder_left",
"shoulder_right",
"elbow_left",
"elbow_right",
"wrist_left",
"wrist_right",
"hip_left",
"hip_right",
"knee_left",
"knee_right",
"ankle_left",
"ankle_right",
]
if dataset_use == "human36m":
eval_joints[eval_joints.index("head")] = "nose"
if dataset_use == "panoptic":
eval_joints[eval_joints.index("head")] = "nose"
if dataset_use == "human36m_wb":
if utils_pipeline.use_whole_body(whole_body):
eval_joints = list(joint_names_2d)
else:
eval_joints[eval_joints.index("head")] = "nose"
# output_dir = "/RapidPoseTriangulation/data/testoutput/"
output_dir = ""
# ==================================================================================================
def load_json(path: str):
with open(path, "r", encoding="utf-8") as file:
data = json.load(file)
return data
# ==================================================================================================
def load_labels(dataset: dict):
"""Load labels by dataset description"""
if "panoptic" in dataset:
labels = load_json(dataset["panoptic"]["path"])
labels = [lb for i, lb in enumerate(labels) if i % 1500 < 90]
# Filter by maximum number of persons
labels = [l for l in labels if len(l["bodies3D"]) <= 10]
# Filter scenes
if "use_scenes" in dataset["panoptic"]:
labels = [
l for l in labels if l["scene"] in dataset["panoptic"]["use_scenes"]
]
# Filter cameras
if not "cameras_depth" in labels[0]:
for label in labels:
for i, cam in reversed(list(enumerate(label["cameras"]))):
if cam["name"] not in dataset["panoptic"]["cams"]:
label["cameras"].pop(i)
label["imgpaths"].pop(i)
elif "human36m" in dataset:
labels = load_json(dataset["human36m"]["path"])
labels = [lb for lb in labels if lb["subject"] == "S9"]
labels = [lb for i, lb in enumerate(labels) if i % 4000 < 150]
for label in labels:
label.pop("action")
label.pop("frame")
elif "mvor" in dataset:
labels = load_json(dataset["mvor"]["path"])
# Rename keys
for label in labels:
label["cameras_color"] = label["cameras"]
label["imgpaths_color"] = label["imgpaths"]
elif "ikeaasm" in dataset:
labels = load_json(dataset["ikeaasm"]["path"])
cams0 = str(labels[0]["cameras"])
labels = [lb for lb in labels if str(lb["cameras"]) == cams0]
elif "shelf" in dataset:
labels = load_json(dataset["shelf"]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
elif "campus" in dataset:
labels = load_json(dataset["campus"]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
elif "tsinghua" in dataset:
labels = load_json(dataset["tsinghua"]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
labels = [lb for lb in labels if lb["seq"] == "seq_1"]
labels = [lb for i, lb in enumerate(labels) if i % 300 < 90]
for label in labels:
label["bodyids"] = list(range(len(label["bodies3D"])))
elif "chi3d" in dataset:
labels = load_json(dataset["chi3d"]["path"])
labels = [lb for lb in labels if lb["setup"] == "s03"]
labels = [lb for i, lb in enumerate(labels) if i % 2000 < 150]
elif "human36m_wb" in dataset:
labels = load_json(dataset["human36m_wb"]["path"])
elif any(("egohumans" in key for key in dataset)):
labels = load_json(dataset[dataset_use]["path"])
labels = [lb for lb in labels if "test" in lb["splits"]]
labels = [lb for lb in labels if dataset[dataset_use]["subset"] in lb["seq"]]
if dataset[dataset_use]["subset"] in ["volleyball", "tennis"]:
labels = [lb for i, lb in enumerate(labels) if i % 150 < 60]
else:
raise ValueError("Dataset not available")
# Optionally drop samples to speed up train/eval
if "take_interval" in dataset:
take_interval = dataset["take_interval"]
if take_interval > 1:
labels = [l for i, l in enumerate(labels) if i % take_interval == 0]
return labels
# ==================================================================================================
def main():
global joint_names_3d, eval_joints
# Load dataset specific parameters
min_match_score = datasets[dataset_use].get(
"min_match_score", default_min_match_score
)
min_group_size = datasets[dataset_use].get("min_group_size", default_min_group_size)
min_bbox_score = datasets[dataset_use].get("min_bbox_score", default_min_bbox_score)
min_bbox_area = datasets[dataset_use].get("min_bbox_area", default_min_bbox_area)
batch_poses = datasets[dataset_use].get("batch_poses", default_batch_poses)
# Load 2D pose model
if utils_pipeline.use_whole_body(whole_body):
kpt_model = utils_2d_pose.load_wb_model(min_bbox_score, min_bbox_area, batch_poses)
else:
kpt_model = utils_2d_pose.load_model(min_bbox_score, min_bbox_area, batch_poses)
# Manually set matplotlib backend
try:
matplotlib.use("TkAgg")
except ImportError:
print("WARNING: Using headless mode, no visualizations will be shown.")
print("Loading dataset ...")
labels = load_labels(
{
dataset_use: datasets[dataset_use],
"take_interval": datasets[dataset_use]["take_interval"],
}
)
# Print a dataset sample for debugging
print(labels[0])
print("\nPrefetching images ...")
for label in tqdm.tqdm(labels):
# If the images are stored on a HDD, it sometimes takes a while to load them
# Prefetching them results in more stable timings of the following steps
# To prevent memory overflow, the code only loads the images, but does not store them
try:
for i in range(len(label["imgpaths"])):
imgpath = label["imgpaths"][i]
img = utils_pipeline.load_image(imgpath)
except cv2.error:
print("One of the paths not found:", label["imgpaths"])
continue
time.sleep(3)
print("\nCalculating 2D predictions ...")
all_poses_2d = []
times = []
for label in tqdm.tqdm(labels):
images_2d = []
start = time.time()
try:
for i in range(len(label["imgpaths"])):
imgpath = label["imgpaths"][i]
img = utils_pipeline.load_image(imgpath)
images_2d.append(img)
except cv2.error:
print("One of the paths not found:", label["imgpaths"])
continue
if dataset_use == "human36m":
for i in range(len(images_2d)):
# Since the images don't have the same shape, rescale some of them
img = images_2d[i]
ishape = img.shape
if ishape != (1000, 1000, 3):
cam = label["cameras"][i]
cam["K"][1][1] = cam["K"][1][1] * (1000 / ishape[0])
cam["K"][1][2] = cam["K"][1][2] * (1000 / ishape[0])
cam["K"][0][0] = cam["K"][0][0] * (1000 / ishape[1])
cam["K"][0][2] = cam["K"][0][2] * (1000 / ishape[1])
images_2d[i] = cv2.resize(img, (1000, 1000))
# Convert image format to Bayer encoding to simulate real camera input
# This also resulted in notably better MPJPE results in most cases, presumbly since the
# demosaicing algorithm from OpenCV is better than the default one from the cameras
for i in range(len(images_2d)):
images_2d[i] = utils_pipeline.rgb2bayer(images_2d[i])
time_imgs = time.time() - start
start = time.time()
for i in range(len(images_2d)):
images_2d[i] = utils_pipeline.bayer2rgb(images_2d[i])
poses_2d = utils_2d_pose.get_2d_pose(kpt_model, images_2d)
poses_2d = utils_pipeline.update_keypoints(poses_2d, joint_names_2d, whole_body)
time_2d = time.time() - start
all_poses_2d.append(poses_2d)
times.append([time_imgs, time_2d, 0])
print("\nCalculating 3D predictions ...")
all_poses_3d = []
all_ids = []
triangulator = rpt.Triangulator(
min_match_score=min_match_score, min_group_size=min_group_size
)
old_scene = ""
old_index = -1
for i in tqdm.tqdm(range(len(labels))):
label = labels[i]
poses_2d = all_poses_2d[i]
if old_scene != label.get("scene", "") or (
old_index + datasets[dataset_use]["take_interval"] < label["index"]
):
# Reset last poses if scene changes
old_scene = label.get("scene", "")
triangulator.reset()
start = time.time()
if sum(np.sum(p) for p in poses_2d) == 0:
poses3D = np.zeros([1, len(joint_names_3d), 4]).tolist()
else:
rpt_cameras = rpt.convert_cameras(label["cameras"])
roomparams = [label["room_size"], label["room_center"]]
poses3D = triangulator.triangulate_poses(
poses_2d, rpt_cameras, roomparams, joint_names_2d
)
time_3d = time.time() - start
old_index = label["index"]
all_poses_3d.append(np.array(poses3D).tolist())
all_ids.append(label["id"])
times[i][2] = time_3d
# Print per-step triangulation timings
print("")
triangulator.print_stats()
warmup_iters = 10
if len(times) > warmup_iters:
times = times[warmup_iters:]
avg_time_im = np.mean([t[0] for t in times])
avg_time_2d = np.mean([t[1] for t in times])
avg_time_3d = np.mean([t[2] for t in times])
tstats = {
"img_loading": avg_time_im,
"avg_time_2d": avg_time_2d,
"avg_time_3d": avg_time_3d,
"avg_fps": 1.0 / (avg_time_2d + avg_time_3d),
}
print("\nMetrics:")
print(json.dumps(tstats, indent=2))
_ = evals.mpjpe.run_eval(
labels,
all_poses_3d,
all_ids,
joint_names_net=joint_names_3d,
joint_names_use=eval_joints,
save_error_imgs=output_dir,
)
_ = evals.pcp.run_eval(
labels,
all_poses_3d,
all_ids,
joint_names_net=joint_names_3d,
joint_names_use=eval_joints,
replace_head_with_nose=True,
)
# ==================================================================================================
if __name__ == "__main__":
main()