1
0
forked from HQU-gxy/CVTH3PE

fix: various

- Added the `LeastMeanSquareVelocityFilter` to improve tracking velocity estimation using historical 3D poses.
- Updated the `triangulate_one_point_from_multiple_views_linear` and `triangulate_points_from_multiple_views_linear` functions to enhance documentation and ensure proper handling of input parameters.
- Refined the logic in triangulation functions to ensure correct handling of homogeneous coordinates.
- Improved error handling in the `LastDifferenceVelocityFilter` to assert non-negative time deltas, enhancing robustness.
This commit is contained in:
2025-06-18 10:35:23 +08:00
parent 5d816d92d5
commit 6cd13064f3
2 changed files with 32 additions and 11 deletions

View File

@ -114,6 +114,7 @@ class LastDifferenceVelocityFilter(GenericVelocityFilter):
def predict(self, timestamp: datetime) -> TrackingPrediction:
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
if self._last_velocity is None:
return TrackingPrediction(
velocity=None,
@ -127,6 +128,7 @@ class LastDifferenceVelocityFilter(GenericVelocityFilter):
def update(self, keypoints: Float[Array, "J 3"], timestamp: datetime) -> None:
delta_t_s = (timestamp - self._last_timestamp).total_seconds()
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
self._last_velocity = (keypoints - self._last_keypoints) / delta_t_s
self._last_keypoints = keypoints
self._last_timestamp = timestamp
@ -160,8 +162,20 @@ class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
historical_timestamps: Sequence[datetime],
max_samples: int = 10,
):
assert len(historical_3d_poses) == len(historical_timestamps)
"""
Args:
historical_3d_poses: sequence of 3D poses, at least one element is required
historical_timestamps: sequence of timestamps, whose length is the same as `historical_3d_poses`
max_samples: maximum number of samples to keep
"""
assert (N := len(historical_3d_poses)) == len(
historical_timestamps
), f"the length of `historical_3d_poses` and `historical_timestamps` must be the same; got {N} and {len(historical_timestamps)}"
if N < 1:
raise ValueError("at least one historical 3D pose is required")
temp = zip(historical_3d_poses, historical_timestamps)
# sorted by timestamp
temp_sorted = sorted(temp, key=lambda x: x[1])
self._historical_3d_poses = deque(
map(lambda x: x[0], temp_sorted), maxlen=max_samples
@ -187,6 +201,7 @@ class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
latest_timestamp = self._historical_timestamps[-1]
delta_t_s = (timestamp - latest_timestamp).total_seconds()
assert delta_t_s >= 0, f"delta_t_s is negative: {delta_t_s}"
if self._velocity is None:
return TrackingPrediction(
@ -228,7 +243,6 @@ class LeastMeanSquareVelocityFilter(GenericVelocityFilter):
keypoints_reshaped = keypoints.reshape(n_samples, -1)
# Use JAX's lstsq to solve the least squares problem
# This is more numerically stable than manually computing pseudoinverse
coefficients, _, _, _ = jnp.linalg.lstsq(X, keypoints_reshaped, rcond=None)
# Coefficients shape is [2, J*3]