diff --git a/CVTH3PE b/CVTH3PE deleted file mode 160000 index e79e899..0000000 --- a/CVTH3PE +++ /dev/null @@ -1 +0,0 @@ -Subproject commit e79e899b874806b134ea7cc50f2f02bbaefd9507 diff --git a/app/tracking/__init__.py b/app/tracking/__init__.py index 860ab0b..f03c4cc 100644 --- a/app/tracking/__init__.py +++ b/app/tracking/__init__.py @@ -560,8 +560,8 @@ class AffinityResult: matrix: Float[Array, "T D"] trackings: Sequence[Tracking] detections: Sequence[Detection] - indices_T: Int[Array, "T"] # pylint: disable=invalid-name - indices_D: Int[Array, "T"] # pylint: disable=invalid-name + indices_T: Int[Array, "A"] # pylint: disable=invalid-name + indices_D: Int[Array, "A"] # pylint: disable=invalid-name def tracking_association( self, diff --git a/test_filter_object_by_box.ipynb b/filter_object_by_box.ipynb similarity index 99% rename from test_filter_object_by_box.ipynb rename to filter_object_by_box.ipynb index 6d70b2c..ce075b2 100644 --- a/test_filter_object_by_box.ipynb +++ b/filter_object_by_box.ipynb @@ -1430,7 +1430,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "cvth3pe", "language": "python", "name": "python3" }, diff --git a/single_people_detect_track.py b/single_people_detect_track.py index 4f9cc59..d99408c 100644 --- a/single_people_detect_track.py +++ b/single_people_detect_track.py @@ -459,7 +459,7 @@ def triangulate_one_point_from_multiple_views_linear( proj_matrices: Float[Array, "N 3 4"], points: Num[Array, "N 2"], confidences: Optional[Float[Array, "N"]] = None, - conf_threshold: float = 0.2, + conf_threshold: float = 0.4, # 0.2 ) -> Float[Array, "3"]: """ Args: @@ -473,7 +473,6 @@ def triangulate_one_point_from_multiple_views_linear( assert len(proj_matrices) == len(points) N = len(proj_matrices) # 置信度加权DLT - # 置信度加权DLT if confidences is None: weights = jnp.ones(N, dtype=jnp.float32) else: @@ -932,18 +931,18 @@ def filter_camera_port(detections: list[Detection]): # 相机内外参路径 -CAMERA_PATH = Path("/home/admin/Documents/ActualTest_WeiHua/camera_params") +CAMERA_PATH = Path("/home/admin/Documents/ActualTest_WeiHua/camera_params/") # 所有机位的相机内外参 AK_CAMERA_DATASET: ak.Array = get_camera_params(CAMERA_PATH) # 2d检测数据路径 -DATASET_PATH = Path("/home/admin/Documents/ActualTest_WeiHua/Test_Video") +DATASET_PATH = Path("/home/admin/Documents/ActualTest_WeiHua/Segment_1/") # 指定机位的2d检测数据 camera_port = [5602, 5603, 5604, 5605] KEYPOINT_DATASET = get_camera_detect(DATASET_PATH, camera_port, AK_CAMERA_DATASET) # 获取一段完整的跳跃片段 -FRAME_INDEX = [i for i in range(700, 1600)] # 552, 1488 +FRAME_INDEX = [i for i in range(700, 1600)] # Segement_1:(700, 1600) KEYPOINT_DATASET = get_segment(camera_port, FRAME_INDEX, KEYPOINT_DATASET) @@ -974,8 +973,10 @@ all_3d_kps: dict[str, list] = {} tracking_initialized = False lost_frame_count = 0 -lost_frame_threshold = 12 # 0.5秒,假设20fps +lost_frame_threshold = 12 # 0.5秒 +# 丢失目标帧数计数器 +loss_track_count = 0 # ===================== 主循环:逐帧处理检测与跟踪 ===================== while True: @@ -984,7 +985,8 @@ while True: # 获取下一个时间步的所有相机检测结果 detections = next(sync_gen) # 过滤低置信度的检测,提升后续三角化和跟踪的准确性 - detections = filter_keypoints_by_scores(detections, threshold=0.5) + detections = filter_keypoints_by_scores(detections, threshold=0.2) + # detections = get_filter_detections(detections) # 伞降跳台时使用 except StopIteration: # 检测数据读取完毕,退出主循环 break @@ -1026,7 +1028,7 @@ while True: lost_frame_count += 1 # 丢失帧数+1 # 进一步完善退出条件: # 1. 连续丢失阈值帧后才退出 - # 2. 若丢失时,最后一次检测到的时间与当前帧时间间隔超过1秒,才彻底退出 + # 2. 若丢失时,最后一次检测到的时间与当前帧时间间隔超过0.5秒,才彻底退出 last_tracking = None if global_tracking_state.trackings: last_tracking = list(global_tracking_state.trackings.values())[0] @@ -1058,6 +1060,10 @@ while True: tracking_detection = [] # 存储每个跟踪目标在各相机下最优匹配的检测 temp_matrix = [] # 打印用:每个相机的最大相似度 for camera_name in affinities.keys(): + # indices_T:表示匹配到检测的tracking的索引(在tracking列表中的下标) + # indices_D:表示匹配到tracking的detection的索引(在detections列表中的下标) + indices_T = affinities[camera_name].indices_T.item() + indices_D = affinities[camera_name].indices_D.item() camera_matrix = jnp.array(affinities[camera_name].matrix).flatten() detection_index = jnp.argmax(camera_matrix).item() # 取最大相似度的检测索引 if isnan(camera_matrix[detection_index].item()): @@ -1065,11 +1071,11 @@ while True: temp_matrix.append( f"{camera_name} : {camera_matrix[detection_index].item()}" ) + match_tracking = affinities[camera_name].trackings[indices_T] # 选取相似度大于阈值的检测目标更新跟踪状态 # if camera_matrix[detection_index].item() > affinities_threshold: - tracking_detection.append( - affinities[camera_name].detections[detection_index] - ) + # if match_tracking == element_tracking: + tracking_detection.append(affinities[camera_name].detections[indices_D]) print("affinities matrix:", temp_matrix) # 只有匹配到足够多的检测目标时才更新跟踪(如多于2个相机) if len(tracking_detection) > 2: @@ -1082,13 +1088,17 @@ while True: "update tracking:", global_tracking_state.trackings.values(), ) - # 不再在else分支里删除tracking,只用lost_frame_count判定 + else: + loss_track_count += 1 + # ======如果单帧数据量不够,考虑如何更新跟踪===== # 对每一个3d目标进行滑动窗口平滑处理 smoothed_points = smooth_3d_keypoints(all_3d_kps, window_size=5) +print("Tracking completed, total loss frames processed:", count) + # 将结果保存到json文件中 -with open("samples/Test_WeiHua.json", "wb") as f: +with open("samples/Test_WeiHua_Segment_1.json", "wb") as f: f.write(orjson.dumps(smoothed_points)) # 输出每个3d目标的维度 for element_3d_kps_id in smoothed_points.keys(): diff --git a/temp.ipynb b/temp.ipynb deleted file mode 100644 index 3b7292b..0000000 --- a/temp.ipynb +++ /dev/null @@ -1,828 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "727f95c9", - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path\n", - "import awkward as ak\n", - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "fc96704c", - "metadata": {}, - "outputs": [], - "source": [ - "def get_camera_params(camera_path: Path) -> ak.Array:\n", - " camera_dataset: ak.Array = ak.from_parquet(camera_path / \"camera_params.parquet\")\n", - " return camera_dataset\n", - "\n", - "\n", - "def get_camera_detect(\n", - " detect_path: Path, camera_port: list[int], camera_dataset: ak.Array\n", - ") -> dict[int, ak.Array]:\n", - " keypoint_data: dict[int, ak.Array] = {}\n", - " for element_port in ak.to_numpy(camera_dataset[\"port\"]):\n", - " if element_port in camera_port:\n", - " keypoint_data[int(element_port)] = ak.from_parquet(\n", - " detect_path / f\"{element_port}_detected.parquet\"\n", - " )\n", - " return keypoint_data\n", - "\n", - "\n", - "def get_segment(\n", - " camera_port: list[int], frame_index: list[int], keypoint_data: dict[int, ak.Array]\n", - ") -> dict[int, ak.Array]:\n", - " # for port in camera_port:\n", - " # keypoint_data[port] = [\n", - " # element_frame\n", - " # for element_frame in KEYPOINT_DATASET[port]\n", - " # if element_frame[\"frame_index\"] in frame_index\n", - " # ]\n", - " for port in camera_port:\n", - " segement_data = []\n", - " camera_data = keypoint_data[port]\n", - " for index, element_frame in enumerate(ak.to_numpy(camera_data[\"frame_index\"])):\n", - " if element_frame in frame_index:\n", - " segement_data.append(camera_data[index])\n", - " keypoint_data[port] = ak.Array(segement_data)\n", - "\n", - " return keypoint_data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "01455135", - "metadata": {}, - "outputs": [], - "source": [ - "# 相机内外参路径\n", - "CAMERA_PATH = Path(\"/home/admin/Documents/ActualTest_WeiHua/camera_params\")\n", - "# 所有机位的相机内外参\n", - "AK_CAMERA_DATASET: ak.Array = get_camera_params(CAMERA_PATH)\n", - "\n", - "# 2d检测数据路径\n", - "DATASET_PATH = Path(\"/home/admin/Documents/ActualTest_WeiHua/Test_Video\")\n", - "# 指定机位的2d检测数据\n", - "camera_port = [5602, 5603, 5604, 5605]\n", - "KEYPOINT_DATASET = get_camera_detect(DATASET_PATH, camera_port, AK_CAMERA_DATASET)\n", - "\n", - "# 获取一段完整的跳跃片段\n", - "FRAME_INDEX = [i for i in range(700)] # 552, 1488\n", - "KEYPOINT_DATASET = get_segment(camera_port, FRAME_INDEX, KEYPOINT_DATASET)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "6a4aac82", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Frame Index: 0, Average Score: 0.54\n", - "Frame Index: 1, Average Score: 0.53\n", - "Frame Index: 2, Average Score: 0.51\n", - "Frame Index: 3, Average Score: 0.54\n", - "Frame Index: 4, Average Score: 0.53\n", - "Frame Index: 5, Average Score: 0.55\n", - "Frame Index: 6, Average Score: 0.54\n", - "Frame Index: 7, Average Score: 0.56\n", - "Frame Index: 8, Average Score: 0.56\n", - "Frame Index: 9, Average Score: 0.56\n", - "Frame Index: 10, Average Score: 0.58\n", - "Frame Index: 11, Average Score: 0.58\n", - "Frame Index: 12, Average Score: 0.57\n", - "Frame Index: 13, Average Score: 0.56\n", - "Frame Index: 14, Average Score: 0.56\n", - "Frame Index: 15, Average Score: 0.56\n", - "Frame Index: 16, Average Score: 0.56\n", - "Frame Index: 17, Average Score: 0.58\n", - "Frame Index: 18, Average Score: 0.55\n", - "Frame Index: 19, Average Score: 0.56\n", - "Frame Index: 20, Average Score: 0.60\n", - "Frame Index: 21, Average Score: 0.57\n", - "Frame Index: 22, Average Score: 0.55\n", - "Frame Index: 23, Average Score: 0.55\n", - "Frame Index: 24, Average Score: 0.57\n", - "Frame Index: 25, Average Score: 0.56\n", - "Frame Index: 26, Average Score: 0.56\n", - "Frame Index: 27, Average Score: 0.52\n", - "Frame Index: 28, Average Score: 0.54\n", - "Frame Index: 29, Average Score: 0.53\n", - "Frame Index: 30, Average Score: 0.56\n", - "Frame Index: 31, Average Score: 0.53\n", - "Frame Index: 32, Average Score: 0.54\n", - "Frame Index: 33, Average Score: 0.53\n", - "Frame Index: 34, Average Score: 0.55\n", - "Frame Index: 35, Average Score: 0.52\n", - "Frame Index: 36, Average Score: 0.52\n", - "Frame Index: 37, Average Score: 0.54\n", - "Frame Index: 38, Average Score: 0.51\n", - "Frame Index: 39, Average Score: 0.51\n", - "Frame Index: 40, Average Score: 0.53\n", - "Frame Index: 41, Average Score: 0.52\n", - "Frame Index: 42, Average Score: 0.53\n", - "Frame Index: 43, Average Score: 0.51\n", - "Frame Index: 44, Average Score: 