/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include #include /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ static uint8_t rx_buf[64]; static bool rx_complete = false; static volatile uint16_t rx_length = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ static void hex_dump(const uint8_t *data, uint16_t len); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ static char heartbeat_buf[64]; /** * @brief Print hex dump in ESP-IDF style * @param data: pointer to data buffer * @param len: length of data * @retval None */ static void hex_dump(const uint8_t *data, uint16_t len) { char line_buf[80]; for (uint16_t i = 0; i < len; i += 16) { // Print address int pos = snprintf(line_buf, sizeof(line_buf), "0x%08lx ", (unsigned long)(data + i)); // Print hex values (first 8 bytes) for (int j = 0; j < 8; j++) { if (i + j < len) { pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, "%02x ", data[i + j]); } else { pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, " "); } } // Space between two groups pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, " "); // Print hex values (second 8 bytes) for (int j = 8; j < 16; j++) { if (i + j < len) { pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, "%02x ", data[i + j]); } else { pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, " "); } } // Print ASCII representation pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, " |"); for (int j = 0; j < 16 && (i + j) < len; j++) { uint8_t c = data[i + j]; if (c >= 32 && c <= 126) { pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, "%c", c); } else { pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, "."); } } pos += snprintf(line_buf + pos, sizeof(line_buf) - pos, "|\r\n"); // Send line to UART1 HAL_UART_Transmit(&huart1, (uint8_t *)line_buf, (uint16_t)pos, HAL_MAX_DELAY); } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ /* Enable UART IDLE interrupt */ __HAL_UART_ENABLE_IT(&huart2, UART_IT_IDLE); /* Start UART2 reception in interrupt mode */ HAL_UART_Receive_IT(&huart2, rx_buf, sizeof(rx_buf)); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { static uint32_t last_toggle_timestamp; if (HAL_GetTick() - last_toggle_timestamp >= 1000) { HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_6); /* Heartbeat: emit tick timestamp over UART1 and blink the PB6 LED */ int msg_len = snprintf(heartbeat_buf, sizeof(heartbeat_buf), "PB6 heartbeat %lu\r\n", (unsigned long)HAL_GetTick()); if (msg_len > 0) { if (msg_len >= (int)sizeof(heartbeat_buf)) { msg_len = (int)sizeof(heartbeat_buf) - 1; } HAL_UART_Transmit(&huart1, (uint8_t *)heartbeat_buf, (uint16_t)msg_len, HAL_MAX_DELAY); } last_toggle_timestamp = HAL_GetTick(); } /* Check if data received from UART2 */ if (rx_complete) { rx_complete = false; uint16_t len = rx_length; /* Print header */ char header[32]; int header_len = snprintf(header, sizeof(header), "RX[%u]:\r\n", len); HAL_UART_Transmit(&huart1, (uint8_t *)header, (uint16_t)header_len, HAL_MAX_DELAY); /* Print received buffer as hex dump */ hex_dump(rx_buf, len); /* Clear buffer before re-arming */ memset(rx_buf, 0, sizeof(rx_buf)); /* Re-arm UART2 reception */ HAL_UART_Receive_IT(&huart2, rx_buf, sizeof(rx_buf)); } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 192; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_PLLCLK, RCC_MCODIV_2); } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6, GPIO_PIN_SET); /*Configure GPIO pin : PA8 */ GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF0_MCO; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PB6 */ GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /** * @brief UART IDLE line detected callback * @note This is called from USART2_IRQHandler when IDLE interrupt occurs * @retval None */ void UART_IDLE_Callback(UART_HandleTypeDef *huart) { if (huart->Instance == USART2) { if (huart->RxState != HAL_UART_STATE_BUSY_RX) { /* Not in reception state, ignore */ return; } /* Calculate how many bytes were actually received */ /** * RxXferCount is a countdown timer maintained by the HAL library that * decrements with each byte received. Subtracting it from the total * gives you the actual number of bytes that made it into the buffer. */ rx_length = sizeof(rx_buf) - huart->RxXferCount; /* Only process if we actually received data */ if (rx_length > 0) { /* Abort the ongoing reception */ HAL_UART_AbortReceive_IT(&huart2); /* Signal that data is ready */ rx_complete = true; } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */