feat: regression

This commit is contained in:
2025-08-04 10:46:44 +08:00
parent 2aa22b1385
commit b00767dfcd
6 changed files with 655 additions and 2 deletions

View File

@ -2,14 +2,19 @@ package controllers
import ( import (
"errors" "errors"
"fmt"
"github.com/gin-gonic/gin" "github.com/gin-gonic/gin"
"github.com/sajari/regression"
"gorm.io/gorm" "gorm.io/gorm"
"gorm.io/gorm/clause" "gorm.io/gorm/clause"
"hr_receiver/config" "hr_receiver/config"
"hr_receiver/models" "hr_receiver/models"
"log"
"math" "math"
"net/http" "net/http"
"sort"
"strconv" "strconv"
"strings"
) )
type StepTrainingController struct { type StepTrainingController struct {
@ -187,3 +192,615 @@ func (tc *StepTrainingController) GetTrainingRecordByTrainId(c *gin.Context) {
"data": record, "data": record,
}) })
} }
// 定义结构体
type SpeedSegment struct {
Duration float64
Speed float64
}
// 实现线性回归算法
func performLinearRegression(averages []map[float64]float64) models.RegressionResult {
if len(averages) == 0 {
return models.RegressionResult{
Equation: "无数据",
}
}
// 收集数据点
var points []struct{ x, y float64 }
for _, m := range averages {
for x, y := range m {
points = append(points, struct{ x, y float64 }{x, y})
}
}
// 使用回归库计算
r := new(regression.Regression)
r.SetObserved("y")
r.SetVar(0, "x")
for _, p := range points {
r.Train(regression.DataPoint(p.y, []float64{p.x}))
}
if err := r.Run(); err != nil {
log.Printf("线性回归计算失败: %v", err)
return models.RegressionResult{
Equation: "计算失败",
}
}
// 创建结果
slope := r.Coeff(0)
intercept := r.Coeff(1)
r2 := r.R2
return models.RegressionResult{
RegressionType: models.LinearRegression,
Slope: &slope,
Intercept: &intercept,
RSquared: &r2,
Equation: r.Formula,
}
}
// 实现对数和二次回归算法
// 对数回归算法
func performLogarithmicRegression(averages []map[float64]float64) models.RegressionResult {
if len(averages) == 0 {
return models.RegressionResult{
Equation: "无数据",
}
}
// 收集数据点
r := new(regression.Regression)
r.SetObserved("y")
r.SetVar(0, "log(x+1)")
for _, m := range averages {
for speed, hr := range m {
logSpeed := math.Log(speed + 1)
r.Train(regression.DataPoint(hr, []float64{logSpeed}))
}
}
if err := r.Run(); err != nil {
log.Printf("对数回归计算失败: %v", err)
return models.RegressionResult{
Equation: "计算失败",
}
}
// 创建结果
logA := r.Coeff(1)
logB := r.Coeff(0)
r2 := r.R2
return models.RegressionResult{
RegressionType: models.LogarithmicRegression,
LogA: &logA,
LogB: &logB,
RSquared: &r2,
Equation: r.Formula,
}
}
// 二次回归算法
//func performQuadraticRegression(averages []map[float64]float64) models.RegressionResult {
// if len(averages) == 0 {
// return models.RegressionResult{
// Equation: "无数据",
// }
// }
//
// // 收集数据点
// r := new(regression.Regression)
// r.SetObserved("y")
// r.SetVar(0, "x")
// r.SetVar(1, "x²")
//
// for _, m := range averages {
// for speed, hr := range m {
// speedSq := math.Pow(speed, 2)
// r.Train(regression.DataPoint(hr, []float64{speed, speedSq}))
// }
// }
//
// if err := r.Run(); err != nil {
// log.Printf("二次回归计算失败: %v", err)
// return models.RegressionResult{
// Equation: "计算失败",
// }
// }
//
// // 创建结果
// a := r.Coeff(2)
// b := r.Coeff(1)
// c := r.Coeff(0)
// r2 := r.R2
// return models.RegressionResult{
// RegressionType: models.QuadraticRegression,
// QuadraticA: &a,
// QuadraticB: &b,
// QuadraticC: &c,
// RSquared: &r2,
// Equation: r.Formula,
// }
//}
func performQuadraticRegression(averages []map[float64]float64) models.RegressionResult {
if len(averages) == 0 {
return models.RegressionResult{
Equation: "无数据",
}
}
// 步骤1收集所有数据点与Flutter一致
var xValues []float64
