forked from HQU-gxy/CVTH3PE
1038 lines
30 KiB
Python
1038 lines
30 KiB
Python
# ---
|
|
# jupyter:
|
|
# jupytext:
|
|
# text_representation:
|
|
# extension: .py
|
|
# format_name: percent
|
|
# format_version: '1.3'
|
|
# jupytext_version: 1.17.0
|
|
# kernelspec:
|
|
# display_name: .venv
|
|
# language: python
|
|
# name: python3
|
|
# ---
|
|
|
|
from collections import OrderedDict
|
|
|
|
# %%
|
|
from copy import copy as shallow_copy
|
|
from copy import deepcopy
|
|
from copy import deepcopy as deep_copy
|
|
from dataclasses import dataclass
|
|
from datetime import datetime, timedelta
|
|
from pathlib import Path
|
|
from typing import (
|
|
Any,
|
|
Generator,
|
|
Mapping,
|
|
Optional,
|
|
Sequence,
|
|
TypeAlias,
|
|
TypedDict,
|
|
TypeVar,
|
|
cast,
|
|
overload,
|
|
)
|
|
|
|
import awkward as ak
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
import orjson
|
|
from beartype import beartype
|
|
from cv2 import undistortPoints
|
|
from IPython.display import display
|
|
from jaxtyping import Array, Float, Num, jaxtyped
|
|
from matplotlib import pyplot as plt
|
|
from numpy.typing import ArrayLike
|
|
from scipy.optimize import linear_sum_assignment
|
|
from functools import partial, reduce
|
|
from scipy.spatial.transform import Rotation as R
|
|
from typing_extensions import deprecated
|
|
|
|
from app.camera import (
|
|
Camera,
|
|
CameraID,
|
|
CameraParams,
|
|
Detection,
|
|
calculate_affinity_matrix_by_epipolar_constraint,
|
|
classify_by_camera,
|
|
)
|
|
from app.solver._old import GLPKSolver
|
|
from app.visualize.whole_body import visualize_whole_body
|
|
|
|
NDArray: TypeAlias = np.ndarray
|
|
|
|
# %%
|
|
DATASET_PATH = Path("samples") / "04_02"
|
|
AK_CAMERA_DATASET: ak.Array = ak.from_parquet(DATASET_PATH / "camera_params.parquet")
|
|
DELTA_T_MIN = timedelta(milliseconds=10)
|
|
display(AK_CAMERA_DATASET)
|
|
|
|
|
|
# %%
|
|
class Resolution(TypedDict):
|
|
width: int
|
|
height: int
|
|
|
|
|
|
class Intrinsic(TypedDict):
|
|
camera_matrix: Num[Array, "3 3"]
|
|
"""
|
|
K
|
|
"""
|
|
distortion_coefficients: Num[Array, "N"]
|
|
"""
|
|
distortion coefficients; usually 5
|
|
"""
|
|
|
|
|
|
class Extrinsic(TypedDict):
|
|
rvec: Num[NDArray, "3"]
|
|
tvec: Num[NDArray, "3"]
|
|
|
|
|
|
class ExternalCameraParams(TypedDict):
|
|
name: str
|
|
port: int
|
|
intrinsic: Intrinsic
|
|
extrinsic: Extrinsic
|
|
resolution: Resolution
|
|
|
|
|
|
# %%
|
|
def read_dataset_by_port(port: int) -> ak.Array:
|
|
P = DATASET_PATH / f"{port}.parquet"
|
|
return ak.from_parquet(P)
|
|
|
|
|
|
KEYPOINT_DATASET = {
|
|
int(p): read_dataset_by_port(p) for p in ak.to_numpy(AK_CAMERA_DATASET["port"])
|
|
}
|
|
|
|
|
|
# %%
|
|
class KeypointDataset(TypedDict):
|
|
frame_index: int
|
|
boxes: Num[NDArray, "N 4"]
|
|
kps: Num[NDArray, "N J 2"]
|
|
kps_scores: Num[NDArray, "N J"]
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def to_transformation_matrix(
|
|
rvec: Num[NDArray, "3"], tvec: Num[NDArray, "3"]
|
|
) -> Num[NDArray, "4 4"]:
|
|
res = np.eye(4)
|
|
res[:3, :3] = R.from_rotvec(rvec).as_matrix()
|
|
res[:3, 3] = tvec
|
|
return res
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def undistort_points(
|
|
points: Num[NDArray, "M 2"],
|
|
camera_matrix: Num[NDArray, "3 3"],
|
|
dist_coeffs: Num[NDArray, "N"],
|
|
) -> Num[NDArray, "M 2"]:
|
|
K = camera_matrix
|
|
dist = dist_coeffs
|
|
res = undistortPoints(points, K, dist, P=K) # type: ignore
|
|
return res.reshape(-1, 2)