0.50\n", - "Frame Index: 45, Average Score: 0.50\n", - "Frame Index: 46, Average Score: 0.49\n", - "Frame Index: 47, Average Score: 0.47\n", - "Frame Index: 48, Average Score: 0.47\n", - "Frame Index: 49, Average Score: 0.47\n", - "Frame Index: 50, Average Score: 0.48\n", - "Frame Index: 51, Average Score: 0.49\n", - "Frame Index: 52, Average Score: 0.47\n", - "Frame Index: 53, Average Score: 0.49\n", - "Frame Index: 54, Average Score: 0.49\n", - "Frame Index: 55, Average Score: 0.49\n", - "Frame Index: 56, Average Score: 0.48\n", - "Frame Index: 57, Average Score: 0.49\n", - "Frame Index: 58, Average Score: 0.49\n", - "Frame Index: 59, Average Score: 0.48\n", - "Frame Index: 60, Average Score: 0.48\n", - "Frame Index: 61, Average Score: 0.48\n", - "Frame Index: 62, Average Score: 0.48\n", - "Frame Index: 63, Average Score: 0.49\n", - "Frame Index: 64, Average Score: 0.49\n", - "Frame Index: 65, Average Score: 0.48\n", - "Frame Index: 66, Average Score: 0.47\n", - "Frame Index: 67, Average Score: 0.51\n", - "Frame Index: 68, Average Score: 0.49\n", - "Frame Index: 69, Average Score: 0.49\n", - "Frame Index: 70, Average Score: 0.48\n", - "Frame Index: 71, Average Score: 0.47\n", - "Frame Index: 72, Average Score: 0.51\n", - "Frame Index: 73, Average Score: 0.52\n", - "Frame Index: 74, Average Score: 0.47\n", - "Frame Index: 75, Average Score: 0.40\n", - "Frame Index: 76, Average Score: 0.46\n", - "Frame Index: 77, Average Score: 0.52\n", - "Frame Index: 78, Average Score: 0.49\n", - "Frame Index: 79, Average Score: 0.53\n", - "Frame Index: 80, Average Score: 0.52\n", - "Frame Index: 81, Average Score: 0.49\n", - "Frame Index: 82, Average Score: 0.49\n", - "Frame Index: 83, Average Score: 0.52\n", - "Frame Index: 84, Average Score: 0.52\n", - "Frame Index: 85, Average Score: 0.53\n", - "Frame Index: 86, Average Score: 0.57\n", - "Frame Index: 87, Average Score: 0.57\n", - "Frame Index: 88, Average Score: 0.56\n", - "Frame Index: 89, Average Score: 0.56\n", - "Frame Index: 90, Average Score: 0.63\n", - "Frame Index: 91, Average Score: 0.62\n", - "Frame Index: 92, Average Score: 0.63\n", - "Frame Index: 93, Average Score: 0.64\n", - "Frame Index: 94, Average Score: 0.63\n", - "Frame Index: 95, Average Score: 0.61\n", - "Frame Index: 96, Average Score: 0.63\n", - "Frame Index: 97, Average Score: 0.63\n", - "Frame Index: 98, Average Score: 0.64\n", - "Frame Index: 99, Average Score: 0.65\n", - "Frame Index: 100, Average Score: 0.60\n", - "Frame Index: 101, Average Score: 0.59\n", - "Frame Index: 102, Average Score: 0.58\n", - "Frame Index: 103, Average Score: 0.57\n", - "Frame Index: 104, Average Score: 0.58\n", - "Frame Index: 105, Average Score: nan\n", - "Frame Index: 106, Average Score: 0.55\n", - "Frame Index: 107, Average Score: 0.56\n", - "Frame Index: 108, Average Score: 0.55\n", - "Frame Index: 109, Average Score: 0.55\n", - "Frame Index: 110, Average Score: 0.58\n", - "Frame Index: 111, Average Score: 0.55\n", - "Frame Index: 112, Average Score: 0.58\n", - "Frame Index: 113, Average Score: 0.54\n", - "Frame Index: 114, Average Score: 0.53\n", - "Frame Index: 115, Average Score: 0.52\n", - "Frame Index: 116, Average Score: 0.52\n", - "Frame Index: 117, Average Score: 0.49\n", - "Frame Index: 118, Average Score: 0.53\n", - "Frame Index: 119, Average Score: 0.53\n", - "Frame Index: 120, Average Score: 0.50\n", - "Frame Index: 121, Average Score: 0.50\n", - "Frame Index: 122, Average Score: 0.52\n", - "Frame Index: 123, Average Score: 0.51\n", - "Frame Index: 124, Average Score: 0.51\n", - "Frame Index: 125, Average Score: 0.50\n", - "Frame Index: 126, Average Score: 0.47\n", - "Frame Index: 127, Average Score: 0.50\n", - "Frame Index: 128, Average Score: 0.49\n", - "Frame Index: 129, Average Score: 0.49\n", - "Frame Index: 130, Average Score: 0.48\n", - "Frame Index: 131, Average Score: 0.46\n", - "Frame Index: 132, Average Score: 0.44\n", - "Frame Index: 133, Average Score: 0.44\n", - "Frame Index: 134, Average Score: 0.44\n", - "Frame Index: 135, Average Score: 0.47\n", - "Frame Index: 136, Average Score: 0.47\n", - "Frame Index: 137, Average Score: 0.46\n", - "Frame Index: 138, Average Score: 0.47\n", - "Frame Index: 139, Average Score: 0.51\n", - "Frame Index: 140, Average Score: 0.53\n", - "Frame Index: 141, Average Score: 0.55\n", - "Frame Index: 142, Average Score: 0.53\n", - "Frame Index: 143, Average Score: 0.53\n", - "Frame Index: 144, Average Score: 0.53\n", - "Frame Index: 145, Average Score: 0.53\n", - "Frame Index: 146, Average Score: 0.52\n", - "Frame Index: 147, Average Score: 0.52\n", - "Frame Index: 148, Average Score: 0.51\n", - "Frame Index: 149, Average Score: 0.50\n", - "Frame Index: 150, Average Score: 0.50\n", - "Frame Index: 151, Average Score: 0.50\n", - "Frame Index: 152, Average Score: 0.48\n", - "Frame Index: 153, Average Score: 0.46\n", - "Frame Index: 154, Average Score: 0.46\n", - "Frame Index: 155, Average Score: 0.47\n", - "Frame Index: 156, Average