var yValues []float64
for _, m := range averages {
for speed, hr := range m {
xValues = append(xValues, speed)
yValues = append(yValues, hr)
}
}
n := float64(len(xValues))
// 步骤2计算各项和完全匹配Flutter的计算
var sumX, sumY, sumX2, sumX3, sumX4, sumXY, sumX2Y float64
for i := 0; i < len(xValues); i++ {
x := xValues[i]
y := yValues[i]
x2 := x * x
x3 := x2 * x
x4 := x3 * x
sumX += x
sumY += y
sumX2 += x2
sumX3 += x3
sumX4 += x4
sumXY += x * y
sumX2Y += x2 * y
}
// 步骤3构建正规方程矩阵与Flutter完全一致
matrix := [3][3]float64{
{n, sumX, sumX2},
{sumX, sumX2, sumX3},
{sumX2, sumX3, sumX4},
}
vector := []float64{sumY, sumXY, sumX2Y}
// 步骤4计算矩阵行列式复制Flutter的determinant3x3逻辑
det := matrix[0][0]*(matrix[1][1]*matrix[2][2]-matrix[1][2]*matrix[2][1]) -
matrix[0][1]*(matrix[1][0]*matrix[2][2]-matrix[1][2]*matrix[2][0]) +
matrix[0][2]*(matrix[1][0]*matrix[2][1]-matrix[1][1]*matrix[2][0])
if det == 0 {
return models.RegressionResult{
Equation: "无法拟合",
}
}
// 步骤5克莱姆法则求解系数顺序与Flutter一致
// 注意:最终系数顺序 a=二次项, b=一次项, c=常数项
c := det3x3([3][3]float64{
{vector[0], matrix[0][1], matrix[0][2]},
{vector[1], matrix[1][1], matrix[1][2]},
{vector[2], matrix[2][1], matrix[2][2]},
}) / det
b := det3x3([3][3]float64{
{matrix[0][0], vector[0], matrix[0][2]},
{matrix[1][0], vector[1], matrix[1][2]},
{matrix[2][0], vector[2], matrix[2][2]},
}) / det
a := det3x3([3][3]float64{
{matrix[0][0], matrix[0][1], vector[0]},
{matrix[1][0], matrix[1][1], vector[1]},
{matrix[2][0], matrix[2][1], vector[2]},
}) / det
// 步骤6计算R平方完全复制Flutter的计算逻辑
var ssRes, ssTot float64
meanY := sumY / n
for i := 0; i < len(xValues); i++ {
x := xValues[i]
y := yValues[i]
yPred := a*x*x + b*x + c
ssRes += math.Pow(y-yPred, 2)
ssTot += math.Pow(y-meanY, 2)
}
rSquared := 0.0
if ssTot != 0 {
rSquared = 1 - ssRes/ssTot
}
// 步骤7格式化公式字符串与Flutter格式完全一致
equation := formatEquation(a, b, c, rSquared)
return models.RegressionResult{
RegressionType: models.QuadraticRegression,
QuadraticA: &a,
QuadraticB: &b,
QuadraticC: &c,
RSquared: &rSquared,
Equation: equation,
}
}
// 3x3行列式计算与Flutter实现相同
func det3x3(m [3][3]float64) float64 {
return m[0][0]*(m[1][1]*m[2][2]-m[1][2]*m[2][1]) -
m[0][1]*(m[1][0]*m[2][2]-m[1][2]*m[2][0]) +
m[0][2]*(m[1][0]*m[2][1]-m[1][1]*m[2][0])
}
// 公式格式化完全匹配Flutter格式
func formatEquation(a, b, c, r2 float64) string {
// 保留4位小数
aStr := fmt.Sprintf("%.4f", a)
bStr := fmt.Sprintf("%.4f", b)
cStr := fmt.Sprintf("%.4f", c)
r2Str := fmt.Sprintf("%.4f", r2)
builder := strings.Builder{}
builder.WriteString("y = ")
// 处理二次项
if a >= 0 {
builder.WriteString(aStr + " x²")
} else {
builder.WriteString("-" + strings.TrimPrefix(aStr, "-") + " x²")
}
// 处理一次项
if b >= 0 {
builder.WriteString(" + " + bStr + " x")
} else {
builder.WriteString(" - " + strings.TrimPrefix(bStr, "-") + " x")
}
// 处理常数项
if c >= 0 {
builder.WriteString(" + " + cStr)
} else {
builder.WriteString(" - " + strings.TrimPrefix(cStr, "-"))
}
builder.WriteString(" (R² = " + r2Str + ")")
return builder.String()
}
// 步频数据转换为速度段
func convertStrideFrequencyToSegments(steps []models.StepStrideFreq) []SpeedSegment {
if len(steps) == 0 {
return []SpeedSegment{}
}
// 过滤零值并排序
validSteps := make([]models.StepStrideFreq, 0, len(steps))
for _, s := range steps {
if s.Value > 0 {
validSteps = append(validSteps, s)
}
}
if len(validSteps) == 0 {
return []SpeedSegment{}
}
// 按时间排序
for i := 0; i < len(validSteps)-1; i++ {
for j := i + 1; j < len(validSteps); j++ {
if validSteps[i].Time > validSteps[j].Time {
validSteps[i], validSteps[j] = validSteps[j], validSteps[i]
}
}
}
// 创建速度段
segments := make([]SpeedSegment, 0)
startTime := validSteps[0].Time