|
|
|
|
|
|
def from_camera_params(camera: ExternalCameraParams) -> Camera:
|
|
rt = jnp.array(
|
|
to_transformation_matrix(
|
|
ak.to_numpy(camera["extrinsic"]["rvec"]),
|
|
ak.to_numpy(camera["extrinsic"]["tvec"]),
|
|
)
|
|
)
|
|
K = jnp.array(camera["intrinsic"]["camera_matrix"]).reshape(3, 3)
|
|
dist_coeffs = jnp.array(camera["intrinsic"]["distortion_coefficients"])
|
|
image_size = jnp.array(
|
|
(camera["resolution"]["width"], camera["resolution"]["height"])
|
|
)
|
|
return Camera(
|
|
id=camera["name"],
|
|
params=CameraParams(
|
|
K=K,
|
|
Rt=rt,
|
|
dist_coeffs=dist_coeffs,
|
|
image_size=image_size,
|
|
),
|
|
)
|
|
|
|
|
|
def preprocess_keypoint_dataset(
|
|
dataset: Sequence[KeypointDataset],
|
|
camera: Camera,
|
|
fps: float,
|
|
start_timestamp: datetime,
|
|
) -> Generator[Detection, None, None]:
|
|
frame_interval_s = 1 / fps
|
|
for el in dataset:
|
|
frame_index = el["frame_index"]
|
|
timestamp = start_timestamp + timedelta(seconds=frame_index * frame_interval_s)
|
|
for kp, kp_score in zip(el["kps"], el["kps_scores"]):
|
|
yield Detection(
|
|
keypoints=jnp.array(kp),
|
|
confidences=jnp.array(kp_score),
|
|
camera=camera,
|
|
timestamp=timestamp,
|
|
)
|
|
|
|
|
|
# %%
|
|
DetectionGenerator: TypeAlias = Generator[Detection, None, None]
|
|
|
|
|
|
def sync_batch_gen(gens: Sequence[DetectionGenerator], diff: timedelta):
|
|
"""
|
|
given a list of detection generators, return a generator that yields a batch of detections
|
|
|
|
Args:
|
|
gens: list of detection generators
|
|
diff: maximum timestamp difference between detections to consider them part of the same batch
|
|
"""
|
|
N = len(gens)
|
|
last_batch_timestamp: Optional[datetime] = None
|
|
next_batch_timestamp: Optional[datetime] = None
|
|
current_batch: list[Detection] = []
|
|
next_batch: list[Detection] = []
|
|
paused: list[bool] = [False] * N
|
|
finished: list[bool] = [False] * N
|
|
|
|
def reset_paused():
|
|
"""
|
|
reset paused list based on finished list
|
|
"""
|
|
for i in range(N):
|
|
if not finished[i]:
|
|
paused[i] = False
|
|
else:
|
|
paused[i] = True
|
|
|
|
EPS = 1e-6
|
|
# a small epsilon to avoid floating point precision issues
|
|
diff_esp = diff - timedelta(seconds=EPS)
|
|
while True:
|
|
for i, gen in enumerate(gens):
|
|
try:
|
|
if finished[i] or paused[i]:
|
|
continue
|
|
val = next(gen)
|
|
if last_batch_timestamp is None:
|
|
last_batch_timestamp = val.timestamp
|
|
current_batch.append(val)
|
|
else:
|
|
if abs(val.timestamp - last_batch_timestamp) >= diff_esp:
|
|
next_batch.append(val)
|
|
if next_batch_timestamp is None:
|
|
next_batch_timestamp = val.timestamp
|
|
paused[i] = True
|
|
if all(paused):
|
|
yield current_batch
|
|
current_batch = next_batch
|
|
next_batch = []
|
|
last_batch_timestamp = next_batch_timestamp
|
|
next_batch_timestamp = None
|
|
reset_paused()
|
|
else:
|
|
current_batch.append(val)
|
|
except StopIteration:
|
|
finished[i] = True
|
|
paused[i] = True
|
|
if all(finished):
|
|
if len(current_batch) > 0:
|
|
# All generators exhausted, flush remaining batch and exit
|
|
yield current_batch
|
|
break
|
|
|
|
|
|
# %%
|
|
@overload
|
|
def to_projection_matrix(
|
|
transformation_matrix: Num[NDArray, "4 4"], camera_matrix: Num[NDArray, "3 3"]
|
|
) -> Num[NDArray, "3 4"]: ...
|
|
|
|
|
|
@overload
|
|
def to_projection_matrix(
|
|
transformation_matrix: Num[Array, "4 4"], camera_matrix: Num[Array, "3 3"]
|
|
) -> Num[Array, "3 4"]: ...
