forked from HQU-gxy/CVTH3PE
- Updated the play notebook to include new methods for unprojecting 2D points onto a 3D plane. - Introduced `unproject_points_onto_plane` and `unproject_points_to_z_plane` functions in the camera module for improved point handling. - Enhanced the `Camera` class with a method for unprojecting points to a specified z-plane. - Cleaned up execution counts in the notebook for better organization and clarity.
656 lines
22 KiB
Plaintext
656 lines
22 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 28,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from copy import deepcopy\n",
|
||
"from datetime import datetime, timedelta\n",
|
||
"from pathlib import Path\n",
|
||
"from typing import (Any, Generator, Optional, Sequence, TypeAlias, TypedDict,\n",
|
||
" cast, overload)\n",
|
||
"\n",
|
||
"import awkward as ak\n",
|
||
"import jax\n",
|
||
"import jax.numpy as jnp\n",
|
||
"import numpy as np\n",
|
||
"import orjson\n",
|
||
"from beartype import beartype\n",
|
||
"from cv2 import undistortPoints\n",
|
||
"from jaxtyping import Array, Float, Num, jaxtyped\n",
|
||
"from matplotlib import pyplot as plt\n",
|
||
"from numpy.typing import ArrayLike\n",
|
||
"from scipy.spatial.transform import Rotation as R\n",
|
||
"\n",
|
||
"from app.camera import Camera, CameraParams, Detection\n",
|
||
"from app.visualize.whole_body import visualize_whole_body\n",
|
||
"\n",
|
||
"NDArray: TypeAlias = np.ndarray"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"DATASET_PATH = Path(\"samples\") / \"04_02\" \n",
|
||
"AK_CAMERA_DATASET: ak.Array = ak.from_parquet(DATASET_PATH / \"camera_params.parquet\")\n",
|
||
"display(AK_CAMERA_DATASET)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 30,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class Resolution(TypedDict):\n",
|
||
" width: int\n",
|
||
" height: int\n",
|
||
"\n",
|
||
"class Intrinsic(TypedDict):\n",
|
||
" camera_matrix: Num[Array, \"3 3\"]\n",
|
||
" \"\"\"\n",
|
||
" K\n",
|
||
" \"\"\"\n",
|
||
" distortion_coefficients: Num[Array, \"N\"]\n",
|
||
" \"\"\"\n",
|
||
" distortion coefficients; usually 5\n",
|
||
" \"\"\"\n",
|
||
"\n",
|
||
"class Extrinsic(TypedDict):\n",
|
||
" rvec: Num[NDArray, \"3\"]\n",
|
||
" tvec: Num[NDArray, \"3\"]\n",
|
||
"\n",
|
||
"class ExternalCameraParams(TypedDict):\n",
|
||
" name: str\n",
|
||
" port: int\n",
|
||
" intrinsic: Intrinsic\n",
|
||
" extrinsic: Extrinsic\n",
|
||
" resolution: Resolution\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 31,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def read_dataset_by_port(port: int) -> ak.Array:\n",
|
||
" P = DATASET_PATH / f\"{port}.parquet\"\n",
|
||
" return ak.from_parquet(P)\n",
|
||
"\n",
|
||
"KEYPOINT_DATASET = {int(p): read_dataset_by_port(p) for p in ak.to_numpy(AK_CAMERA_DATASET[\"port\"])}"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"KEYPOINT_DATASET[5601]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 33,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class KeypointDataset(TypedDict):\n",
|
||
" frame_index: int\n",
|
||
" boxes: Num[NDArray, \"N 4\"]\n",
|
||
" kps: Num[NDArray, \"N J 2\"]\n",
|
||
" kps_scores: Num[NDArray, \"N J\"]\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def to_transformation_matrix(\n",
|
||
" rvec: Num[NDArray, \"3\"], tvec: Num[NDArray, \"3\"]\n",
|
||
") -> Num[NDArray, \"4 4\"]:\n",
|
||
" res = np.eye(4)\n",
|
||
