214 lines
5.6 KiB
Python
214 lines
5.6 KiB
Python
from dataclasses import dataclass
|
|
from enum import IntEnum
|
|
import struct
|
|
from typing import ClassVar, Tuple, Final, LiteralString
|
|
from pydantic import BaseModel, Field, computed_field
|
|
|
|
|
|
class AlgoOpMode(IntEnum):
|
|
"""Equivalent to max::ALGO_OP_MODE"""
|
|
|
|
CONTINUOUS_HRM_CONTINUOUS_SPO2 = 0x00 # Continuous HRM, continuous SpO2
|
|
CONTINUOUS_HRM_ONE_SHOT_SPO2 = 0x01 # Continuous HRM, one-shot SpO2
|
|
CONTINUOUS_HRM = 0x02 # Continuous HRM
|
|
SAMPLED_HRM = 0x03 # Sampled HRM
|
|
SAMPLED_HRM_ONE_SHOT_SPO2 = 0x04 # Sampled HRM, one-shot SpO2
|
|
ACTIVITY_TRACKING_ONLY = 0x05 # Activity tracking only
|
|
SPO2_CALIBRATION = 0x06 # SpO2 calibration
|
|
|
|
|
|
class ActivateClass(IntEnum):
|
|
"""Equivalent to max::ACTIVATE_CLASS"""
|
|
|
|
REST = 0
|
|
WALK = 1
|
|
RUN = 2
|
|
BIKE = 3
|
|
|
|
|
|
class SPO2State(IntEnum):
|
|
"""Equivalent to max::SPO2_STATE"""
|
|
|
|
LED_ADJUSTMENT = 0
|
|
COMPUTATION = 1
|
|
SUCCESS = 2
|
|
TIMEOUT = 3
|
|
|
|
|
|
class SCDState(IntEnum):
|
|
"""Equivalent to max::SCD_STATE"""
|
|
|
|
UNDETECTED = 0
|
|
OFF_SKIN = 1
|
|
ON_SOME_SUBJECT = 2
|
|
ON_SKIN = 3
|
|
|
|
|
|
class AlgoModelData(BaseModel):
|
|
op_mode: AlgoOpMode
|
|
hr: int # uint16, 10x calculated heart rate
|
|
hr_conf: int # uint8, confidence level in %
|
|
rr: int # uint16, 10x RR interval in ms
|
|
rr_conf: int # uint8
|
|
activity_class: ActivateClass
|
|
r: int # uint16, 1000x SpO2 R value
|
|
spo2_conf: int # uint8
|
|
spo2: int # uint16, 10x SpO2 %
|
|
spo2_percent_complete: int # uint8
|
|
spo2_low_signal_quality_flag: int # uint8
|
|
spo2_motion_flag: int # uint8
|
|
spo2_low_pi_flag: int # uint8
|
|
spo2_unreliable_r_flag: int # uint8
|
|
spo2_state: SPO2State
|
|
scd_contact_state: SCDState
|
|
# don't include reserved into the struct
|
|
# uint32
|
|
|
|
_FORMAT: ClassVar[LiteralString] = "<BHBHBBHBHBBBBBBBI"
|
|
|
|
@computed_field
|
|
@property
|
|
def hr_f(self) -> float:
|
|
"""Heart rate in beats per minute"""
|
|
return self.hr / 10.0
|
|
|
|
@computed_field
|
|
@property
|
|
def spo2_f(self) -> float:
|
|
"""SpO2 percentage"""
|
|
return self.spo2 / 10.0
|
|
|
|
@computed_field
|
|
@property
|
|
def r_f(self) -> float:
|
|
"""SpO2 R value"""
|
|
return self.r / 1000.0
|
|
|
|
@computed_field
|
|
@property
|
|
def rr_f(self) -> float:
|
|
"""RR interval in milliseconds"""
|
|
return self.rr / 10.0
|
|
|
|
@classmethod
|
|
def unmarshal(cls, data: bytes) -> "AlgoModelData":
|
|
values = struct.unpack(cls._FORMAT, data)
|
|
return cls(
|
|
op_mode=values[0],
|
|
hr=values[1],
|
|
hr_conf=values[2],
|
|
rr=values[3],
|
|
rr_conf=values[4],
|
|
activity_class=values[5],
|
|
r=values[6],
|
|
spo2_conf=values[7],
|
|