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def to_projection_matrix(
|
|
transformation_matrix: Num[Any, "4 4"],
|
|
camera_matrix: Num[Any, "3 3"],
|
|
) -> Num[Any, "3 4"]:
|
|
return camera_matrix @ transformation_matrix[:3, :]
|
|
|
|
|
|
to_projection_matrix_jit = jax.jit(to_projection_matrix)
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def dlt(
|
|
H1: Num[NDArray, "3 4"],
|
|
H2: Num[NDArray, "3 4"],
|
|
p1: Num[NDArray, "2"],
|
|
p2: Num[NDArray, "2"],
|
|
) -> Num[NDArray, "3"]:
|
|
"""
|
|
Direct Linear Transformation
|
|
"""
|
|
A = [
|
|
p1[1] * H1[2, :] - H1[1, :],
|
|
H1[0, :] - p1[0] * H1[2, :],
|
|
p2[1] * H2[2, :] - H2[1, :],
|
|
H2[0, :] - p2[0] * H2[2, :],
|
|
]
|
|
A = np.array(A).reshape((4, 4))
|
|
|
|
B = A.transpose() @ A
|
|
from scipy import linalg
|
|
|
|
U, s, Vh = linalg.svd(B, full_matrices=False)
|
|
return Vh[3, 0:3] / Vh[3, 3]
|
|
|
|
|
|
@overload
|
|
def homogeneous_to_euclidean(points: Num[NDArray, "N 4"]) -> Num[NDArray, "N 3"]: ...
|
|
|
|
|
|
@overload
|
|
def homogeneous_to_euclidean(points: Num[Array, "N 4"]) -> Num[Array, "N 3"]: ...
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def homogeneous_to_euclidean(
|
|
points: Num[Any, "N 4"],
|
|
) -> Num[Any, "N 3"]:
|
|
"""
|
|
将齐次坐标转换为欧几里得坐标
|
|
|
|
Args:
|
|
points: homogeneous coordinates (x, y, z, w) in numpy array or jax array
|
|
|
|
Returns:
|
|
euclidean coordinates (x, y, z) in numpy array or jax array
|
|
"""
|
|
return points[..., :-1] / points[..., -1:]
|
|
|
|
|
|
# %%
|
|
FPS = 24
|
|
image_gen_5600 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5600], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET["port"] == 5600][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore
|
|
image_gen_5601 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5601], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET["port"] == 5601][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore
|
|
image_gen_5602 = preprocess_keypoint_dataset(KEYPOINT_DATASET[5602], from_camera_params(AK_CAMERA_DATASET[AK_CAMERA_DATASET["port"] == 5602][0]), FPS, datetime(2024, 4, 2, 12, 0, 0)) # type: ignore
|
|
|
|
display(1 / FPS)
|
|
sync_gen = sync_batch_gen(
|
|
[image_gen_5600, image_gen_5601, image_gen_5602], timedelta(seconds=1 / FPS)
|
|
)
|
|
|
|
# %%
|
|
sorted_detections, affinity_matrix = calculate_affinity_matrix_by_epipolar_constraint(
|
|
next(sync_gen), alpha_2d=2000
|
|
)
|
|
display(sorted_detections)
|
|
|
|
# %%
|
|
display(
|
|
list(
|
|
map(
|
|
lambda x: {"timestamp": str(x.timestamp), "camera": x.camera.id},
|
|
sorted_detections,
|
|
)
|
|
)
|
|
)
|
|
with jnp.printoptions(precision=3, suppress=True):
|
|
display(affinity_matrix)
|
|
|
|
|
|
# %%
|
|
def clusters_to_detections(
|
|
clusters: Sequence[Sequence[int]], sorted_detections: Sequence[Detection]
|
|
) -> list[list[Detection]]:
|
|
"""
|
|
given a list of clusters (which is the indices of the detections in the sorted_detections list),
|
|
extract the detections from the sorted_detections list
|
|
|
|
Args:
|
|
clusters: list of clusters, each cluster is a list of indices of the detections in the `sorted_detections` list
|
|
sorted_detections: list of SORTED detections
|
|
|
|
Returns:
|
|
list of clusters, each cluster is a list of detections
|
|
"""
|
|
return [[sorted_detections[i] for i in cluster] for cluster in clusters]
|
|
|
|
|
|
solver = GLPKSolver()
|
|
aff_np = np.asarray(affinity_matrix).astype(np.float64)
|
|
clusters, sol_matrix = solver.solve(aff_np)
|
|
display(clusters)
|
|
display(sol_matrix)
|
|
|
|
# %%
|
|
T = TypeVar("T")
|
|
|
|
|
|
def flatten_values(
|
|
d: Mapping[Any, Sequence[T]],
|
|
) -> list[T]:
|
|
"""
|
|
Flatten a dictionary of sequences into a single list of values.
|
|
"""
|
|
return [v for vs in d.values() for v in vs]
|
|
|
|
|
|
def flatten_values_len(
|
|
d: Mapping[Any, Sequence[T]],
|
|
) -> int:
|
|
"""
|
|
Flatten a dictionary of sequences into a single list of values.
