add HumanAct12, UTD_MHAD
This commit is contained in:
115
fit/configs/HumanAct12.json
Normal file
115
fit/configs/HumanAct12.json
Normal file
@ -0,0 +1,115 @@
|
||||
{
|
||||
"MODEL": {
|
||||
"GENDER": "neutral"
|
||||
},
|
||||
"TRAIN": {
|
||||
"LEARNING_RATE": 2e-2,
|
||||
"MAX_EPOCH": 500,
|
||||
"WRITE": 1
|
||||
},
|
||||
"USE_GPU": 1,
|
||||
"DATASET": {
|
||||
"NAME": "UTD-MHAD",
|
||||
"PATH": "../Action2Motion/HumanAct12/HumanAct12/",
|
||||
"TARGET_PATH": "",
|
||||
"DATA_MAP": [
|
||||
[
|
||||
0,
|
||||
0
|
||||
],
|
||||
[
|
||||
1,
|
||||
1
|
||||
],
|
||||
[
|
||||
2,
|
||||
2
|
||||
],
|
||||
[
|
||||
3,
|
||||
3
|
||||
],
|
||||
[
|
||||
4,
|
||||
4
|
||||
],
|
||||
[
|
||||
5,
|
||||
5
|
||||
],
|
||||
[
|
||||
6,
|
||||
6
|
||||
],
|
||||
[
|
||||
7,
|
||||
7
|
||||
],
|
||||
[
|
||||
8,
|
||||
8
|
||||
],
|
||||
[
|
||||
9,
|
||||
9
|
||||
],
|
||||
[
|
||||
10,
|
||||
10
|
||||
],
|
||||
[
|
||||
11,
|
||||
11
|
||||
],
|
||||
[
|
||||
12,
|
||||
12
|
||||
],
|
||||
[
|
||||
13,
|
||||
13
|
||||
],
|
||||
[
|
||||
14,
|
||||
14
|
||||
],
|
||||
[
|
||||
15,
|
||||
15
|
||||
],
|
||||
[
|
||||
16,
|
||||
16
|
||||
],
|
||||
[
|
||||
17,
|
||||
17
|
||||
],
|
||||
[
|
||||
18,
|
||||
18
|
||||
],
|
||||
[
|
||||
19,
|
||||
19
|
||||
],
|
||||
[
|
||||
20,
|
||||
20
|
||||
],
|
||||
[
|
||||
21,
|
||||
21
|
||||
],
|
||||
[
|
||||
22,
|
||||
22
|
||||
],
|
||||
[
|
||||
23,
|
||||
23
|
||||
]
|
||||
]
|
||||
},
|
||||
"DEBUG": 0
|
||||
}
|
||||
83
fit/configs/UTD_MHAD.json
Normal file
83
fit/configs/UTD_MHAD.json
Normal file
@ -0,0 +1,83 @@
|
||||
{
|
||||
"MODEL": {
|
||||
"GENDER": "neutral"
|
||||
},
|
||||
"TRAIN": {
|
||||
"LEARNING_RATE": 2e-2,
|
||||
"MAX_EPOCH": 500,
|
||||
"WRITE": 1
|
||||
},
|
||||
"USE_GPU": 1,
|
||||
"DATASET": {
|
||||
"NAME": "UTD-MHAD",
|
||||
"PATH": "../UTD-MHAD/Skeleton/Skeleton/",
|
||||
"TARGET_PATH": "",
|
||||
"DATA_MAP": [
|
||||
[
|
||||
12,
|
||||
1
|
||||
],
|
||||
[
|
||||
0,
|
||||
3
|
||||
],
|
||||
[
|
||||
16,
|
||||
4
|
||||
],
|
||||
[
|
||||
18,
|
||||
5
|
||||
],
|
||||
[
|
||||
20,
|
||||
6
|
||||
],
|
||||
[
|
||||
22,
|
||||
7
|
||||
],
|
||||
[
|
||||
17,
|
||||
8
|
||||
],
|
||||
[
|
||||
19,
|
||||
9
|
||||
],
|
||||
[
|
||||
21,
|
||||
10
|
||||
],
|
||||
[
|
||||
23,
|
||||
11
|
||||
],
|
||||
[
|
||||
1,
|
||||
12
|
||||
],
|
||||
[
|
||||
4,
|
||||
13
|
||||
],
|
||||
[
|
||||
7,
|
||||
14
|
||||
],
|
||||
[
|
||||
2,
|
||||
16
|
||||
],
|
||||
[
|
||||
5,
|
||||
17
|
||||
],
|
||||
[
|
||||
8,
|
||||
18
|
||||
]
|
||||
]
|
||||
},
|
||||
"DEBUG": 0
|
||||
}
|
||||
@ -54,5 +54,5 @@
|
||||
]
|
||||
}
|
||||
},
|
||||
"DEBUG": 1
|
||||
"DEBUG": 0
|
||||
}
|
||||
@ -13,4 +13,4 @@ def load(name, path):
|
||||
new_arr[i][j][k] = arr[j][k][i]
|
||||
return new_arr
|
||||
elif name == 'HumanAct12':
|
||||
return np.load(path)
|
||||
return np.load(path,allow_pickle=True)
|
||||
|
||||
@ -1,14 +1,4 @@
|
||||
import matplotlib as plt
