forked from HQU-gxy/CVTH3PE
feat: Enhance playground.py with new tracking and affinity calculation functionalities
- Introduced new functions for calculating 2D distances and affinities between detections, improving tracking capabilities. - Added a `Tracking` dataclass with detailed docstrings for better clarity on its attributes. - Refactored code to utilize `shallow_copy` for handling detections and improved organization of imports. - Enhanced the cross-view association logic to accommodate the new functionalities, ensuring better integration with existing tracking systems.
This commit is contained in:
134
playground.py
134
playground.py
@ -13,7 +13,10 @@
|
||||
# ---
|
||||
|
||||
# %%
|
||||
from copy import copy as shallow_copy
|
||||
from copy import deepcopy
|
||||
from copy import deepcopy as deep_copy
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
@ -34,14 +37,21 @@ import numpy as np
|
||||
import orjson
|
||||
from beartype import beartype
|
||||
from cv2 import undistortPoints
|
||||
from IPython.display import display
|
||||
from jaxtyping import Array, Float, Num, jaxtyped
|
||||
from matplotlib import pyplot as plt
|
||||
from numpy.typing import ArrayLike
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
|
||||
from app.camera import Camera, CameraParams, Detection
|
||||
from app.camera import (
|
||||
Camera,
|
||||
CameraParams,
|
||||
Detection,
|
||||
calculate_affinity_matrix_by_epipolar_constraint,
|
||||
classify_by_camera,
|
||||
)
|
||||
from app.solver._old import GLPKSolver
|
||||
from app.visualize.whole_body import visualize_whole_body
|
||||
from IPython.display import display
|
||||
|
||||
NDArray: TypeAlias = np.ndarray
|
||||
|
||||
@ -316,14 +326,10 @@ sync_gen = sync_batch_gen(
|
||||
)
|
||||
|
||||
# %%
|
||||
detections = next(sync_gen)
|
||||
|
||||
# %%
|
||||
from app.camera import calculate_affinity_matrix_by_epipolar_constraint
|
||||
|
||||
sorted_detections, affinity_matrix = calculate_affinity_matrix_by_epipolar_constraint(
|
||||
detections, alpha_2d=2000
|
||||
next(sync_gen), alpha_2d=2000
|
||||
)
|
||||
display(sorted_detections)
|
||||
|
||||
# %%
|
||||
display(
|
||||
@ -338,7 +344,6 @@ with jnp.printoptions(precision=3, suppress=True):
|
||||
display(affinity_matrix)
|
||||
|
||||
# %%
|
||||
from app.solver._old import GLPKSolver
|
||||
|
||||
|
||||
def clusters_to_detections(
|
||||
@ -464,23 +469,33 @@ def triangulate_points_from_multiple_views_linear(
|
||||
in_axes=(None, 1, 1), # proj_matrices static, map over points[:,p,:], conf[:,p]
|
||||
out_axes=0,
|
||||
)
|
||||
|
||||
# returns (P, 3)
|
||||
return vmap_triangulate(proj_matrices, points, conf)
|
||||
|
||||
|
||||
# %%
|
||||
from dataclasses import dataclass
|
||||
from copy import copy as shallow_copy, deepcopy as deep_copy
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
@dataclass(frozen=True)
|
||||
class Tracking:
|
||||
id: int
|
||||
"""
|
||||
The tracking id
|
||||
"""
|
||||
keypoints: Float[Array, "J 3"]
|
||||
"""
|
||||
The 3D keypoints of the tracking
|
||||
"""
|
||||
last_active_timestamp: datetime
|
||||
|
||||
velocity: Optional[Float[Array, "3"]] = None
|
||||
"""
|
||||
Could be `None`. Like when the 3D pose is initialized.
|
||||
|
||||
`velocity` should be updated when target association yields a new
|
||||
3D pose.
|
||||
"""
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"Tracking({self.id}, {self.last_active_timestamp})"
|
||||
|
||||
@ -546,17 +561,98 @@ display(global_tracking_state)
|
||||
next_group = next(sync_gen)
|
||||
display(next_group)
|
||||
|
||||
# %%
|
||||
from app.camera import classify_by_camera
|
||||
|
||||
# %%
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def calculate_distance_2d(
|
||||
left: Num[Array, "J 2"],
|
||||
right: Num[Array, "J 2"],
|
||||
image_size: tuple[int, int] = (1, 1),
|
||||
):
|
||||
"""
|
||||
Calculate the *normalized* distance between two sets of keypoints.