|
|
"""
|
|
val = reduce(lambda acc, xs: acc + len(xs), d.values(), 0)
|
|
return val
|
|
|
|
|
|
# %%
|
|
WIDTH = 2560
|
|
HEIGHT = 1440
|
|
|
|
clusters_detections = clusters_to_detections(clusters, sorted_detections)
|
|
im = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)
|
|
for el in clusters_detections[0]:
|
|
im = visualize_whole_body(np.asarray(el.keypoints), im)
|
|
|
|
p = plt.imshow(im)
|
|
display(p)
|
|
|
|
# %%
|
|
im_prime = np.zeros((HEIGHT, WIDTH, 3), dtype=np.uint8)
|
|
for el in clusters_detections[1]:
|
|
im_prime = visualize_whole_body(np.asarray(el.keypoints), im_prime)
|
|
|
|
p_prime = plt.imshow(im_prime)
|
|
display(p_prime)
|
|
|
|
|
|
# %%
|
|
@jaxtyped(typechecker=beartype)
|
|
def triangulate_one_point_from_multiple_views_linear(
|
|
proj_matrices: Float[Array, "N 3 4"],
|
|
points: Num[Array, "N 2"],
|
|
confidences: Optional[Float[Array, "N"]] = None,
|
|
) -> Float[Array, "3"]:
|
|
"""
|
|
Args:
|
|
proj_matrices: 形状为(N, 3, 4)的投影矩阵序列
|
|
points: 形状为(N, 2)的点坐标序列
|
|
confidences: 形状为(N,)的置信度序列,范围[0.0, 1.0]
|
|
|
|
Returns:
|
|
point_3d: 形状为(3,)的三角测量得到的3D点
|
|
"""
|
|
assert len(proj_matrices) == len(points)
|
|
|
|
N = len(proj_matrices)
|
|
confi: Float[Array, "N"]
|
|
if confidences is None:
|
|
confi = jnp.ones(N, dtype=np.float32)
|
|
else:
|
|
# Use square root of confidences for weighting - more balanced approach
|
|
confi = jnp.sqrt(jnp.clip(confidences, 0, 1))
|
|
|
|
A = jnp.zeros((N * 2, 4), dtype=np.float32)
|
|
for i in range(N):
|
|
x, y = points[i]
|
|
A = A.at[2 * i].set(proj_matrices[i, 2] * x - proj_matrices[i, 0])
|
|
A = A.at[2 * i + 1].set(proj_matrices[i, 2] * y - proj_matrices[i, 1])
|
|
A = A.at[2 * i].mul(confi[i])
|
|
A = A.at[2 * i + 1].mul(confi[i])
|
|
|
|
# https://docs.jax.dev/en/latest/_autosummary/jax.numpy.linalg.svd.html
|
|
_, _, vh = jnp.linalg.svd(A, full_matrices=False)
|
|
point_3d_homo = vh[-1] # shape (4,)
|
|
|
|
# replace the Python `if` with a jnp.where
|
|
point_3d_homo = jnp.where(
|
|
point_3d_homo[3] < 0, # predicate (scalar bool tracer)
|
|
-point_3d_homo, # if True
|
|
point_3d_homo, # if False
|
|
)
|
|
|
|
point_3d = point_3d_homo[:3] / point_3d_homo[3]
|
|
return point_3d
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def triangulate_points_from_multiple_views_linear(
|
|
proj_matrices: Float[Array, "N 3 4"],
|
|
points: Num[Array, "N P 2"],
|
|
confidences: Optional[Float[Array, "N P"]] = None,
|
|
) -> Float[Array, "P 3"]:
|
|
"""
|
|
Batch-triangulate P points observed by N cameras, linearly via SVD.
|
|
|
|
Args:
|
|
proj_matrices: (N, 3, 4) projection matrices
|
|
points: (N, P, 2) image-coordinates per view
|
|
confidences: (N, P, 1) optional per-view confidences in [0,1]
|
|
|
|
Returns:
|
|
(P, 3) 3D point for each of the P tracks
|
|
"""
|
|
N, P, _ = points.shape
|
|
assert proj_matrices.shape[0] == N
|
|
if confidences is None:
|
|
conf = jnp.ones((N, P), dtype=jnp.float32)
|
|
else:
|
|
conf = jnp.sqrt(jnp.clip(confidences, 0.0, 1.0))
|
|
|
|
# vectorize your one-point routine over P
|
|
vmap_triangulate = jax.vmap(
|
|
triangulate_one_point_from_multiple_views_linear,
|
|
in_axes=(None, 1, 1), # proj_matrices static, map over points[:,p,:], conf[:,p]
|
|
out_axes=0,
|
|
)
|
|
return vmap_triangulate(proj_matrices, points, conf)
|
|
|
|
|
|
# %%
|
|
@jaxtyped(typechecker=beartype)
|
|
@dataclass(frozen=True)
|
|
class Tracking:
|
|
id: int
|
|
"""
|
|
The tracking id
|
|
"""
|
|
keypoints: Float[Array, "J 3"]
|
|
"""
|
|
The 3D keypoints of the tracking
|
|
"""
|
|
last_active_timestamp: datetime
|
|
|
|
velocity: Optional[Float[Array, "3"]] = None
|
|
"""
|
|
Could be `None`. Like when the 3D pose is initialized.
|
|
|
|
`velocity` should be updated when target association yields a new
|
|
3D pose.