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.modules import module
|
||||
from torch.optim import lr_scheduler
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import sampler
|
||||
import torchvision.datasets as dset
|
||||
import torchvision.transforms as T
|
||||
import numpy as np
|
||||
from tensorboardX import SummaryWriter
|
||||
from easydict import EasyDict as edict
|
||||
@ -35,17 +25,15 @@ def parse_args():
|
||||
parser.add_argument('--exp', dest='exp',
|
||||
help='Define exp name',
|
||||
default=time.strftime('%Y-%m-%d %H-%M-%S', time.localtime(time.time())), type=str)
|
||||
parser.add_argument('--config_path', dest='config_path',
|
||||
help='Select configuration file',
|
||||
default='fit/configs/config.json', type=str)
|
||||
parser.add_argument('--dataset_path', dest='dataset_path',
|
||||
parser.add_argument('--dataset_name', dest='dataset_name',
|
||||
help='select dataset',
|
||||
default='', type=str)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def get_config(args):
|
||||
with open(args.config_path, 'r') as f:
|
||||
config_path='fit/configs/{}.json'.format(args.dataset_name)
|
||||
with open(config_path, 'r') as f:
|
||||
data = json.load(f)
|
||||
cfg = edict(data.copy())
|
||||
return cfg
|
||||
@ -100,31 +88,18 @@ if __name__ == "__main__":
|
||||
gender=cfg.MODEL.GENDER,
|
||||
model_root='smplpytorch/native/models')
|
||||
|
||||
if not cfg.DEBUG:
|
||||
for root,dirs,files in os.walk(cfg.DATASET_PATH):
|
||||
for file in files:
|
||||
logger.info('Processing file: {}'.format(file))
|
||||
target_path=os.path.join(root,file)
|
||||
|
||||
target = np.array(transform(np.load(target_path)))
|
||||
logger.info('File shape: {}'.format(target.shape))
|
||||
target = torch.from_numpy(target).float()
|
||||
|
||||
|
||||
res = train(smpl_layer,target,
|
||||
logger,writer,device,
|
||||
args,cfg)
|
||||
|
||||
# save_pic(target,res,smpl_layer,file,logger)
|
||||
save_params(res,file,logger)
|
||||
else:
|
||||
target = np.array(transform(load('UTD_MHAD',cfg.DATASET.TARGET_PATH),
|
||||
rotate=[-1,1,-1]))
|
||||
target = torch.from_numpy(target).float()
|
||||
data_map_dataset=torch.tensor(cfg.DATASET.DATA_MAP.UTD_MHAD[1])
|
||||
target = target.index_select(1, data_map_dataset)
|
||||
print(target.shape)
|
||||
res = train(smpl_layer,target,
|
||||
logger,writer,device,
|
||||
args,cfg)
|
||||
for root,dirs,files in os.walk(cfg.DATASET.PATH):
|
||||
for file in files:
|
||||
logger.info('Processing file: {}'.format(file))
|
||||
target = torch.from_numpy(transform(args.dataset_name,
|
||||
load(args.dataset_name,
|
||||
os.path.join(root,file)))).float()
|
||||
|
||||
|
||||
res = train(smpl_layer,target,
|
||||
logger,writer,device,
|
||||
args,cfg)
|
||||
|
||||
# save_pic(res,smpl_layer,file,logger,args.dataset_name)
|
||||
save_params(res,file,logger, args.dataset_name)
|
||||
|
||||
@ -15,25 +15,13 @@ def create_dir_not_exist(path):
|
||||
os.mkdir(path)
|
||||
|
||||
|
||||
def save_pic(target, res, smpl_layer, file, logger):