currentValue := validSteps[0].Value
for i := 1; i < len(validSteps); i++ {
if validSteps[i].Value != currentValue {
duration := float64(validSteps[i].Time-startTime) / 1000.0
if duration > 0 {
segments = append(segments, SpeedSegment{
Duration: duration,
Speed: float64(currentValue),
})
}
startTime = validSteps[i].Time
currentValue = validSteps[i].Value
}
}
// 添加最后一个段
if len(validSteps) > 0 {
duration := float64(validSteps[len(validSteps)-1].Time-startTime) / 1000.0
if duration > 0 {
segments = append(segments, SpeedSegment{
Duration: duration,
Speed: float64(currentValue),
})
}
}
return segments
}
// 计算区段平均值
func calculateSegmentAverages(heartRates []models.StepHeartRate, segments []SpeedSegment, errorThreshold int) []map[float64]float64 {
currentTime := 0.0
results := make([]map[float64]float64, 0)
for _, seg := range segments {
minRequired := 60 + (60 - float64(errorThreshold))
// 跳过不满足条件的区段
if seg.Duration < minRequired {
currentTime += seg.Duration
continue
}
// 计算时间窗口
startSec := currentTime + 60
endSec := currentTime
if seg.Duration >= 120 {
endSec = currentTime + 120
} else {
endSec = currentTime + 120 - float64(errorThreshold)
}
// 收集该区段的心率数据
sum, count := 0, 0
for _, hr := range heartRates {
sec := float64(hr.Time) / 1000.0
if sec >= startSec && sec <= endSec {
sum += hr.Value
count++
}
}
// 计算平均值
if count > 0 {
avg := float64(sum) / float64(count)
results = append(results, map[float64]float64{seg.Speed: avg})
}
currentTime += seg.Duration
}
return results
}
// 计算步频区段的心率平均值
func CalculateSegmentAveragesByRealStep(heartRates []models.StepHeartRate, steps []models.StepStrideFreq) []map[float64]float64 {
segments := convertStrideFrequencyToSegments(steps)
return calculateSegmentAverages(heartRates, segments, 15) // 默认5秒误差阈值
}
// 存储回归结果到数据库
func (tc *StepTrainingController) SaveRegressionResult(trainId uint, result models.RegressionResult) error {
result.TrainId = trainId
return tc.DB.Clauses(clause.OnConflict{
Columns: []clause.Column{{Name: "id"}},
DoUpdates: clause.Assignments(map[string]interface{}{
"equation": result.Equation,
"slope": result.Slope,
"intercept": result.Intercept,
"log_a": result.LogA,
"log_b": result.LogB,
"quadratic_a": result.QuadraticA,
"quadratic_b": result.QuadraticB,
"quadratic_c": result.QuadraticC,
"r_squared": result.RSquared,
"updated_at": gorm.Expr("CURRENT_TIMESTAMP"),
}),
}).Create(&result).Error
}
// 获取或计算回归结果
func (tc *StepTrainingController) GetOrCalculateRegression(trainId uint) (models.RegressionResult, error) {
// 首先尝试从数据库获取
var result models.RegressionResult
err := tc.DB.Where("train_id = ?", trainId).First(&result).Error
// 如果找到记录,直接返回
if err == nil {
return result, nil
}
// 如果错误不是记录不存在,返回错误
if !errors.Is(err, gorm.ErrRecordNotFound) {
return models.RegressionResult{}, err
}
// 查询训练记录及相关数据
var record models.StepTrainRecord
if err := tc.DB.
Where("train_id = ?", uint(trainId)).
Preload("HeartRates", "heart_rate_type = ?", 1).
Preload("StrideFreqs", "predict_value = ?", 1).
First(&record).Error; err != nil {
return models.RegressionResult{}, err
}
// 计算心率平均值模仿Flutter的calculateSegmentAveragesByRealStep
averages := CalculateSegmentAveragesByRealStep(record.HeartRates, record.StrideFreqs)
if len(averages) == 0 {
return models.RegressionResult{}, errors.New("无足够数据进行回归计算")
}
// 计算三种回归
result = models.RegressionResult{
TrainId: trainId,
}
// 线性回归
linearRes := performLinearRegression(averages)
result.Slope = linearRes.Slope
result.Intercept = linearRes.Intercept
result.RSquared = linearRes.RSquared
result.Equation = "线性回归: " + linearRes.Equation