|
|
"""
|
|
|
|
def __repr__(self) -> str:
|
|
return f"Tracking({self.id}, {self.last_active_timestamp})"
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def triangle_from_cluster(
|
|
cluster: Sequence[Detection],
|
|
) -> tuple[Float[Array, "N 3"], datetime]:
|
|
proj_matrices = jnp.array([el.camera.params.projection_matrix for el in cluster])
|
|
points = jnp.array([el.keypoints_undistorted for el in cluster])
|
|
confidences = jnp.array([el.confidences for el in cluster])
|
|
latest_timestamp = max(el.timestamp for el in cluster)
|
|
return (
|
|
triangulate_points_from_multiple_views_linear(
|
|
proj_matrices, points, confidences=confidences
|
|
),
|
|
latest_timestamp,
|
|
)
|
|
|
|
|
|
# %%
|
|
class GlobalTrackingState:
|
|
_last_id: int
|
|
_trackings: dict[int, Tracking]
|
|
|
|
def __init__(self):
|
|
self._last_id = 0
|
|
self._trackings = {}
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"GlobalTrackingState(last_id={self._last_id}, trackings={self._trackings})"
|
|
)
|
|
|
|
@property
|
|
def trackings(self) -> dict[int, Tracking]:
|
|
return shallow_copy(self._trackings)
|
|
|
|
def add_tracking(self, cluster: Sequence[Detection]) -> Tracking:
|
|
kps_3d, latest_timestamp = triangle_from_cluster(cluster)
|
|
next_id = self._last_id + 1
|
|
tracking = Tracking(
|
|
id=next_id, keypoints=kps_3d, last_active_timestamp=latest_timestamp
|
|
)
|
|
self._trackings[next_id] = tracking
|
|
self._last_id = next_id
|
|
return tracking
|
|
|
|
|
|
global_tracking_state = GlobalTrackingState()
|
|
for cluster in clusters_detections:
|
|
global_tracking_state.add_tracking(cluster)
|
|
display(global_tracking_state)
|
|
|
|
# %%
|
|
next_group = next(sync_gen)
|
|
display(next_group)
|
|
|
|
|
|
# %%
|
|
@jaxtyped(typechecker=beartype)
|
|
def calculate_distance_2d(
|
|
left: Num[Array, "J 2"],
|
|
right: Num[Array, "J 2"],
|
|
image_size: tuple[int, int] = (1, 1),
|
|
) -> Float[Array, "J"]:
|
|
"""
|
|
Calculate the *normalized* distance between two sets of keypoints.
|
|
|
|
Args:
|
|
left: The left keypoints
|
|
right: The right keypoints
|
|
image_size: The size of the image
|
|
|
|
Returns:
|
|
Array of normalized Euclidean distances between corresponding keypoints
|
|
"""
|
|
w, h = image_size
|
|
if w == 1 and h == 1:
|
|
# already normalized
|
|
left_normalized = left
|
|
right_normalized = right
|
|
else:
|
|
left_normalized = left / jnp.array([w, h])
|
|
right_normalized = right / jnp.array([w, h])
|
|
return jnp.linalg.norm(left_normalized - right_normalized, axis=-1)
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def calculate_affinity_2d(
|
|
distance_2d: Float[Array, "J"],
|
|
delta_t: timedelta,
|
|
w_2d: float,
|
|
alpha_2d: float,
|
|
lambda_a: float,
|
|
) -> Float[Array, "J"]:
|
|
"""
|
|
Calculate the affinity between two detections based on the distances between their keypoints.
|
|
|
|
The affinity score is calculated by summing individual keypoint affinities:
|
|
A_2D = sum(w_2D * (1 - distance_2D / (alpha_2D*delta_t)) * np.exp(-lambda_a * delta_t)) for each keypoint
|
|
|
|
Args:
|
|
distance_2d: The normalized distances between keypoints (array with one value per keypoint)
|
|
w_2d: The weight for 2D affinity
|
|
alpha_2d: The normalization factor for distance
|
|
lambda_a: The decay rate for time difference
|
|
delta_t: The time delta between the two detections, in seconds
|
|
|
|
Returns:
|
|
Sum of affinity scores across all keypoints
|
|
"""
|
|
delta_t_s = delta_t.total_seconds()
|
|
affinity_per_keypoint = (
|
|
w_2d
|
|
* (1 - distance_2d / (alpha_2d * delta_t_s))
|
|
* jnp.exp(-lambda_a * delta_t_s)
|
|
)
|
|
return affinity_per_keypoint
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def perpendicular_distance_point_to_line_two_points(
|
|
point: Num[Array, "3"], line: tuple[Num[Array, "3"], Num[Array, "3"]]
|
|
) -> Float[Array, ""]:
|
|
"""
|
|
Calculate the perpendicular distance between a point and a line.