" res[:3, :3] = R.from_rotvec(rvec).as_matrix()\n",
|
||
" res[:3, 3] = tvec\n",
|
||
" return res\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def undistort_points(\n",
|
||
" points: Num[NDArray, \"M 2\"],\n",
|
||
" camera_matrix: Num[NDArray, \"3 3\"],\n",
|
||
" dist_coeffs: Num[NDArray, \"N\"],\n",
|
||
") -> Num[NDArray, \"M 2\"]:\n",
|
||
" K = camera_matrix\n",
|
||
" dist = dist_coeffs\n",
|
||
" res = undistortPoints(points, K, dist, P=K) # type: ignore\n",
|
||
" return res.reshape(-1, 2)\n",
|
||
"\n",
|
||
"\n",
|
||
"def from_camera_params(camera: ExternalCameraParams) -> Camera:\n",
|
||
" rt = jnp.array(\n",
|
||
" to_transformation_matrix(\n",
|
||
" ak.to_numpy(camera[\"extrinsic\"][\"rvec\"]),\n",
|
||
" ak.to_numpy(camera[\"extrinsic\"][\"tvec\"]),\n",
|
||
" )\n",
|
||
" )\n",
|
||
" K = jnp.array(camera[\"intrinsic\"][\"camera_matrix\"]).reshape(3, 3)\n",
|
||
" dist_coeffs = jnp.array(camera[\"intrinsic\"][\"distortion_coefficients\"])\n",
|
||
" image_size = jnp.array(\n",
|
||
" (camera[\"resolution\"][\"width\"], camera[\"resolution\"][\"height\"])\n",
|
||
" )\n",
|
||
" return Camera(\n",
|
||
" id=camera[\"name\"],\n",
|
||
" params=CameraParams(\n",
|
||
" K=K,\n",
|
||
" Rt=rt,\n",
|
||
" dist_coeffs=dist_coeffs,\n",
|
||
" image_size=image_size,\n",
|
||
" ),\n",
|
||
" )\n",
|
||
"\n",
|
||
"\n",
|
||
"def preprocess_keypoint_dataset(\n",
|
||
" dataset: Sequence[KeypointDataset],\n",
|
||
" camera: Camera,\n",
|
||
" fps: float,\n",
|
||
" start_timestamp: datetime,\n",
|
||
") -> Generator[Detection, None, None]:\n",
|
||
" frame_interval_s = 1 / fps\n",
|
||
" for el in dataset:\n",
|
||
" frame_index = el[\"frame_index\"]\n",
|
||
" timestamp = start_timestamp + timedelta(seconds=frame_index * frame_interval_s)\n",
|
||
" for kp, kp_score in zip(el[\"kps\"], el[\"kps_scores\"]):\n",
|
||
" yield Detection(\n",
|
||
" keypoints=jnp.array(kp),\n",
|
||
" confidences=jnp.array(kp_score),\n",
|
||
" camera=camera,\n",
|
||
" timestamp=timestamp,\n",
|
||
" )"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 34,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"DetectionGenerator: TypeAlias = Generator[Detection, None, None]\n",
|
||
"\n",
|
||
"\n",
|
||
"def sync_batch_gen(gens: list[DetectionGenerator], diff: timedelta):\n",
|
||
" \"\"\"\n",
|
||
" given a list of detection generators, return a generator that yields a batch of detections\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" gens: list of detection generators\n",
|
||
" diff: maximum timestamp difference between detections to consider them part of the same batch\n",
|
||
" \"\"\"\n",
|
||
" N = len(gens)\n",
|
||
" last_batch_timestamp: Optional[datetime] = None\n",
|
||
" next_batch_timestamp: Optional[datetime] = None\n",
|
||
" current_batch: list[Detection] = []\n",
|
||
" next_batch: list[Detection] = []\n",
|
||
" paused: list[bool] = [False] * N\n",
|
||
" finished: list[bool] = [False] * N\n",
|
||
"\n",
|
||
" def reset_paused():\n",
|
||
" \"\"\"\n",
|
||
" reset paused list based on finished list\n",
|
||
" \"\"\"\n",
|
||
" for i in range(N):\n",
|
||
" if not finished[i]:\n",
|
||
" paused[i] = False\n",
|
||
" else:\n",
|
||
" paused[i] = True\n",
|
||
"\n",
|
||
" EPS = 1e-6\n",
|
||
" # a small epsilon to avoid floating point precision issues\n",
|
||
" diff_esp = diff - timedelta(seconds=EPS)\n",
|
||
" while True:\n",
|
||
" for i, gen in enumerate(gens):\n",
|
||
" try:\n",
|
||
" if finished[i] or paused[i]:\n",
|
||
" continue\n",
|
||
" val = next(gen)\n",
|
||
" if last_batch_timestamp is None:\n",
|
||
" last_batch_timestamp = val.timestamp\n",
|
||
" current_batch.append(val)\n",
|
||
" else:\n",
|
||
" if abs(val.timestamp - last_batch_timestamp) >= diff_esp:\n",
|
||
" next_batch.append(val)\n",
|
||
" if next_batch_timestamp is None:\n",
|
||
" next_batch_timestamp = val.timestamp\n",
|
||
" paused[i] = True\n",
|
||
" if all(paused):\n",
|
||
" yield current_batch\n",
|
||
" current_batch = next_batch\n",
|
||
" next_batch = []\n",
|
||
" last_batch_timestamp = next_batch_timestamp\n",
|
||
" next_batch_timestamp = None\n",
|
||
" reset_paused()\n",
|
||
" else:\n",
|
||
" current_batch.append(val)\n",
|
||
" except StopIteration:\n",
|
||
" finished[i] = True\n",
|
||
" paused[i] = True\n",
|
||
" if all(finished):\n",
|
||
" if len(current_batch) > 0:\n",
|
||
" # All generators exhausted, flush remaining batch and exit\n",
|
||
" yield current_batch\n",
|
||
" break"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 35,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"@overload\n",
|
||
"def to_projection_matrix(\n",
|
||
" transformation_matrix: Num[NDArray, \"4 4\"], camera_matrix: Num[NDArray, \"3 3\"]\n",
|
||
") -> Num[NDArray, \"3 4\"]: ...\n",
|
||
"\n",
|
||
"\n",
|
||
"@overload\n",
|
||
"def to_projection_matrix(\n",
|
||
" transformation_matrix: Num[Array, \"4 4\"], camera_matrix: Num[Array, \"3 3\"]\n",
|
||
") -> Num[Array, \"3 4\"]: ...\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def to_projection_matrix(\n",
|
||
" transformation_matrix: Num[Any, \"4 4\"],\n",
|
||
" camera_matrix: Num[Any, \"3 3\"],\n",
|
||
") -> Num[Any, \"3 4\"]:\n",
|
||
" return camera_matrix @ transformation_matrix[:3, :]\n",
|
||
"\n",
|
||
"to_projection_matrix_jit = jax.jit(to_projection_matrix)\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def dlt(\n",
|
||
" H1: Num[NDArray, \"3 4\"],\n",
|
||
" H2: Num[NDArray, \"3 4\"],\n",
|
||
" p1: Num[NDArray, \"2\"],\n",
|
||
" p2: Num[NDArray, \"2\"],\n",
|
||
") -> Num[NDArray, \"3\"]:\n",
|
||
" \"\"\"\n",
|
||
" Direct Linear Transformation\n",
|
||
" \"\"\"\n",
|
||
" A = [\n",
|
||
" p1[1] * H1[2, :] - H1[1, :],\n",
|
||
" H1[0, :] - p1[0] * H1[2, :],\n",
|
||
" p2[1] * H2[2, :] - H2[1, :],\n",
|
||
" H2[0, :] - p2[0] * H2[2, :],\n",
|
||
" ]\n",
|
||
" A = np.array(A).reshape((4, 4))\n",
|
||
"\n",
|
||
" B = A.transpose() @ A\n",
|
||
" from scipy import linalg\n",
|
||
"\n",
|
||
" U, s, Vh = linalg.svd(B, full_matrices=False)\n",
|
||
" return Vh[3, 0:3] / Vh[3, 3]\n",
|
||
"\n",
|
||
"\n",
|
||
"@overload\n",
|
||
"def homogeneous_to_euclidean(points: Num[NDArray, \"N 4\"]) -> Num[NDArray, \"N 3\"]: ...\n",
|
||
"\n",
|
||
"\n",
|
||
"@overload\n",
|
||
"def homogeneous_to_euclidean(points: Num[Array, \"N 4\"]) -> Num[Array, \"N 3\"]: ...\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def homogeneous_to_euclidean(\n",
|
||
" points: Num[Any, \"N 4\"],\n",
|
||
") -> Num[Any, \"N 3\"]:\n",
|
||
" \"\"\"\n",
|
||
" 将齐次坐标转换为欧几里得坐标\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" points: homogeneous coordinates (x, y, z, w) in numpy array or jax array\n",
|
||
"\n",
|
||
" Returns:\n",
|
||
" euclidean coordinates (x, y, z) in numpy array or jax array\n",
|
||
" \"\"\"\n",
|
||
" return points[..., :-1] / points[..., -1:]\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"FPS = 24\n",