|
||||
|
||||
Args:
|
||||
left: The left keypoints
|
||||
right: The right keypoints
|
||||
image_size: The size of the image
|
||||
"""
|
||||
w, h = image_size
|
||||
if w == 1 and h == 1:
|
||||
# already normalized
|
||||
left_normalized = left
|
||||
right_normalized = right
|
||||
else:
|
||||
left_normalized = left / jnp.array([w, h])
|
||||
right_normalized = right / jnp.array([w, h])
|
||||
return jnp.linalg.norm(left_normalized - right_normalized, axis=-1)
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def calculate_affinity_2d(
|
||||
distance_2d: float, w_2d: float, alpha_2d: float, lambda_a: float, delta_t: float
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the affinity between two detections based on the distance between their keypoints.
|
||||
|
||||
Args:
|
||||
distance_2d: The normalized distance between the two keypoints (see `calculate_distance_2d`)
|
||||
w_2d: The weight of the distance (parameter)
|
||||
alpha_2d: The alpha value for the distance calculation (parameter)
|
||||
lambda_a: The lambda value for the distance calculation (parameter)
|
||||
delta_t: The time delta between the two detections, in seconds
|
||||
"""
|
||||
return w_2d * (1 - distance_2d / (alpha_2d * delta_t)) * np.exp(-lambda_a * delta_t)
|
||||
|
||||
|
||||
@jaxtyped(typechecker=beartype)
|
||||
def perpendicular_distance_point_to_line_two_points(
|
||||
point: Num[Array, "2"], line: tuple[Num[Array, "2"], Num[Array, "2"]]
|
||||
):
|
||||
"""
|
||||
Calculate the perpendicular distance between a point and a line.
|
||||
|
||||
where `line` is represented by two points: `(line_start, line_end)`
|
||||
"""
|
||||
line_start, line_end = line
|
||||
distance = jnp.linalg.norm(
|
||||
jnp.cross(line_end - line_start, line_start - point)
|
||||
) / jnp.linalg.norm(line_end - line_start)
|
||||
return distance
|
||||
|
||||
|
||||
def predict_pose_3d(
|
||||
tracking: Tracking,
|
||||
delta_t: float,
|
||||
) -> Float[Array, "J 3"]:
|
||||
"""
|
||||
Predict the 3D pose of a tracking based on its velocity.
|
||||
"""
|
||||
if tracking.velocity is None:
|
||||
return tracking.keypoints
|
||||
return tracking.keypoints + tracking.velocity * delta_t
|
||||
|
||||
|
||||
# %%
|
||||
# let's do cross-view association
|
||||
trackings = sorted(global_tracking_state.trackings.values(), key=lambda x: x.id)
|
||||
detections = shallow_copy(next_group)
|
||||
# cross-view association matrix with shape (T, D), where T is the number of trackings, D is the number of detections
|
||||
affinity = np.zeros((len(trackings), len(detections)))
|
||||
detection_by_camera = classify_by_camera(detections)
|
||||
unmatched_detections = shallow_copy(next_group)
|
||||
# cross-view association matrix with shape (T, D), where T is the number of
|
||||
# trackings, D is the number of detections
|
||||
# layout:
|
||||
# a_t1_c1_d1, a_t1_c1_d2, a_t1_c1_d3,...,a_t1_c2_d1,..., a_t1_cc_dd
|
||||
# a_t2_c1_d1,...
|
||||
# ...
|
||||
# a_tt_c1_d1,... , a_tt_cc_dd
|
||||
#
|
||||
# where T <- [t1..tt]; D <- join(c1..cc), where `cn` is a collection of
|
||||
# detections from camera `n`
|
||||
affinity = np.zeros((len(trackings), len(unmatched_detections)))
|
||||
detection_by_camera = classify_by_camera(unmatched_detections)
|
||||
for i, tracking in enumerate(trackings):
|
||||
for c, detections in detection_by_camera.items():
|
||||
camera = next(iter(detections)).camera
|
||||
# pixel space, unnormalized
|
||||
tracking_2d_projection = camera.project(tracking.keypoints)
|
||||
for det in detections:
|
||||
...
|
||||
|
||||
Reference in New Issue
Block a user