1
0
forked from HQU-gxy/CVTH3PE

refactor: Update type hints and enhance affinity calculations in playground.py

- Changed function signatures to use `Sequence` instead of `list` for better type flexibility.
- Introduced a new function `calculate_tracking_detection_affinity` to streamline the calculation of affinities between tracking and detection objects.
- Refactored existing affinity calculation logic to improve clarity and performance, leveraging the new affinity function.
- Removed commented-out code to clean up the implementation and enhance readability.
This commit is contained in:
2025-04-27 17:45:31 +08:00
parent 4f48c78cfb
commit 41e0141bde
2 changed files with 77 additions and 47 deletions

View File

@ -178,7 +178,7 @@ def preprocess_keypoint_dataset(
DetectionGenerator: TypeAlias = Generator[Detection, None, None]
def sync_batch_gen(gens: list[DetectionGenerator], diff: timedelta):
def sync_batch_gen(gens: Sequence[DetectionGenerator], diff: timedelta):
"""
given a list of detection generators, return a generator that yields a batch of detections
@ -347,7 +347,7 @@ with jnp.printoptions(precision=3, suppress=True):
def clusters_to_detections(
clusters: list[list[int]], sorted_detections: list[Detection]
clusters: Sequence[Sequence[int]], sorted_detections: Sequence[Detection]
) -> list[list[Detection]]:
"""
given a list of clusters (which is the indices of the detections in the sorted_detections list),
@ -473,8 +473,6 @@ def triangulate_points_from_multiple_views_linear(
# %%
@jaxtyped(typechecker=beartype)
@dataclass(frozen=True)
class Tracking:
@ -502,7 +500,7 @@ class Tracking:
@jaxtyped(typechecker=beartype)
def triangle_from_cluster(
cluster: list[Detection],
cluster: Sequence[Detection],
) -> tuple[Float[Array, "N 3"], datetime]:
proj_matrices = jnp.array([el.camera.params.projection_matrix for el in cluster])
points = jnp.array([el.keypoints_undistorted for el in cluster])
@ -516,14 +514,7 @@ def triangle_from_cluster(
)
# res = {
# "a": triangle_from_cluster(clusters_detections[0]).tolist(),
# "b": triangle_from_cluster(clusters_detections[1]).tolist(),
# }
# with open("samples/res.json", "wb") as f:
# f.write(orjson.dumps(res))
# %%
class GlobalTrackingState:
_last_id: int
_trackings: dict[int, Tracking]
@ -541,7 +532,7 @@ class GlobalTrackingState:
def trackings(self) -> dict[int, Tracking]:
return shallow_copy(self._trackings)
def add_tracking(self, cluster: list[Detection]) -> Tracking:
def add_tracking(self, cluster: Sequence[Detection]) -> Tracking:
kps_3d, latest_timestamp = triangle_from_cluster(cluster)
next_id = self._last_id + 1
tracking = Tracking(
@ -598,7 +589,7 @@ def calculate_affinity_2d(
w_2d: float,
alpha_2d: float,
lambda_a: float,
) -> float:
) -> Float[Array, "J"]:
"""
Calculate the affinity between two detections based on the distances between their keypoints.
@ -621,7 +612,7 @@ def calculate_affinity_2d(
* (1 - distance_2d / (alpha_2d * delta_t_s))
* jnp.exp(-lambda_a * delta_t_s)
)
return jnp.sum(affinity_per_keypoint).item()
return affinity_per_keypoint
@jaxtyped(typechecker=beartype)
@ -693,7 +684,7 @@ def calculate_affinity_3d(
w_3d: float,
alpha_3d: float,
lambda_a: float,
) -> float:
) -> Float[Array, "J"]:
"""
Calculate 3D affinity score between a tracking and detection.
@ -714,9 +705,7 @@ def calculate_affinity_3d(
affinity_per_keypoint = (
w_3d * (1 - distances / alpha_3d) * jnp.exp(-lambda_a * delta_t_s)
)
# Sum affinities across all keypoints
return jnp.sum(affinity_per_keypoint).item()
return affinity_per_keypoint
def predict_pose_3d(
@ -731,6 +720,67 @@ def predict_pose_3d(
return tracking.keypoints + tracking.velocity * delta_t_s
@beartype
def calculate_tracking_detection_affinity(
tracking: Tracking,
detection: Detection,
w_2d: float,
alpha_2d: float,
w_3d: float,
alpha_3d: float,
lambda_a: float,
) -> float:
"""
Calculate the affinity between a tracking and a detection.
Args:
tracking: The tracking object
detection: The detection object
w_2d: Weight for 2D affinity
alpha_2d: Normalization factor for 2D distance
w_3d: Weight for 3D affinity
alpha_3d: Normalization factor for 3D distance
lambda_a: Decay rate for time difference
Returns:
Combined affinity score
"""
camera = detection.camera
delta_t = detection.timestamp - tracking.last_active_timestamp
# Calculate 2D affinity
tracking_2d_projection = camera.project(tracking.keypoints)
w, h = camera.params.image_size
distance_2d = calculate_distance_2d(
tracking_2d_projection,
detection.keypoints,
image_size=(w, h),
)
affinity_2d = calculate_affinity_2d(
distance_2d,
delta_t,
w_2d=w_2d,
alpha_2d=alpha_2d,
lambda_a=lambda_a,
)
# Calculate 3D affinity
distances = perpendicular_distance_camera_2d_points_to_tracking_raycasting(
detection, tracking, delta_t
)
affinity_3d = calculate_affinity_3d(
distances,
delta_t,
w_3d=w_3d,
alpha_3d=alpha_3d,
lambda_a=lambda_a,
)
# Combine affinities
total_affinity = affinity_2d + affinity_3d
return jnp.sum(total_affinity).item()
# %%
# let's do cross-view association
W_2D = 1.0
@ -738,7 +788,6 @@ ALPHA_2D = 1.0
LAMBDA_A = 0.1
W_3D = 1.0
ALPHA_3D = 1.0
LAMBDA_A = 0.1
trackings = sorted(global_tracking_state.trackings.values(), key=lambda x: x.id)
unmatched_detections = shallow_copy(next_group)
@ -757,35 +806,16 @@ detection_by_camera = classify_by_camera(unmatched_detections)
for i, tracking in enumerate(trackings):
j = 0
for c, detections in detection_by_camera.items():
camera = next(iter(detections)).camera
# pixel space, unnormalized
tracking_2d_projection = camera.project(tracking.keypoints)
for det in detections:
delta_t = det.timestamp - tracking.last_active_timestamp
w, h = camera.params.image_size
distance_2d = calculate_distance_2d(
tracking_2d_projection,
det.keypoints,
image_size=(w, h),
)
affinity_2d = calculate_affinity_2d(
distance_2d,
delta_t,
affinity_value = calculate_tracking_detection_affinity(
tracking,
det,
w_2d=W_2D,
alpha_2d=ALPHA_2D,
lambda_a=LAMBDA_A,
)
distances = perpendicular_distance_camera_2d_points_to_tracking_raycasting(
det, tracking, delta_t
)
affinity_3d = calculate_affinity_3d(
distances,
delta_t,
w_3d=W_3D,
alpha_3d=ALPHA_3D,
lambda_a=LAMBDA_A,
)
affinity_sum = affinity_2d + affinity_3d
affinity = affinity.at[i, j].set(affinity_sum)
affinity = affinity.at[i, j].set(affinity_value)
j += 1
display(affinity)