Files
RapidPoseTriangulation/extras/jetson/README.md
2025-01-22 13:49:00 +01:00

3.1 KiB

Setup with Nvidia-Jetson-Orin

Initial setup and installation of RapidPoseTriangulation on a Nvidia Jetson device.
Tested with a Jetson AGX Orin Developer Kit module.


Base installation


RPT installation

  • Build docker container:

    docker build --progress=plain -f extras/jetson/dockerfile -t rapidposetriangulation .
    ./run_container.sh
    
  • Build rpt package inside container:

    cd /RapidPoseTriangulation/swig/ && make all && cd ../tests/ && python3 test_interface.py && cd ..
    
    cd /RapidPoseTriangulation/scripts/ && \
    g++ -std=c++2a -fPIC -O3 -march=native -Wall -Werror -flto=auto -fopenmp -fopenmp-simd \
      -I /RapidPoseTriangulation/rpt/ \
      -isystem /usr/include/opencv4/ \
      -isystem /usr/local/include/onnxruntime/ \
      -L /usr/local/lib/ \
      test_skelda_dataset.cpp \
      /RapidPoseTriangulation/rpt/*.cpp \
      -o test_skelda_dataset.bin \
      -Wl,--start-group \
        -lonnxruntime_providers_tensorrt \
        -lonnxruntime_providers_shared \
        -lonnxruntime_providers_cuda \
        -lonnxruntime \
      -Wl,--end-group \
      $(pkg-config --libs opencv4) \
      -Wl,-rpath,/onnxruntime/build/Linux/Release/ \
    && cd ..
    
  • Test with samples:

    python3 /RapidPoseTriangulation/scripts/test_triangulate.py
    
  • Evaluate datasets:

    python3 /RapidPoseTriangulation/scripts/test_skelda_dataset.py
    

ROS interface

  • Build docker container:

    docker build --progress=plain -f extras/jetson/dockerfile_ros -t rapidposetriangulation_ros .
    ./run_container.sh
    
  • Run and test:

    xhost +; docker compose -f extras/jetson/docker-compose.yml up
    
    docker exec -it ros-test_node-1 bash
    export ROS_DOMAIN_ID=18