Score: 0.46\n", - "Frame Index: 157, Average Score: 0.48\n", - "Frame Index: 158, Average Score: 0.47\n", - "Frame Index: 159, Average Score: 0.48\n", - "Frame Index: 160, Average Score: 0.48\n", - "Frame Index: 161, Average Score: 0.48\n", - "Frame Index: 162, Average Score: 0.47\n", - "Frame Index: 163, Average Score: 0.48\n", - "Frame Index: 164, Average Score: 0.48\n", - "Frame Index: 165, Average Score: 0.43\n", - "Frame Index: 166, Average Score: 0.46\n", - "Frame Index: 167, Average Score: 0.43\n", - "Frame Index: 168, Average Score: 0.45\n", - "Frame Index: 169, Average Score: 0.46\n", - "Frame Index: 170, Average Score: 0.47\n", - "Frame Index: 171, Average Score: 0.43\n", - "Frame Index: 172, Average Score: 0.44\n", - "Frame Index: 173, Average Score: 0.47\n", - "Frame Index: 174, Average Score: 0.49\n", - "Frame Index: 175, Average Score: 0.49\n", - "Frame Index: 176, Average Score: 0.45\n", - "Frame Index: 177, Average Score: 0.46\n", - "Frame Index: 178, Average Score: 0.45\n", - "Frame Index: 179, Average Score: nan\n", - "Frame Index: 180, Average Score: nan\n", - "Frame Index: 181, Average Score: nan\n", - "Frame Index: 182, Average Score: nan\n", - "Frame Index: 183, Average Score: nan\n", - "Frame Index: 184, Average Score: nan\n", - "Frame Index: 185, Average Score: nan\n", - "Frame Index: 186, Average Score: nan\n", - "Frame Index: 187, Average Score: nan\n", - "Frame Index: 188, Average Score: nan\n", - "Frame Index: 189, Average Score: nan\n", - "Frame Index: 190, Average Score: nan\n", - "Frame Index: 191, Average Score: nan\n", - "Frame Index: 192, Average Score: 0.40\n", - "Frame Index: 193, Average Score: 0.39\n", - "Frame Index: 194, Average Score: nan\n", - "Frame Index: 195, Average Score: nan\n", - "Frame Index: 196, Average Score: 0.40\n", - "Frame Index: 197, Average Score: 0.38\n", - "Frame Index: 198, Average Score: 0.41\n", - "Frame Index: 199, Average Score: 0.40\n", - "Frame Index: 200, Average Score: nan\n", - "Frame Index: 201, Average Score: 0.39\n", - "Frame Index: 202, Average Score: 0.40\n", - "Frame Index: 203, Average Score: 0.43\n", - "Frame Index: 204, Average Score: 0.44\n", - "Frame Index: 205, Average Score: nan\n", - "Frame Index: 206, Average Score: nan\n", - "Frame Index: 207, Average Score: 0.38\n", - "Frame Index: 208, Average Score: 0.36\n", - "Frame Index: 209, Average Score: 0.42\n", - "Frame Index: 210, Average Score: 0.46\n", - "Frame Index: 211, Average Score: 0.46\n", - "Frame Index: 212, Average Score: 0.40\n", - "Frame Index: 213, Average Score: 0.36\n", - "Frame Index: 214, Average Score: 0.40\n", - "Frame Index: 215, Average Score: 0.37\n", - "Frame Index: 216, Average Score: 0.40\n", - "Frame Index: 217, Average Score: 0.44\n", - "Frame Index: 218, Average Score: 0.49\n", - "Frame Index: 219, Average Score: 0.49\n", - "Frame Index: 220, Average Score: 0.50\n", - "Frame Index: 221, Average Score: 0.52\n", - "Frame Index: 222, Average Score: 0.52\n", - "Frame Index: 223, Average Score: 0.54\n", - "Frame Index: 224, Average Score: 0.53\n", - "Frame Index: 225, Average Score: 0.55\n", - "Frame Index: 226, Average Score: 0.55\n", - "Frame Index: 227, Average Score: 0.57\n", - "Frame Index: 228, Average Score: 0.56\n", - "Frame Index: 229, Average Score: 0.59\n", - "Frame Index: 230, Average Score: 0.58\n", - "Frame Index: 231, Average Score: 0.58\n", - "Frame Index: 232, Average Score: 0.61\n", - "Frame Index: 233, Average Score: 0.63\n", - "Frame Index: 234, Average Score: 0.63\n", - "Frame Index: 235, Average Score: 0.53\n", - "Frame Index: 236, Average Score: 0.56\n", - "Frame Index: 237, Average Score: 0.66\n", - "Frame Index: 238, Average Score: 0.69\n", - "Frame Index: 239, Average Score: 0.70\n", - "Frame Index: 240, Average Score: 0.72\n", - "Frame Index: 241, Average Score: 0.73\n", - "Frame Index: 242, Average Score: 0.75\n", - "Frame Index: 243, Average Score: 0.76\n", - "Frame Index: 244, Average Score: 0.76\n", - "Frame Index: 245, Average Score: 0.76\n", - "Frame Index: 246, Average Score: 0.76\n", - "Frame Index: 247, Average Score: 0.78\n", - "Frame Index: 248, Average Score: 0.79\n", - "Frame Index: 249, Average Score: 0.81\n", - "Frame Index: 250, Average Score: 0.80\n", - "Frame Index: 251, Average Score: 0.82\n", - "Frame Index: 252, Average Score: 0.81\n", - "Frame Index: 253, Average Score: 0.84\n", - "Frame Index: 254, Average Score: 0.85\n", - "Frame Index: 255, Average Score: 0.83\n", - "Frame Index: 256, Average Score: 0.79\n", - "Frame Index: 257, Average Score: 0.86\n", - "Frame Index: 258, Average Score: 0.90\n", - "Frame Index: 259, Average Score: 0.87\n", - "Frame Index: 260, Average Score: 0.86\n", - "Frame Index: 261, Average Score: 0.92\n", - "Frame Index: 262, Average Score: 0.91\n", - "Frame Index: 263, Average Score: 0.92\n", - "Frame Index: 264, Average Score: 0.93\n", - "Frame Index: 265, Average Score: 0.90\n", - "Frame Index: 266, Average Score: 0.87\n", - "Frame Index: 267, Average