|
||
"image_gen_5600 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5600], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET[\"port\"] == 5600][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore\n",
|
||
"image_gen_5601 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5601], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET[\"port\"] == 5601][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore\n",
|
||
"image_gen_5602 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5602], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET[\"port\"] == 5602][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore\n",
|
||
"\n",
|
||
"display(1/FPS)\n",
|
||
"sync_gen = sync_batch_gen([image_gen_5600, image_gen_5601, image_gen_5602], timedelta(seconds=1/FPS))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 37,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"detections = next(sync_gen)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 38,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from app.camera import calculate_affinity_matrix_by_epipolar_constraint\n",
|
||
"\n",
|
||
"sorted_detections, affinity_matrix = calculate_affinity_matrix_by_epipolar_constraint(detections, \n",
|
||
" alpha_2d=2000)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"display(list(map(lambda x: {\"timestamp\": str(x.timestamp), \"camera\": x.camera.id}, sorted_detections)))\n",
|
||
"with jnp.printoptions(precision=3, suppress=True):\n",
|
||
" display(affinity_matrix)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from app.solver._old import GLPKSolver\n",
|
||
"\n",
|
||
"def clusters_to_detections(clusters: list[list[int]], sorted_detections: list[Detection]) -> list[list[Detection]]:\n",
|
||
" \"\"\"\n",
|
||
" given a list of clusters (which is the indices of the detections in the sorted_detections list),\n",
|
||
" extract the detections from the sorted_detections list\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" clusters: list of clusters, each cluster is a list of indices of the detections in the `sorted_detections` list\n",
|
||
" sorted_detections: list of SORTED detections\n",
|
||
"\n",
|
||
" Returns:\n",
|
||
" list of clusters, each cluster is a list of detections\n",
|
||
" \"\"\"\n",
|
||
" return [[sorted_detections[i] for i in cluster] for cluster in clusters]\n",
|
||
"\n",
|
||
"solver = GLPKSolver()\n",
|
||
"aff_np = np.asarray(affinity_matrix).astype(np.float64)\n",
|
||
"clusters, sol_matrix = solver.solve(aff_np)\n",
|
||
"display(clusters)\n",
|
||
"display(sol_matrix)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"WIDTH = 2560\n",
|
||
"HEIGHT = 1440\n",
|
||
"\n",
|
||
"clusters_detections = clusters_to_detections(clusters, sorted_detections)\n",
|
||
"im = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)\n",
|
||
"for el in clusters_detections[0]:\n",
|
||
" im = visualize_whole_body(np.asarray(el.keypoints), im)\n",
|
||
"\n",
|
||
"p = plt.imshow(im)\n",
|
||
"display(p)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"im_prime = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)\n",
|
||
"for el in clusters_detections[1]:\n",
|
||
" im_prime = visualize_whole_body(np.asarray(el.keypoints), im_prime)\n",
|
||
"\n",
|
||
"p_prime = plt.imshow(im_prime)\n",
|
||
"display(p_prime)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 43,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def triangulate_one_point_from_multiple_views_linear(\n",