spo2=values[8],
|
|
spo2_percent_complete=values[9],
|
|
spo2_low_signal_quality_flag=values[10],
|
|
spo2_motion_flag=values[11],
|
|
spo2_low_pi_flag=values[12],
|
|
spo2_unreliable_r_flag=values[13],
|
|
spo2_state=values[14],
|
|
scd_contact_state=values[15],
|
|
)
|
|
|
|
|
|
class AlgoReport(BaseModel):
|
|
led_1: int # uint32
|
|
led_2: int # uint32
|
|
led_3: int # uint32
|
|
accel_x: int # int16, in uint of g
|
|
accel_y: int # int16, in uint of g
|
|
accel_z: int # int16, in uint of g
|
|
data: AlgoModelData
|
|
|
|
@classmethod
|
|
def unmarshal(cls, buf: bytes) -> "AlgoReport":
|
|
FORMAT: Final[str] = "<IIIhhh"
|
|
led_1, led_2, led_3, accel_x, accel_y, accel_z = struct.unpack(
|
|
FORMAT, buf[: struct.calcsize(FORMAT)]
|
|
)
|
|
data = AlgoModelData.unmarshal(buf[struct.calcsize(FORMAT) :])
|
|
return cls(
|
|
led_1=led_1,
|
|
led_2=led_2,
|
|
led_3=led_3,
|
|
accel_x=accel_x,
|
|
accel_y=accel_y,
|
|
accel_z=accel_z,
|
|
data=data,
|
|
)
|
|
|
|
|
|
class HrConfidence(IntEnum):
|
|
"""Equivalent to max::HR_CONFIDENCE"""
|
|
|
|
ZERO = 0
|
|
LOW = 1
|
|
MEDIUM = 2
|
|
HIGH = 3
|
|
|
|
|
|
def hr_confidence_to_num(hr_confidence: HrConfidence) -> float:
|
|
if hr_confidence == HrConfidence.ZERO:
|
|
return 0
|
|
elif hr_confidence == HrConfidence.LOW:
|
|
return 25
|
|
elif hr_confidence == HrConfidence.MEDIUM:
|
|
return 62.5
|
|
elif hr_confidence == HrConfidence.HIGH:
|
|
return 100
|
|
else:
|
|
raise ValueError(f"Invalid HR confidence: {hr_confidence}")
|
|
|
|
|
|
@dataclass
|
|
class HrStatusFlags:
|
|
# 2 bits
|
|
hr_confidence: HrConfidence
|
|
# 1 bit
|
|
is_active: bool
|
|
# 1 bit
|
|
is_on_skin: bool
|
|
# 4 bits
|
|
battery_level: int
|
|
|
|
@staticmethod
|
|
def unmarshal(data: bytes) -> "HrStatusFlags":
|
|
val = data[0]
|
|
return HrStatusFlags(
|
|
hr_confidence=HrConfidence(val & 0b11),
|
|
is_active=(val & 0b100) != 0,
|
|
is_on_skin=(val & 0b1000) != 0,
|
|
battery_level=val >> 4,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class HrPacket:
|
|
# 8 bits
|
|
status: HrStatusFlags
|
|
# 8 bits
|
|
id: int
|
|
# 8 bits
|
|
hr: int
|
|
# 8 bits (as `n`) + n x 24 bits
|
|
raw_data: list[int]
|
|
|
|
@staticmethod
|
|
def unmarshal(data: bytes) -> "HrPacket":
|
|
status = HrStatusFlags.unmarshal(data[0:1])
|
|
id = data[1]
|
|
hr = data[2]
|
|
raw_data_count = data[3]
|
|
raw_data_payload = data[4:]
|
|
if len(raw_data_payload) != (expected_raw_data_len := raw_data_count * 3):
|
|
raise ValueError(
|
|
f"Invalid raw data payload length: {len(raw_data_payload)}, expected {expected_raw_data_len}"
|
|
)
|
|
raw_data = [
|
|
int.from_bytes(raw_data_payload[i : i + 3], "little")
|
|
for i in range(0, expected_raw_data_len, 3)
|
|
]
|
|
return HrPacket(status, id, hr, raw_data)
|