Score: 0.89\n", - "Frame Index: 268, Average Score: 0.87\n", - "Frame Index: 269, Average Score: 0.94\n", - "Frame Index: 270, Average Score: 0.95\n", - "Frame Index: 271, Average Score: 0.93\n", - "Frame Index: 272, Average Score: 0.91\n", - "Frame Index: 273, Average Score: 0.85\n", - "Frame Index: 274, Average Score: 0.82\n", - "Frame Index: 275, Average Score: 0.83\n", - "Frame Index: 276, Average Score: 0.83\n", - "Frame Index: 277, Average Score: 0.84\n", - "Frame Index: 278, Average Score: 0.87\n", - "Frame Index: 279, Average Score: 0.85\n", - "Frame Index: 280, Average Score: 0.86\n", - "Frame Index: 281, Average Score: 0.90\n", - "Frame Index: 282, Average Score: 0.89\n", - "Frame Index: 283, Average Score: 0.88\n", - "Frame Index: 284, Average Score: 0.84\n", - "Frame Index: 285, Average Score: 0.86\n", - "Frame Index: 286, Average Score: 0.85\n", - "Frame Index: 287, Average Score: 0.84\n", - "Frame Index: 288, Average Score: 0.87\n", - "Frame Index: 289, Average Score: 0.88\n", - "Frame Index: 290, Average Score: 0.85\n", - "Frame Index: 291, Average Score: 0.86\n", - "Frame Index: 292, Average Score: 0.83\n", - "Frame Index: 293, Average Score: 0.86\n", - "Frame Index: 294, Average Score: 0.85\n", - "Frame Index: 295, Average Score: 0.88\n", - "Frame Index: 296, Average Score: 0.88\n", - "Frame Index: 297, Average Score: 0.86\n", - "Frame Index: 298, Average Score: 0.84\n", - "Frame Index: 299, Average Score: 0.85\n", - "Frame Index: 300, Average Score: 0.83\n", - "Frame Index: 301, Average Score: 0.85\n", - "Frame Index: 302, Average Score: 0.86\n", - "Frame Index: 303, Average Score: 0.86\n", - "Frame Index: 304, Average Score: 0.84\n", - "Frame Index: 305, Average Score: 0.82\n", - "Frame Index: 306, Average Score: 0.82\n", - "Frame Index: 307, Average Score: 0.84\n", - "Frame Index: 308, Average Score: 0.85\n", - "Frame Index: 309, Average Score: 0.85\n", - "Frame Index: 310, Average Score: 0.80\n", - "Frame Index: 311, Average Score: 0.84\n", - "Frame Index: 312, Average Score: 0.80\n", - "Frame Index: 313, Average Score: 0.85\n", - "Frame Index: 314, Average Score: 0.83\n", - "Frame Index: 315, Average Score: 0.84\n", - "Frame Index: 316, Average Score: 0.83\n", - "Frame Index: 317, Average Score: 0.83\n", - "Frame Index: 318, Average Score: 0.83\n", - "Frame Index: 319, Average Score: 0.82\n", - "Frame Index: 320, Average Score: 0.70\n", - "Frame Index: 321, Average Score: 0.67\n", - "Frame Index: 322, Average Score: 0.69\n", - "Frame Index: 323, Average Score: 0.66\n", - "Frame Index: 324, Average Score: 0.57\n", - "Frame Index: 325, Average Score: 0.63\n", - "Frame Index: 326, Average Score: 0.60\n", - "Frame Index: 327, Average Score: 0.65\n", - "Frame Index: 328, Average Score: 0.67\n", - "Frame Index: 329, Average Score: 0.72\n", - "Frame Index: 330, Average Score: 0.67\n", - "Frame Index: 331, Average Score: 0.72\n", - "Frame Index: 332, Average Score: 0.72\n", - "Frame Index: 333, Average Score: 0.78\n", - "Frame Index: 334, Average Score: 0.76\n", - "Frame Index: 335, Average Score: 0.80\n", - "Frame Index: 336, Average Score: 0.80\n", - "Frame Index: 337, Average Score: 0.81\n", - "Frame Index: 338, Average Score: 0.81\n", - "Frame Index: 339, Average Score: 0.82\n", - "Frame Index: 340, Average Score: 0.79\n", - "Frame Index: 341, Average Score: 0.79\n", - "Frame Index: 342, Average Score: 0.80\n", - "Frame Index: 343, Average Score: 0.78\n", - "Frame Index: 344, Average Score: 0.72\n", - "Frame Index: 345, Average Score: 0.64\n", - "Frame Index: 346, Average Score: 0.65\n", - "Frame Index: 347, Average Score: 0.60\n", - "Frame Index: 348, Average Score: 0.57\n", - "Frame Index: 349, Average Score: 0.59\n", - "Frame Index: 350, Average Score: 0.58\n", - "Frame Index: 351, Average Score: 0.66\n", - "Frame Index: 352, Average Score: 0.73\n", - "Frame Index: 353, Average Score: 0.67\n", - "Frame Index: 354, Average Score: 0.71\n", - "Frame Index: 355, Average Score: 0.77\n", - "Frame Index: 356, Average Score: 0.78\n", - "Frame Index: 357, Average Score: 0.79\n", - "Frame Index: 358, Average Score: 0.79\n", - "Frame Index: 359, Average Score: 0.79\n", - "Frame Index: 360, Average Score: 0.67\n", - "Frame Index: 361, Average Score: 0.73\n", - "Frame Index: 362, Average Score: 0.77\n", - "Frame Index: 363, Average Score: 0.77\n", - "Frame Index: 364, Average Score: 0.74\n", - "Frame Index: 365, Average Score: 0.67\n", - "Frame Index: 366, Average Score: 0.65\n", - "Frame Index: 367, Average Score: 0.74\n", - "Frame Index: 368, Average Score: 0.79\n", - "Frame Index: 369, Average Score: 0.78\n", - "Frame Index: 370, Average Score: 0.66\n", - "Frame Index: 371, Average Score: 0.75\n", - "Frame Index: 372, Average Score: 0.69\n", - "Frame Index: 373, Average Score: 0.86\n", - "Frame Index: 374, Average Score: 0.87\n", - "Frame Index: 375, Average Score: 0.86\n", - "Frame Index: 376, Average Score: 0.93\n", - "Frame Index: 377, Average Score: 0.94\n", - "Frame Index: 