{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from awkward import Record as AwkwardRecord, Array as AwkwardArray\n", "import awkward as ak" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "FILENAME = \"export-2024-11-12-16-59-20.parquet\"\n", "data = ak.from_parquet(FILENAME)[0]\n", "display(data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from typing import Literal\n", "import plotly.graph_objects as go\n", "import plotly.express as px\n", "import numpy as np\n", "\n", "\n", "def to_scatter(\n", " key: str, dev_history: AwkwardArray, plot_key: Literal[\"value\", \"rssi\"] = \"value\"\n", ") -> go.Scatter:\n", " x = ak.to_numpy(dev_history[\"time\"])\n", " if plot_key == \"rssi\":\n", " y = ak.to_numpy(dev_history[\"rssi\"])\n", " elif plot_key == \"value\":\n", " y = ak.to_numpy(dev_history[\"value\"])\n", " else:\n", " raise ValueError(f\"Unknown plot_key: {plot_key}\")\n", " return go.Scatter(x=x, y=y, mode=\"lines+markers\", name=key)\n", "\n", "\n", "scatters: list[go.Scatter] = []\n", "for k in data.fields:\n", " val = data[k]\n", " scatters.append(to_scatter(k, val, \"value\"))\n", "\n", "fig = go.Figure(scatters)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "display(fig)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import csv\n", "def dump_as_csv(mac:str, device_record: AwkwardRecord, filename:str):\n", " time = ak.to_numpy(device_record[mac][\"time\"]) # type: ignore\n", " value = ak.to_numpy(device_record[mac][\"value\"]) # type: ignore\n", " rssi = ak.to_numpy(device_record[mac][\"rssi\"]) # type: ignore\n", " with open(filename, \"w\") as f:\n", " writer = csv.writer(f)\n", " writer.writerow([\"time\", \"value\", \"rssi\"])\n", " for t, v, r in zip(time, value, rssi):\n", " writer.writerow([t, v, r])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dump_as_csv(\"A09E1AE4E710\", data, \"A09E1AE4E710.csv\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 2 }