// 对数回归
logRes := performLogarithmicRegression(averages)
result.LogA = logRes.LogA
result.LogB = logRes.LogB
if result.Equation != "" {
result.Equation += "\n"
}
result.Equation += "对数回归: " + logRes.Equation
// 二次回归
quadRes := performQuadraticRegression(averages)
result.QuadraticA = quadRes.QuadraticA
result.QuadraticB = quadRes.QuadraticB
result.QuadraticC = quadRes.QuadraticC
if result.Equation != "" {
result.Equation += "\n"
}
result.Equation += "二次回归: " + quadRes.Equation
// 保存计算结果到数据库
if err := tc.SaveRegressionResult(trainId, result); err != nil {
log.Printf("保存回归结果失败: %v", err)
}
return result, nil
}
// 新增接口:获取回归结果
func (tc *StepTrainingController) GetRegressionResult(c *gin.Context) {
trainIdStr := c.Param("trainId")
tid, err := strconv.ParseUint(trainIdStr, 10, 32)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "无效的训练ID"})
return
}
result, err := tc.GetOrCalculateRegression(uint(tid))
if err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
c.JSON(http.StatusOK, gin.H{
"message": "获取成功",
"data": result,
})
}
// 获取训练记录的排名
func (tc *StepTrainingController) GetTrainingRank(c *gin.Context) {
// 解析参数
trainIdStr := c.Param("trainId")
regressionTypeStr := c.Query("type")
regressionType, err := strconv.Atoi(regressionTypeStr) // 字符串转整型
if err != nil {
// 转换失败时返回400错误
c.JSON(http.StatusBadRequest, gin.H{"error": "参数type必须为整数"})
return
}
regType := models.RegressionType(regressionType)
// 验证回归类型
if regType != models.LinearRegression && regType != models.QuadraticRegression {
c.JSON(http.StatusBadRequest, gin.H{"error": "无效的回归类型,必须是'linear'或'quadratic'"})
return
}
// 转换trainId
tid, err := strconv.ParseUint(trainIdStr, 10, 64)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": "无效的训练ID"})
return
}
trainId := uint(tid)
// 确保回归结果存在
if _, err := tc.GetOrCalculateRegression(trainId); err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": "获取回归结果失败:" + err.Error()})
return
}
// 获取所有记录用于排名
var records []models.RegressionResult
query := tc.DB.Model(&models.RegressionResult{})
switch regType {
case models.LinearRegression:
query = query.Where("slope IS NOT NULL").Select("train_id, slope AS metric")
case models.QuadraticRegression:
query = query.Where("quadratic_a IS NOT NULL").
Select("train_id, ABS(quadratic_a) AS metric")
}
if err := query.Find(&records).Error; err != nil {
c.JSON(http.StatusInternalServerError, gin.H{"error": "查询排名数据失败"})
return
}
// 处理无数据情况
if len(records) == 0 {
c.JSON(http.StatusNotFound, gin.H{"error": "无可用数据计算排名"})
return
}
// 排序逻辑
sort.Slice(records, func(i, j int) bool {
if regType == models.LinearRegression {
return *records[i].Slope < *records[j].Slope
}
return math.Abs(*records[i].QuadraticA) > math.Abs(*records[j].QuadraticA) // 二次回归按绝对值降序
})
// 计算排名(处理并列)
currentRank := 1
rankMap := make(map[uint]int)
for i, record := range records {
// 处理第一个记录
if i == 0 {
rankMap[record.TrainId] = currentRank
continue
}
if regType == models.LinearRegression {
if records[i].Slope != records[i-1].Slope {
currentRank = i + 1 // 值变化时,当前排名 = 索引 + 1
}
rankMap[record.TrainId] = currentRank
} else {
if records[i].QuadraticA != records[i-1].QuadraticA {
currentRank = i + 1 // 值变化时,当前排名 = 索引 + 1
}
rankMap[record.TrainId] = currentRank
}
// 检测值是否变化
}
// 获取当前训练记录的排名
rank, exists := rankMap[trainId]
if !exists {
c.JSON(http.StatusInternalServerError, gin.H{"error": "训练记录未包含在排名中"})
return
}
// 返回响应
c.JSON(http.StatusOK, gin.H{
"message": "排名查询成功",
"data": gin.H{
"trainId": trainId,
"type": regressionType,
"rank": rank,
"total": len(records),
},
})
}