378, Average Score: 0.95\n", - "Frame Index: 379, Average Score: 0.94\n", - "Frame Index: 380, Average Score: 0.91\n", - "Frame Index: 381, Average Score: 0.96\n", - "Frame Index: 382, Average Score: 0.96\n", - "Frame Index: 383, Average Score: 0.93\n", - "Frame Index: 384, Average Score: 0.95\n", - "Frame Index: 385, Average Score: 0.89\n", - "Frame Index: 386, Average Score: 0.89\n", - "Frame Index: 387, Average Score: 0.92\n", - "Frame Index: 388, Average Score: 0.90\n", - "Frame Index: 389, Average Score: 0.90\n", - "Frame Index: 390, Average Score: 0.81\n", - "Frame Index: 391, Average Score: 0.86\n", - "Frame Index: 392, Average Score: 0.87\n", - "Frame Index: 393, Average Score: 0.90\n", - "Frame Index: 394, Average Score: 0.94\n", - "Frame Index: 395, Average Score: 0.90\n", - "Frame Index: 396, Average Score: 0.92\n", - "Frame Index: 397, Average Score: 0.89\n", - "Frame Index: 398, Average Score: 0.90\n", - "Frame Index: 399, Average Score: 0.84\n", - "Frame Index: 400, Average Score: 0.82\n", - "Frame Index: 401, Average Score: 0.83\n", - "Frame Index: 402, Average Score: 0.83\n", - "Frame Index: 403, Average Score: 0.80\n", - "Frame Index: 404, Average Score: 0.82\n", - "Frame Index: 405, Average Score: 0.84\n", - "Frame Index: 406, Average Score: 0.83\n", - "Frame Index: 407, Average Score: 0.85\n", - "Frame Index: 408, Average Score: 0.84\n", - "Frame Index: 409, Average Score: 0.79\n", - "Frame Index: 410, Average Score: 0.80\n", - "Frame Index: 411, Average Score: 0.77\n", - "Frame Index: 412, Average Score: 0.77\n", - "Frame Index: 413, Average Score: 0.79\n", - "Frame Index: 414, Average Score: 0.83\n", - "Frame Index: 415, Average Score: 0.84\n", - "Frame Index: 416, Average Score: 0.79\n", - "Frame Index: 417, Average Score: 0.75\n", - "Frame Index: 418, Average Score: 0.72\n", - "Frame Index: 419, Average Score: 0.72\n", - "Frame Index: 420, Average Score: 0.76\n", - "Frame Index: 421, Average Score: 0.78\n", - "Frame Index: 422, Average Score: 0.80\n", - "Frame Index: 423, Average Score: 0.79\n", - "Frame Index: 424, Average Score: 0.81\n", - "Frame Index: 425, Average Score: 0.81\n", - "Frame Index: 426, Average Score: 0.80\n", - "Frame Index: 427, Average Score: 0.82\n", - "Frame Index: 428, Average Score: 0.78\n", - "Frame Index: 429, Average Score: 0.82\n", - "Frame Index: 430, Average Score: 0.79\n", - "Frame Index: 431, Average Score: 0.80\n", - "Frame Index: 432, Average Score: 0.81\n", - "Frame Index: 433, Average Score: 0.81\n", - "Frame Index: 434, Average Score: 0.79\n", - "Frame Index: 435, Average Score: 0.79\n", - "Frame Index: 436, Average Score: 0.79\n", - "Frame Index: 437, Average Score: 0.78\n", - "Frame Index: 438, Average Score: 0.79\n", - "Frame Index: 439, Average Score: 0.73\n", - "Frame Index: 440, Average Score: 0.78\n", - "Frame Index: 441, Average Score: 0.73\n", - "Frame Index: 442, Average Score: 0.73\n", - "Frame Index: 443, Average Score: 0.74\n", - "Frame Index: 444, Average Score: 0.70\n", - "Frame Index: 445, Average Score: 0.66\n", - "Frame Index: 446, Average Score: 0.63\n", - "Frame Index: 447, Average Score: 0.64\n", - "Frame Index: 448, Average Score: 0.59\n", - "Frame Index: 449, Average Score: 0.59\n", - "Frame Index: 450, Average Score: 0.62\n", - "Frame Index: 451, Average Score: 0.62\n", - "Frame Index: 452, Average Score: 0.60\n", - "Frame Index: 453, Average Score: 0.57\n", - "Frame Index: 454, Average Score: 0.59\n", - "Frame Index: 455, Average Score: 0.62\n", - "Frame Index: 456, Average Score: 0.63\n", - "Frame Index: 457, Average Score: 0.68\n", - "Frame Index: 458, Average Score: 0.70\n", - "Frame Index: 459, Average Score: 0.71\n", - "Frame Index: 460, Average Score: 0.75\n", - "Frame Index: 461, Average Score: 0.77\n", - "Frame Index: 462, Average Score: 0.78\n", - "Frame Index: 463, Average Score: 0.80\n", - "Frame Index: 464, Average Score: 0.81\n", - "Frame Index: 465, Average Score: 0.81\n", - "Frame Index: 466, Average Score: 0.83\n", - "Frame Index: 467, Average Score: 0.84\n", - "Frame Index: 468, Average Score: 0.85\n", - "Frame Index: 469, Average Score: 0.86\n", - "Frame Index: 470, Average Score: 0.85\n", - "Frame Index: 471, Average Score: 0.85\n", - "Frame Index: 472, Average Score: 0.86\n", - "Frame Index: 473, Average Score: 0.86\n", - "Frame Index: 474, Average Score: 0.86\n", - "Frame Index: 475, Average Score: 0.85\n", - "Frame Index: 476, Average Score: 0.87\n", - "Frame Index: 477, Average Score: 0.87\n", - "Frame Index: 478, Average Score: 0.85\n", - "Frame Index: 479, Average Score: 0.87\n", - "Frame Index: 480, Average Score: 0.86\n", - "Frame Index: 481, Average Score: 0.88\n", - "Frame Index: 482, Average Score: 0.87\n", - "Frame Index: 483, Average Score: 0.88\n", - "Frame Index: 484, Average Score: 0.88\n", - "Frame Index: 485, Average Score: 0.88\n", - "Frame Index: 486, Average Score: 0.90\n", - "Frame Index: 487, Average Score: 0.90\n", - "Frame Index: 488, Average Score: 