|
|
where `line` is represented by two points: `(line_start, line_end)`
|
|
|
|
Args:
|
|
point: The point to calculate the distance to
|
|
line: The line to calculate the distance to, represented by two points
|
|
|
|
Returns:
|
|
The perpendicular distance between the point and the line
|
|
(should be a scalar in `float`)
|
|
"""
|
|
line_start, line_end = line
|
|
distance = jnp.linalg.norm(
|
|
jnp.cross(line_end - line_start, line_start - point)
|
|
) / jnp.linalg.norm(line_end - line_start)
|
|
return distance
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def perpendicular_distance_camera_2d_points_to_tracking_raycasting(
|
|
detection: Detection,
|
|
tracking: Tracking,
|
|
delta_t: timedelta,
|
|
) -> Float[Array, "J"]:
|
|
"""
|
|
Calculate the perpendicular distances between predicted 3D tracking points
|
|
and the rays cast from camera center through the 2D image points.
|
|
|
|
Args:
|
|
detection: The detection object containing 2D keypoints and camera parameters
|
|
tracking: The tracking object containing 3D keypoints
|
|
delta_t: Time delta between the tracking's last update and current observation
|
|
|
|
Returns:
|
|
Array of perpendicular distances for each keypoint
|
|
"""
|
|
camera = detection.camera
|
|
assert detection.timestamp >= tracking.last_active_timestamp
|
|
delta_t_raw = detection.timestamp - tracking.last_active_timestamp
|
|
# Clamp delta_t to avoid division-by-zero / exploding affinity.
|
|
delta_t = max(delta_t_raw, DELTA_T_MIN)
|
|
delta_t_s = delta_t.total_seconds()
|
|
predicted_pose = predict_pose_3d(tracking, delta_t_s)
|
|
|
|
# Back-project the 2D points to 3D space
|
|
# intersection with z=0 plane
|
|
back_projected_points = detection.camera.unproject_points_to_z_plane(
|
|
detection.keypoints, z=0.0
|
|
)
|
|
camera_center = camera.params.location
|
|
|
|
def calc_distance(predicted_point, back_projected_point):
|
|
return perpendicular_distance_point_to_line_two_points(
|
|
predicted_point, (camera_center, back_projected_point)
|
|
)
|
|
|
|
# Vectorize over all keypoints
|
|
vmap_calc_distance = jax.vmap(calc_distance)
|
|
distances: Float[Array, "J"] = vmap_calc_distance(
|
|
predicted_pose, back_projected_points
|
|
)
|
|
|
|
return distances
|
|
|
|
|
|
@jaxtyped(typechecker=beartype)
|
|
def calculate_affinity_3d(
|
|
distances: Float[Array, "J"],
|
|
delta_t: timedelta,
|
|
w_3d: float,
|
|
alpha_3d: float,
|
|
lambda_a: float,
|
|
) -> Float[Array, "J"]:
|
|
"""
|
|
Calculate 3D affinity score between a tracking and detection.
|
|
|
|
The affinity score is calculated by summing individual keypoint affinities:
|
|
A_3D = sum(w_3D * (1 - dl / alpha_3D) * np.exp(-lambda_a * delta_t)) for each keypoint
|
|
|
|
Args:
|
|
distances: Array of perpendicular distances for each keypoint
|
|
delta_t: Time difference between tracking and detection
|
|
w_3d: Weight for 3D affinity
|
|
alpha_3d: Normalization factor for distance
|
|
lambda_a: Decay rate for time difference
|
|
|
|
Returns:
|
|
Sum of affinity scores across all keypoints
|
|
"""
|
|
delta_t_s = delta_t.total_seconds()
|
|
affinity_per_keypoint = (
|
|
w_3d * (1 - distances / alpha_3d) * jnp.exp(-lambda_a * delta_t_s)
|
|
)
|
|
return affinity_per_keypoint
|
|
|
|
|
|
def predict_pose_3d(
|
|
tracking: Tracking,
|
|
delta_t_s: float,
|
|
) -> Float[Array, "J 3"]:
|
|
"""
|
|
Predict the 3D pose of a tracking based on its velocity.
|
|
"""
|
|
if tracking.velocity is None:
|
|
return tracking.keypoints
|
|
return tracking.keypoints + tracking.velocity * delta_t_s
|
|
|
|
|
|
@beartype
|
|
def calculate_tracking_detection_affinity(
|
|
tracking: Tracking,
|
|
detection: Detection,
|
|
w_2d: float,
|
|
alpha_2d: float,
|
|
w_3d: float,
|
|
alpha_3d: float,
|
|
lambda_a: float,
|
|
) -> float:
|
|
"""
|
|
Calculate the affinity between a tracking and a detection.