1
go.mod
View File

@ -5,6 +5,7 @@ go 1.23.3
require ( require (
github.com/gin-gonic/gin v1.10.0 github.com/gin-gonic/gin v1.10.0
github.com/golang-jwt/jwt/v5 v5.2.1 github.com/golang-jwt/jwt/v5 v5.2.1
github.com/sajari/regression v1.0.1
github.com/spf13/viper v1.20.0 github.com/spf13/viper v1.20.0
gonum.org/v1/gonum v0.16.0 gonum.org/v1/gonum v0.16.0
gorm.io/driver/postgres v1.5.11 gorm.io/driver/postgres v1.5.11

2
go.sum
View File

@ -75,6 +75,8 @@ github.com/rogpeppe/go-internal v1.13.1 h1:KvO1DLK/DRN07sQ1LQKScxyZJuNnedQ5/wKSR
github.com/rogpeppe/go-internal v1.13.1/go.mod h1:uMEvuHeurkdAXX61udpOXGD/AzZDWNMNyH2VO9fmH0o= github.com/rogpeppe/go-internal v1.13.1/go.mod h1:uMEvuHeurkdAXX61udpOXGD/AzZDWNMNyH2VO9fmH0o=
github.com/sagikazarmark/locafero v0.7.0 h1:5MqpDsTGNDhY8sGp0Aowyf0qKsPrhewaLSsFaodPcyo= github.com/sagikazarmark/locafero v0.7.0 h1:5MqpDsTGNDhY8sGp0Aowyf0qKsPrhewaLSsFaodPcyo=
github.com/sagikazarmark/locafero v0.7.0/go.mod h1:2za3Cg5rMaTMoG/2Ulr9AwtFaIppKXTRYnozin4aB5k= github.com/sagikazarmark/locafero v0.7.0/go.mod h1:2za3Cg5rMaTMoG/2Ulr9AwtFaIppKXTRYnozin4aB5k=
github.com/sajari/regression v1.0.1 h1:iTVc6ZACGCkoXC+8NdqH5tIreslDTT/bXxT6OmHR5PE=
github.com/sajari/regression v1.0.1/go.mod h1:NeG/XTW1lYfGY7YV/Z0nYDV/RGh3wxwd1yW46835flM=
github.com/sourcegraph/conc v0.3.0 h1:OQTbbt6P72L20UqAkXXuLOj79LfEanQ+YQFNpLA9ySo= github.com/sourcegraph/conc v0.3.0 h1:OQTbbt6P72L20UqAkXXuLOj79LfEanQ+YQFNpLA9ySo=
github.com/sourcegraph/conc v0.3.0/go.mod h1:Sdozi7LEKbFPqYX2/J+iBAM6HpqSLTASQIKqDmF7Mt0= github.com/sourcegraph/conc v0.3.0/go.mod h1:Sdozi7LEKbFPqYX2/J+iBAM6HpqSLTASQIKqDmF7Mt0=
github.com/spf13/afero v1.12.0 h1:UcOPyRBYczmFn6yvphxkn9ZEOY65cpwGKb5mL36mrqs= github.com/spf13/afero v1.12.0 h1:UcOPyRBYczmFn6yvphxkn9ZEOY65cpwGKb5mL36mrqs=