0.90\n", - "Frame Index: 489, Average Score: 0.90\n", - "Frame Index: 490, Average Score: 0.90\n", - "Frame Index: 491, Average Score: 0.89\n", - "Frame Index: 492, Average Score: 0.93\n", - "Frame Index: 493, Average Score: 0.90\n", - "Frame Index: 494, Average Score: 0.86\n", - "Frame Index: 495, Average Score: 0.89\n", - "Frame Index: 496, Average Score: 0.91\n", - "Frame Index: 497, Average Score: 0.94\n", - "Frame Index: 498, Average Score: 0.94\n", - "Frame Index: 499, Average Score: 0.91\n", - "Frame Index: 500, Average Score: 0.91\n", - "Frame Index: 501, Average Score: 0.92\n", - "Frame Index: 502, Average Score: 0.90\n", - "Frame Index: 503, Average Score: 0.92\n", - "Frame Index: 504, Average Score: 0.91\n", - "Frame Index: 505, Average Score: 0.93\n", - "Frame Index: 506, Average Score: 0.95\n", - "Frame Index: 507, Average Score: 0.93\n", - "Frame Index: 508, Average Score: 0.90\n", - "Frame Index: 509, Average Score: 0.88\n", - "Frame Index: 510, Average Score: 0.91\n", - "Frame Index: 511, Average Score: 0.90\n", - "Frame Index: 512, Average Score: 0.88\n", - "Frame Index: 513, Average Score: 0.87\n", - "Frame Index: 514, Average Score: 0.87\n", - "Frame Index: 515, Average Score: 0.87\n", - "Frame Index: 516, Average Score: 0.87\n", - "Frame Index: 517, Average Score: 0.86\n", - "Frame Index: 518, Average Score: 0.85\n", - "Frame Index: 519, Average Score: 0.86\n", - "Frame Index: 520, Average Score: 0.95\n", - "Frame Index: 521, Average Score: 0.90\n", - "Frame Index: 522, Average Score: 0.88\n", - "Frame Index: 523, Average Score: 0.89\n", - "Frame Index: 524, Average Score: 0.93\n", - "Frame Index: 525, Average Score: 0.95\n", - "Frame Index: 526, Average Score: 0.97\n", - "Frame Index: 527, Average Score: 0.95\n", - "Frame Index: 528, Average Score: 0.95\n", - "Frame Index: 529, Average Score: 0.93\n", - "Frame Index: 530, Average Score: 0.92\n", - "Frame Index: 531, Average Score: 0.95\n", - "Frame Index: 532, Average Score: 0.94\n", - "Frame Index: 533, Average Score: 0.92\n", - "Frame Index: 534, Average Score: 0.90\n", - "Frame Index: 535, Average Score: 0.91\n", - "Frame Index: 536, Average Score: 0.89\n", - "Frame Index: 537, Average Score: 0.89\n", - "Frame Index: 538, Average Score: 0.86\n", - "Frame Index: 539, Average Score: 0.83\n", - "Frame Index: 540, Average Score: 0.83\n", - "Frame Index: 541, Average Score: 0.84\n", - "Frame Index: 542, Average Score: 0.80\n", - "Frame Index: 543, Average Score: 0.79\n", - "Frame Index: 544, Average Score: 0.78\n", - "Frame Index: 545, Average Score: 0.75\n", - "Frame Index: 546, Average Score: 0.72\n", - "Frame Index: 547, Average Score: 0.73\n", - "Frame Index: 548, Average Score: 0.73\n", - "Frame Index: 549, Average Score: 0.73\n", - "Frame Index: 550, Average Score: 0.73\n", - "Frame Index: 551, Average Score: 0.71\n", - "Frame Index: 552, Average Score: 0.74\n", - "Frame Index: 553, Average Score: 0.72\n", - "Frame Index: 554, Average Score: 0.71\n", - "Frame Index: 555, Average Score: 0.74\n", - "Frame Index: 556, Average Score: 0.75\n", - "Frame Index: 557, Average Score: 0.74\n", - "Frame Index: 558, Average Score: 0.73\n", - "Frame Index: 559, Average Score: 0.78\n", - "Frame Index: 560, Average Score: 0.80\n", - "Frame Index: 561, Average Score: 0.89\n", - "Frame Index: 562, Average Score: 0.91\n", - "Frame Index: 563, Average Score: 0.91\n", - "Frame Index: 564, Average Score: 0.91\n", - "Frame Index: 565, Average Score: 0.93\n", - "Frame Index: 566, Average Score: 0.92\n", - "Frame Index: 567, Average Score: 0.93\n", - "Frame Index: 568, Average Score: 0.89\n", - "Frame Index: 569, Average Score: 0.90\n", - "Frame Index: 570, Average Score: 0.90\n", - "Frame Index: 571, Average Score: 0.91\n", - "Frame Index: 572, Average Score: 0.91\n", - "Frame Index: 573, Average Score: 0.89\n", - "Frame Index: 574, Average Score: 0.90\n", - "Frame Index: 575, Average Score: 0.91\n", - "Frame Index: 576, Average Score: 0.91\n", - "Frame Index: 577, Average Score: 0.89\n", - "Frame Index: 578, Average Score: 0.83\n", - "Frame Index: 579, Average Score: 0.86\n", - "Frame Index: 580, Average Score: 0.88\n", - "Frame Index: 581, Average Score: 0.86\n", - "Frame Index: 582, Average Score: 0.84\n", - "Frame Index: 583, Average Score: 0.83\n", - "Frame Index: 584, Average Score: 0.85\n", - "Frame Index: 585, Average Score: 0.86\n", - "Frame Index: 586, Average Score: 0.87\n", - "Frame Index: 587, Average Score: 0.83\n", - "Frame Index: 588, Average Score: 0.77\n", - "Frame Index: 589, Average Score: 0.74\n", - "Frame Index: 590, Average Score: 0.73\n", - "Frame Index: 591, Average Score: 0.74\n", - "Frame Index: 592, Average Score: 0.75\n", - "Frame Index: 593, Average Score: 0.78\n", - "Frame Index: 594, Average Score: 0.78\n", - "Frame Index: 595, Average Score: 0.78\n", - "Frame Index: 596, Average Score: 0.81\n", - "Frame Index: 597, Average Score: 0.81\n", - "Frame Index: 598, Average Score: 0.81\n", - "Frame Index: 