|
|
|
|
Args:
|
|
tracking: The tracking object
|
|
detection: The detection object
|
|
w_2d: Weight for 2D affinity
|
|
alpha_2d: Normalization factor for 2D distance
|
|
w_3d: Weight for 3D affinity
|
|
alpha_3d: Normalization factor for 3D distance
|
|
lambda_a: Decay rate for time difference
|
|
|
|
Returns:
|
|
Combined affinity score
|
|
"""
|
|
camera = detection.camera
|
|
delta_t_raw = detection.timestamp - tracking.last_active_timestamp
|
|
# Clamp delta_t to avoid division-by-zero / exploding affinity.
|
|
delta_t = max(delta_t_raw, DELTA_T_MIN)
|
|
|
|
# Calculate 2D affinity
|
|
tracking_2d_projection = camera.project(tracking.keypoints)
|
|
w, h = camera.params.image_size
|
|
distance_2d = calculate_distance_2d(
|
|
tracking_2d_projection,
|
|
detection.keypoints,
|
|
image_size=(int(w), int(h)),
|
|
)
|
|
affinity_2d = calculate_affinity_2d(
|
|
distance_2d,
|
|
delta_t,
|
|
w_2d=w_2d,
|
|
alpha_2d=alpha_2d,
|
|
lambda_a=lambda_a,
|
|
)
|
|
|
|
# Calculate 3D affinity
|
|
distances = perpendicular_distance_camera_2d_points_to_tracking_raycasting(
|
|
detection, tracking, delta_t
|
|
)
|
|
affinity_3d = calculate_affinity_3d(
|
|
distances,
|
|
delta_t,
|
|
w_3d=w_3d,
|
|
alpha_3d=alpha_3d,
|
|
lambda_a=lambda_a,
|
|
)
|
|
|
|
# Combine affinities
|
|
total_affinity = affinity_2d + affinity_3d
|
|
return jnp.sum(total_affinity).item()
|
|
|
|
|
|
# %%
|
|
@deprecated(
|
|
"Use `calculate_camera_affinity_matrix` instead. This implementation has the problem of under-utilizing views from different cameras."
|
|
)
|
|
@beartype
|
|
def calculate_affinity_matrix(
|
|
trackings: Sequence[Tracking],
|
|
detections: Sequence[Detection] | OrderedDict[CameraID, list[Detection]],
|
|
w_2d: float,
|
|
alpha_2d: float,
|
|
w_3d: float,
|
|
alpha_3d: float,
|
|
lambda_a: float,
|
|
) -> tuple[Float[Array, "T D"], OrderedDict[CameraID, list[Detection]]]:
|
|
"""
|
|
Calculate the affinity matrix between a set of trackings and detections.
|
|
|
|
Args:
|
|
trackings: Sequence of tracking objects
|
|
detections: Sequence of detection objects
|
|
w_2d: Weight for 2D affinity
|
|
alpha_2d: Normalization factor for 2D distance
|
|
w_3d: Weight for 3D affinity
|
|
alpha_3d: Normalization factor for 3D distance
|
|
lambda_a: Decay rate for time difference
|
|
|
|
Returns:
|
|
- affinity matrix of shape (T, D) where T is number of trackings and D
|
|
is number of detections
|
|
- dictionary mapping camera IDs to lists of detections from that camera,
|
|
since it's a `OrderDict` you could flat it out to get the indices of
|
|
detections in the affinity matrix
|
|
|
|
Matrix Layout:
|
|
The affinity matrix has shape (T, D), where:
|
|
- T = number of trackings (rows)
|
|
- D = total number of detections across all cameras (columns)
|
|
|
|
The matrix is organized as follows:
|
|
|
|
```
|
|
| Camera 1 | Camera 2 | Camera c |
|
|
| d1 d2 ... | d1 d2 ... | d1 d2 ... |
|
|
---------+-------------+-------------+-------------+
|
|
Track 1 | a11 a12 ... | a11 a12 ... | a11 a12 ... |
|
|
Track 2 | a21 a22 ... | a21 a22 ... | a21 a22 ... |
|
|
... | ... | ... | ... |
|
|
Track t | at1 at2 ... | at1 at2 ... | at1 at2 ... |
|
|
```
|
|
|
|
Where:
|
|
- Rows are ordered by tracking ID
|
|
- Columns are ordered by camera, then by detection within each camera
|
|
- Each cell aij represents the affinity between tracking i and detection j
|
|
|
|
The detection ordering in columns follows the exact same order as iterating
|
|
through the detection_by_camera dictionary, which is returned alongside
|
|
the matrix to maintain this relationship.
|
|
"""
|
|
if isinstance(detections, OrderedDict):
|
|
D = flatten_values_len(detections)
|
|
affinity = jnp.zeros((len(trackings), D))
|
|
detection_by_camera = detections
|
|
else:
|
|
affinity = jnp.zeros((len(trackings), len(detections)))
|
|
detection_by_camera = classify_by_camera(detections)
|
|
|
|
for i, tracking in enumerate(trackings):
|
|
j = 0
|
|
for _, camera_detections in detection_by_camera.items():
|
|
for det in camera_detections:
|
|
affinity_value = calculate_tracking_detection_affinity(
|
|
tracking,
|
|
det,
|
|
w_2d=w_2d,
|
|
alpha_2d=alpha_2d,
|
|
w_3d=w_3d,
|
|
alpha_3d=alpha_3d,
|
|
lambda_a=lambda_a,
|
|
)
|
|
affinity = affinity.at[i, j].set(affinity_value)
|
|
j += 1
|
|
|
|
return affinity, detection_by_camera
|
|
|
|
|
|
@beartype
|
|
def calculate_camera_affinity_matrix(
|
|
trackings: Sequence[Tracking],
|
|
camera_detections: Sequence[Detection],
|
|
w_2d: float,
|
|
alpha_2d: float,
|
|
w_3d: float,
|
|
alpha_3d: float,
|
|
lambda_a: float,
|
|
) -> Float[Array, "T D"]:
|
|
"""
|
|
Calculate an affinity matrix between trackings and detections from a single camera.