|
||
" proj_matrices: Float[Array, \"N 3 4\"],\n",
|
||
" points: Num[Array, \"N 2\"],\n",
|
||
" confidences: Optional[Float[Array, \"N\"]] = None,\n",
|
||
") -> Float[Array, \"3\"]:\n",
|
||
" \"\"\"\n",
|
||
" Args:\n",
|
||
" proj_matrices: 形状为(N, 3, 4)的投影矩阵序列\n",
|
||
" points: 形状为(N, 2)的点坐标序列\n",
|
||
" confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0]\n",
|
||
"\n",
|
||
" Returns:\n",
|
||
" point_3d: 形状为(3,)的三角测量得到的3D点\n",
|
||
" \"\"\"\n",
|
||
" assert len(proj_matrices) == len(points)\n",
|
||
"\n",
|
||
" N = len(proj_matrices)\n",
|
||
" confi: Float[Array, \"N\"]\n",
|
||
" if confidences is None:\n",
|
||
" confi = jnp.ones(N, dtype=np.float32)\n",
|
||
" else:\n",
|
||
" # Use square root of confidences for weighting - more balanced approach\n",
|
||
" confi = jnp.sqrt(jnp.clip(confidences, 0, 1))\n",
|
||
"\n",
|
||
" A = jnp.zeros((N * 2, 4), dtype=np.float32)\n",
|
||
" for i in range(N):\n",
|
||
" x, y = points[i]\n",
|
||
" A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0])\n",
|
||
" A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1])\n",
|
||
" A = A.at[2 * i].mul(confi[i])\n",
|
||
" A = A.at[2 * i + 1].mul(confi[i])\n",
|
||
"\n",
|
||
" # https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.svd.html\n",
|
||
" _, _, vh = jnp.linalg.svd(A, full_matrices=False)\n",
|
||
" point_3d_homo = vh[-1] # shape (4,)\n",
|
||
"\n",
|
||
" # replace the Python `if` with a jnp.where\n",
|
||
" point_3d_homo = jnp.where(\n",
|
||
" point_3d_homo[3] < 0, # predicate (scalar bool tracer)\n",
|
||
" -point_3d_homo, # if True\n",
|
||
" point_3d_homo, # if False\n",
|
||
" )\n",
|
||
"\n",
|
||
" point_3d = point_3d_homo[:3] / point_3d_homo[3]\n",
|
||
" return point_3d\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def triangulate_points_from_multiple_views_linear(\n",
|
||
" proj_matrices: Float[Array, \"N 3 4\"],\n",
|
||
" points: Num[Array, \"N P 2\"],\n",
|
||
" confidences: Optional[Float[Array, \"N P\"]] = None,\n",
|
||
") -> Float[Array, \"P 3\"]:\n",
|
||
" \"\"\"\n",
|
||
" Batch-triangulate P points observed by N cameras, linearly via SVD.\n",
|
||
"\n",
|
||
" Args:\n",
|
||
" proj_matrices: (N, 3, 4) projection matrices\n",
|
||
" points: (N, P, 2) image-coordinates per view\n",
|
||
" confidences: (N, P, 1) optional per-view confidences in [0,1]\n",
|
||
"\n",
|
||
" Returns:\n",
|
||
" (P, 3) 3D point for each of the P tracks\n",
|
||
" \"\"\"\n",
|
||
" N, P, _ = points.shape\n",
|
||
" assert proj_matrices.shape[0] == N\n",
|
||
" if confidences is None:\n",
|
||
" conf = jnp.ones((N, P), dtype=jnp.float32)\n",
|
||
" else:\n",
|
||
" conf = jnp.sqrt(jnp.clip(confidences, 0.0, 1.0))\n",
|
||
"\n",
|
||
" # vectorize your one‐point routine over P\n",
|
||
" vmap_triangulate = jax.vmap(\n",
|
||
" triangulate_one_point_from_multiple_views_linear,\n",
|
||
" in_axes=(None, 1, 1), # proj_matrices static, map over points[:,p,:], conf[:,p]\n",
|
||
" out_axes=0,\n",
|
||
" )\n",
|
||
"\n",
|
||
" # returns (P, 3)\n",
|
||
" return vmap_triangulate(proj_matrices, points, conf)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from dataclasses import dataclass\n",
|
||
"from copy import copy as shallow_copy, deepcopy as deep_copy\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"@dataclass(frozen=True)\n",
|
||
"class Tracking:\n",
|
||
" id: int\n",
|
||
" keypoints: Float[Array, \"J 3\"]\n",