599, Average Score: 0.81\n", - "Frame Index: 600, Average Score: 0.80\n", - "Frame Index: 601, Average Score: 0.87\n", - "Frame Index: 602, Average Score: 0.88\n", - "Frame Index: 603, Average Score: 0.87\n", - "Frame Index: 604, Average Score: 0.85\n", - "Frame Index: 605, Average Score: 0.84\n", - "Frame Index: 606, Average Score: 0.83\n", - "Frame Index: 607, Average Score: 0.83\n", - "Frame Index: 608, Average Score: 0.82\n", - "Frame Index: 609, Average Score: 0.83\n", - "Frame Index: 610, Average Score: 0.81\n", - "Frame Index: 611, Average Score: 0.80\n", - "Frame Index: 612, Average Score: 0.84\n", - "Frame Index: 613, Average Score: 0.84\n", - "Frame Index: 614, Average Score: 0.83\n", - "Frame Index: 615, Average Score: 0.80\n", - "Frame Index: 616, Average Score: 0.81\n", - "Frame Index: 617, Average Score: 0.84\n", - "Frame Index: 618, Average Score: 0.88\n", - "Frame Index: 619, Average Score: 0.87\n", - "Frame Index: 620, Average Score: 0.88\n", - "Frame Index: 621, Average Score: 0.88\n", - "Frame Index: 622, Average Score: 0.87\n", - "Frame Index: 623, Average Score: 0.88\n", - "Frame Index: 624, Average Score: 0.86\n", - "Frame Index: 625, Average Score: 0.86\n", - "Frame Index: 626, Average Score: 0.85\n", - "Frame Index: 627, Average Score: 0.87\n", - "Frame Index: 628, Average Score: 0.88\n", - "Frame Index: 629, Average Score: 0.87\n", - "Frame Index: 630, Average Score: 0.87\n", - "Frame Index: 631, Average Score: 0.88\n", - "Frame Index: 632, Average Score: 0.86\n", - "Frame Index: 633, Average Score: 0.88\n", - "Frame Index: 634, Average Score: 0.87\n", - "Frame Index: 635, Average Score: 0.85\n", - "Frame Index: 636, Average Score: 0.86\n", - "Frame Index: 637, Average Score: 0.84\n", - "Frame Index: 638, Average Score: 0.85\n", - "Frame Index: 639, Average Score: 0.89\n", - "Frame Index: 640, Average Score: 0.87\n", - "Frame Index: 641, Average Score: 0.88\n", - "Frame Index: 642, Average Score: 0.94\n", - "Frame Index: 643, Average Score: 0.94\n", - "Frame Index: 644, Average Score: 0.94\n", - "Frame Index: 645, Average Score: 0.91\n", - "Frame Index: 646, Average Score: 0.92\n", - "Frame Index: 647, Average Score: 0.93\n", - "Frame Index: 648, Average Score: 0.93\n", - "Frame Index: 649, Average Score: 0.92\n", - "Frame Index: 650, Average Score: 0.94\n", - "Frame Index: 651, Average Score: 0.97\n", - "Frame Index: 652, Average Score: 0.97\n", - "Frame Index: 653, Average Score: 0.96\n", - "Frame Index: 654, Average Score: 0.99\n", - "Frame Index: 655, Average Score: 0.97\n", - "Frame Index: 656, Average Score: 0.97\n", - "Frame Index: 657, Average Score: 0.97\n", - "Frame Index: 658, Average Score: 0.96\n", - "Frame Index: 659, Average Score: 0.94\n", - "Frame Index: 660, Average Score: 0.94\n", - "Frame Index: 661, Average Score: 0.95\n", - "Frame Index: 662, Average Score: 0.95\n", - "Frame Index: 663, Average Score: 0.96\n", - "Frame Index: 664, Average Score: 0.95\n", - "Frame Index: 665, Average Score: 0.94\n", - "Frame Index: 666, Average Score: 0.94\n", - "Frame Index: 667, Average Score: 0.89\n", - "Frame Index: 668, Average Score: 0.92\n", - "Frame Index: 669, Average Score: 0.96\n", - "Frame Index: 670, Average Score: 0.99\n", - "Frame Index: 671, Average Score: 0.99\n", - "Frame Index: 672, Average Score: 0.97\n", - "Frame Index: 673, Average Score: 0.95\n", - "Frame Index: 674, Average Score: 0.93\n", - "Frame Index: 675, Average Score: 0.94\n", - "Frame Index: 676, Average Score: 0.93\n", - "Frame Index: 677, Average Score: 0.88\n", - "Frame Index: 678, Average Score: 0.83\n", - "Frame Index: 679, Average Score: 0.81\n", - "Frame Index: 680, Average Score: 0.80\n", - "Frame Index: 681, Average Score: 0.81\n", - "Frame Index: 682, Average Score: 0.84\n", - "Frame Index: 683, Average Score: 0.86\n", - "Frame Index: 684, Average Score: 0.88\n", - "Frame Index: 685, Average Score: 0.96\n", - "Frame Index: 686, Average Score: 0.97\n", - "Frame Index: 687, Average Score: 0.93\n", - "Frame Index: 688, Average Score: 0.94\n", - "Frame Index: 689, Average Score: 0.94\n", - "Frame Index: 690, Average Score: 0.95\n", - "Frame Index: 691, Average Score: 0.95\n", - "Frame Index: 692, Average Score: 0.95\n", - "Frame Index: 693, Average Score: 0.94\n", - "Frame Index: 694, Average Score: 0.91\n", - "Frame Index: 695, Average Score: 0.93\n", - "Frame Index: 696, Average Score: 0.91\n", - "Frame Index: 697, Average Score: 0.90\n", - "Frame Index: 698, Average Score: 0.84\n", - "Frame Index: 699, Average Score: 0.81\n" - ] - } - ], - "source": [ - "INDEX=5604\n", - "# display(KEYPOINT_DATASET[INDEX])\n", - "data = KEYPOINT_DATASET[INDEX]\n", - "for frame_data in data:\n", - " avg_score = np.mean(ak.to_numpy(frame_data[\"kps_scores\"][:17]))\n", - " print(\n", - " f\"Frame Index: {frame_data['frame_index']}, Average Score: {avg_score:.2f}\"\n", - " )\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "cvth3pe", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}