View File

@ -22,9 +22,11 @@ func main() {
&models.BeltAnalysis{}, &models.BeltAnalysis{},
&models.StepTrainRecord{}, &models.StepTrainRecord{},
&models.StepHeartRate{}, &models.StepHeartRate{},
&models.StepStrideFreq{}) &models.StepStrideFreq{},
&models.RegressionResult{},
)
// 启动服务 // 启动服务
r := routes.SetupRouter() r := routes.SetupRouter()
r.Run(":8080") r.Run(":8000")
} }

View File

@ -36,3 +36,33 @@ type StepTrainRecord struct {
HeartRates []StepHeartRate `gorm:"foreignKey:TrainId;references:TrainId" json:"heartRates"` HeartRates []StepHeartRate `gorm:"foreignKey:TrainId;references:TrainId" json:"heartRates"`
StrideFreqs []StepStrideFreq `gorm:"foreignKey:TrainId;references:TrainId" json:"strideFreqs"` StrideFreqs []StepStrideFreq `gorm:"foreignKey:TrainId;references:TrainId" json:"strideFreqs"`
} }
type RegressionType int
const (
LinearRegression RegressionType = iota + 1
LogarithmicRegression
QuadraticRegression
)
type RegressionResult struct {
gorm.Model
RegressionType RegressionType `gorm:"column:regression_type;index" json:"regressionType"` // 训练记录ID
TrainId uint `gorm:"column:train_id;index" json:"trainId"` // 训练记录ID
Equation string `gorm:"type:text" json:"equation"` // 回归方程
// 线性回归系数
Slope *float64 `gorm:"column:slope" json:"slope"`
Intercept *float64 `gorm:"column:intercept" json:"intercept"`
// 对数回归系数
LogA *float64 `gorm:"column:log_a" json:"logA"`
LogB *float64 `gorm:"column:log_b" json:"logB"`
// 二次回归系数
QuadraticA *float64 `gorm:"column:quadratic_a" json:"quadraticA"`
QuadraticB *float64 `gorm:"column:quadratic_b" json:"quadraticB"`
QuadraticC *float64 `gorm:"column:quadratic_c" json:"quadraticC"`
RSquared *float64 `gorm:"column:r_squared" json:"rSquared"` // R平方值
}

View File

@ -27,6 +27,7 @@ func SetupRouter() *gin.Engine {
steps.POST("", stepTrainController.CreateTrainingRecord) steps.POST("", stepTrainController.CreateTrainingRecord)
steps.GET("train-records", stepTrainController.GetTrainingRecords) steps.GET("train-records", stepTrainController.GetTrainingRecords)
steps.GET("train-data/:trainId", stepTrainController.GetTrainingRecordByTrainId) steps.GET("train-data/:trainId", stepTrainController.GetTrainingRecordByTrainId)
steps.GET("train-rank/:trainId", stepTrainController.GetTrainingRank)
// 可扩展其他路由GET, PUT, DELETE等 // 可扩展其他路由GET, PUT, DELETE等
} }
auth := v1.Group("/auth") auth := v1.Group("/auth")