|
||
" last_active_timestamp: datetime\n",
|
||
"\n",
|
||
" def __repr__(self) -> str:\n",
|
||
" return f\"Tracking({self.id}, {self.last_active_timestamp})\"\n",
|
||
"\n",
|
||
"\n",
|
||
"@jaxtyped(typechecker=beartype)\n",
|
||
"def triangle_from_cluster(\n",
|
||
" cluster: list[Detection],\n",
|
||
") -> tuple[Float[Array, \"N 3\"], datetime]:\n",
|
||
" proj_matrices = jnp.array([el.camera.params.projection_matrix for el in cluster])\n",
|
||
" points = jnp.array([el.keypoints_undistorted for el in cluster])\n",
|
||
" confidences = jnp.array([el.confidences for el in cluster])\n",
|
||
" latest_timestamp = max(el.timestamp for el in cluster)\n",
|
||
" return (\n",
|
||
" triangulate_points_from_multiple_views_linear(\n",
|
||
" proj_matrices, points, confidences=confidences\n",
|
||
" ),\n",
|
||
" latest_timestamp,\n",
|
||
" )\n",
|
||
"\n",
|
||
"\n",
|
||
"# res = {\n",
|
||
"# \"a\": triangle_from_cluster(clusters_detections[0]).tolist(),\n",
|
||
"# \"b\": triangle_from_cluster(clusters_detections[1]).tolist(),\n",
|
||
"# }\n",
|
||
"# with open(\"samples/res.json\", \"wb\") as f:\n",
|
||
"# f.write(orjson.dumps(res))\n",
|
||
"\n",
|
||
"\n",
|
||
"class GlobalTrackingState:\n",
|
||
" _last_id: int\n",
|
||
" _trackings: dict[int, Tracking]\n",
|
||
"\n",
|
||
" def __init__(self):\n",
|
||
" self._last_id = 0\n",
|
||
" self._trackings = {}\n",
|
||
"\n",
|
||
" def __repr__(self) -> str:\n",
|
||
" return (\n",
|
||
" f\"GlobalTrackingState(last_id={self._last_id}, trackings={self._trackings})\"\n",
|
||
" )\n",
|
||
"\n",
|
||
" @property\n",
|
||
" def trackings(self) -> dict[int, Tracking]:\n",
|
||
" return shallow_copy(self._trackings)\n",
|
||
"\n",
|
||
" def add_tracking(self, cluster: list[Detection]) -> Tracking:\n",
|
||
" kps_3d, latest_timestamp = triangle_from_cluster(cluster)\n",
|
||
" next_id = self._last_id + 1\n",
|
||
" tracking = Tracking(\n",
|
||
" id=next_id, keypoints=kps_3d, last_active_timestamp=latest_timestamp\n",
|
||
" )\n",
|
||
" self._trackings[next_id] = tracking\n",
|
||
" self._last_id = next_id\n",
|
||
" return tracking\n",
|
||
"\n",
|
||
"\n",
|
||
"global_tracking_state = GlobalTrackingState()\n",
|
||
"for cluster in clusters_detections:\n",
|
||
" global_tracking_state.add_tracking(cluster)\n",
|
||
"display(global_tracking_state)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"next_group = next(sync_gen)\n",
|
||
"display(next_group)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from app.camera import classify_by_camera\n",
|
||
"\n",
|
||
"# let's do cross-view association\n",
|
||
"trackings = sorted(global_tracking_state.trackings.values(), key=lambda x: x.id)\n",
|
||
"detections = shallow_copy(next_group)\n",
|
||
"# cross-view association matrix with shape (T, D), where T is the number of trackings, D is the number of detections\n",
|
||
"affinity = np.zeros((len(trackings), len(detections)))\n",
|
||
"detection_by_camera = classify_by_camera(detections)\n",
|
||
"for i, tracking in enumerate(trackings):\n",
|
||
" for c, detections in detection_by_camera.items():\n",
|
||
" camera = next(iter(detections)).camera\n",
|
||
" # pixel space, unnormalized\n",
|
||
" tracking_2d_projection = camera.project(tracking.keypoints)\n",
|
||
" \n"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": ".venv",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.9"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|