|
|
|
|
This follows the iterative camera-by-camera approach from the paper
|
|
"Cross-View Tracking for Multi-Human 3D Pose Estimation at over 100 FPS".
|
|
Instead of creating one large matrix for all cameras, this creates
|
|
a separate matrix for each camera, which can be processed independently.
|
|
|
|
Args:
|
|
trackings: Sequence of tracking objects
|
|
camera_detections: Sequence of detection objects, from the same camera
|
|
w_2d: Weight for 2D affinity
|
|
alpha_2d: Normalization factor for 2D distance
|
|
w_3d: Weight for 3D affinity
|
|
alpha_3d: Normalization factor for 3D distance
|
|
lambda_a: Decay rate for time difference
|
|
|
|
Returns:
|
|
Affinity matrix of shape (T, D) where:
|
|
- T = number of trackings (rows)
|
|
- D = number of detections from this specific camera (columns)
|
|
|
|
Matrix Layout:
|
|
The affinity matrix for a single camera has shape (T, D), where:
|
|
- T = number of trackings (rows)
|
|
- D = number of detections from this camera (columns)
|
|
|
|
The matrix is organized as follows:
|
|
|
|
```
|
|
| Detections from Camera c |
|
|
| d1 d2 d3 ... |
|
|
---------+------------------------+
|
|
Track 1 | a11 a12 a13 ... |
|
|
Track 2 | a21 a22 a23 ... |
|
|
... | ... ... ... ... |
|
|
Track t | at1 at2 at3 ... |
|
|
```
|
|
|
|
Each cell aij represents the affinity between tracking i and detection j,
|
|
computed using both 2D and 3D geometric correspondences.
|
|
"""
|
|
|
|
def verify_all_detection_from_same_camera(detections: Sequence[Detection]):
|
|
if not detections:
|
|
return True
|
|
camera_id = next(iter(detections)).camera.id
|
|
return all(map(lambda d: d.camera.id == camera_id, detections))
|
|
|
|
if not verify_all_detection_from_same_camera(camera_detections):
|
|
raise ValueError("All detections must be from the same camera")
|
|
|
|
affinity = jnp.zeros((len(trackings), len(camera_detections)))
|
|
|
|
for i, tracking in enumerate(trackings):
|
|
for j, det in enumerate(camera_detections):
|
|
affinity_value = calculate_tracking_detection_affinity(
|
|
tracking,
|
|
det,
|
|
w_2d=w_2d,
|
|
alpha_2d=alpha_2d,
|
|
w_3d=w_3d,
|
|
alpha_3d=alpha_3d,
|
|
lambda_a=lambda_a,
|
|
)
|
|
affinity = affinity.at[i, j].set(affinity_value)
|
|
|
|
return affinity
|
|
|
|
|
|
# %%
|
|
# let's do cross-view association
|
|
W_2D = 1.0
|
|
ALPHA_2D = 1.0
|
|
LAMBDA_A = 0.1
|
|
W_3D = 1.0
|
|
ALPHA_3D = 1.0
|
|
|
|
trackings = sorted(global_tracking_state.trackings.values(), key=lambda x: x.id)
|
|
unmatched_detections = shallow_copy(next_group)
|
|
camera_detections = classify_by_camera(unmatched_detections)
|
|
|
|
camera_detections_next_batch = camera_detections["AE_08"]
|
|
affinity = calculate_camera_affinity_matrix(
|
|
trackings,
|
|
camera_detections_next_batch,
|
|
w_2d=W_2D,
|
|
alpha_2d=ALPHA_2D,
|
|
w_3d=W_3D,
|
|
alpha_3d=ALPHA_3D,
|
|
lambda_a=LAMBDA_A,
|
|
)
|
|
display(camera_detections_next_batch)
|
|
display(affinity)
|
|
|
|
affinity_naive, _ = calculate_affinity_matrix(
|
|
trackings,
|
|
camera_detections,
|
|
w_2d=W_2D,
|
|
alpha_2d=ALPHA_2D,
|
|
w_3d=W_3D,
|
|
alpha_3d=ALPHA_3D,
|
|
lambda_a=LAMBDA_A,
|
|
)
|
|
display(camera_detections)
|
|
display(affinity_naive)
|
|
|
|
|
|
# %%
|
|
# Perform Hungarian algorithm for assignment for each camera
|
|
indices_T, indices_D = linear_sum_assignment(affinity, maximize=True)
|
|
indices_T = cast(Sequence[int], indices_T)
|
|
indices_D = cast(Sequence[int], indices_D)
|
|
display(indices_T)
|
|
display(indices_D)
|
|
|
|
# %%
|