# Homework 01: Survey & Design of 3D Multi-view Human Pose Estimation System 调研现有的多视角单人 (multiple view of single person) 多视角多人 (multi-view multi-person) 人体姿态估计系统/管线 ## 参考答案 AI 生成的架构图, 不代表我此刻的实际想法, which changes every moment. ```mermaid flowchart TD %% ========================= %% Multi-view 2D stage %% ========================= subgraph VIEWS["Per-view input (cameras 1..N)"] direction LR C1["Cam 1\n2D detections: 133×2 (+conf)"] --> T1["2D latest tracking cache\n(view 1)"] C2["Cam 2\n2D detections: 133×2 (+conf)"] --> T2["2D latest tracking cache\n(view 2)"] C3["Cam 3\n2D detections: 133×2 (+conf)"] --> T3["2D latest tracking cache\n(view 3)"] C4["Cam 4\n2D detections: 133×2 (+conf)"] --> T4["2D latest tracking cache\n(view 4)"] end %% ========================= %% Cross-view association %% ========================= subgraph ASSOC["Cross-view data association (epipolar)"] direction TB EPI["Epipolar constraint\n(Sampson / point-to-epiline)"]:::core CYCLE["Cycle consistency / view-graph pruning"]:::core GROUP["Assemble per-target multi-view observation set\n{view_id → 133×2}"]:::core EPI --> CYCLE --> GROUP end T1 --> EPI T2 --> EPI T3 --> EPI T4 --> EPI %% ========================= %% Geometry / lifting %% ========================= subgraph GEOM["3D measurement construction"] direction TB RT["Camera models\nK, [R|t], SO(3)/SE(3)"]:::meta DLT["DLT / triangulation (init)"]:::core NN["Optional NN lifting / completion"]:::core BA["Optional reprojection refinement\n(1–5 iters)"]:::core Y["3D measurement y(t)\nJ×3 positions (+quality / R / cov)"]:::out RT --> DLT --> NN --> BA --> Y end GROUP --> DLT %% ========================= %% Tracking filter + lifecycle %% ========================= subgraph FILTER["Tracking filter (per target)"] direction TB GATE["Gating\n(Mahalanobis / per-joint + global)"]:::core IMM["IMM (motion model bank)\n(CV/CA or low/med/high Q)"]:::core PRED["Predict\nΔt, self-propagate"]:::core UPD["Update\nKF (linear)\nstate: [p(3J), v(3J)]"]:::core MISS["Miss handling & track lifecycle\n(tentative → confirmed → deleted)"]:::meta GATE --> IMM --> PRED --> UPD --> MISS end Y --> GATE %% Optional inertial fusion IMU["IMU (optional)"]:::meta --> INERT["EKF/UKF branch (optional)\nwhen augmenting state with orientation"]:::meta --> IMM %% ========================= %% IK + optional feedback %% ========================= subgraph IKSTAGE["IK stage (constraint / anatomy)"] direction TB IK["IK optimization target\n(minimize joint position error,\nadd bone length / joint limits)"]:::core FB["Optional feedback to filter\npseudo-measurement z_IK with large R"]:::meta IK --> FB end UPD --> IK FB -.-> GATE %% ========================= %% SMPL / mesh fitting %% ========================= subgraph SMPLSTAGE["SMPL / SMPL-X fitting"] direction TB VP["VPoser / pose prior"]:::core SMPL["SMPL(θ, β, root)\nfit to joints / reprojection"]:::core JR["JR: Joint Regressor\nmesh → joints (loop closure)"]:::core OUT["Outputs\nmesh + joints + pose params"]:::out VP --> SMPL --> JR --> OUT JR -. residual / reproject .-> SMPL end IK --> SMPL classDef core fill:#0b1020,stroke:#5eead4,color:#e5e7eb,stroke-width:1.2px; classDef meta fill:#111827,stroke:#93c5fd,color:#e5e7eb,stroke-dasharray: 4 3; classDef out fill:#052e2b,stroke:#34d399,color:#ecfeff,stroke-width:1.4px; ``` 如果图片不能正确预览, 见 [fig/fig.svg](fig/fig.svg)