|
||||
pose_params, shape_params, verts, Jtr = res
|
||||
name = re.split('[/.]', file)[-2]
|
||||
gt_path = "fit/output/HumanAct12/picture/gt/{}".format(name)
|
||||
fit_path = "fit/output/HumanAct12/picture/fit/{}".format(name)
|
||||
create_dir_not_exist(gt_path)
|
||||
def save_pic(res, smpl_layer, file, logger, dataset_name):
|
||||
_, _, verts, Jtr = res
|
||||
file_name = re.split('[/.]', file)[-2]
|
||||
fit_path = "fit/output/{}/picture/fit/{}".format(dataset_name,file_name)
|
||||
create_dir_not_exist(fit_path)
|
||||
logger.info('Saving pictures at {} and {}'.format(gt_path, fit_path))
|
||||
for i in tqdm(range(target.shape[0])):
|
||||
display_model(
|
||||
{'verts': verts.cpu().detach(),
|
||||
'joints': target.cpu().detach()},
|
||||
model_faces=smpl_layer.th_faces,
|
||||
with_joints=True,
|
||||
kintree_table=smpl_layer.kintree_table,
|
||||
savepath=os.path.join(gt_path+"/frame_{}".format(i)),
|
||||
batch_idx=i,
|
||||
show=False,
|
||||
only_joint=True)
|
||||
logger.info('Saving pictures at {}'.format(fit_path))
|
||||
for i in tqdm(range(Jtr.shape[0])):
|
||||
display_model(
|
||||
{'verts': verts.cpu().detach(),
|
||||
'joints': Jtr.cpu().detach()},
|
||||
@ -42,14 +30,15 @@ def save_pic(target, res, smpl_layer, file, logger):
|
||||
kintree_table=smpl_layer.kintree_table,
|
||||
savepath=os.path.join(fit_path+"/frame_{}".format(i)),
|
||||
batch_idx=i,
|
||||
show=False)
|
||||
show=False,
|
||||
only_joint=False)
|
||||
logger.info('Pictures saved')
|
||||
|
||||
|
||||
def save_params(res, file, logger):
|
||||
def save_params(res, file, logger, dataset_name):
|
||||
pose_params, shape_params, verts, Jtr = res
|
||||
name = re.split('[/.]', file)[-2]
|
||||
fit_path = "fit/output/HumanAct12/params/"
|
||||
file_name = re.split('[/.]', file)[-2]
|
||||
fit_path = "fit/output/{}/params/".format(dataset_name)
|
||||
create_dir_not_exist(fit_path)
|
||||
logger.info('Saving params at {}'.format(fit_path))
|
||||
pose_params = pose_params.cpu().detach()
|
||||
@ -58,11 +47,13 @@ def save_params(res, file, logger):
|
||||
shape_params = shape_params.numpy().tolist()
|
||||
Jtr = Jtr.cpu().detach()
|
||||
Jtr = Jtr.numpy().tolist()
|
||||
verts = verts.cpu().detach()
|
||||
verts = verts.numpy().tolist()
|
||||
params = {}
|
||||
params["pose_params"] = pose_params
|
||||
params["shape_params"] = shape_params
|
||||
params["Jtr"] = Jtr
|
||||
params["mesh"] = verts
|
||||
f = open(os.path.join((fit_path),
|
||||
"{}_params.json".format(name)), 'w')
|
||||
"{}_params.json".format(file_name)), 'w')
|
||||
json.dump(params, f)
|
||||
logger.info('Params saved')
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
from fit.tools.save import save_pic
|
||||
import matplotlib as plt
|
||||
from matplotlib.pyplot import show
|
||||
import torch
|
||||
@ -27,57 +28,94 @@ from smplpytorch.pytorch.smpl_layer import SMPL_Layer
|
||||
from display_utils import display_model
|
||||
from map import mapping
|
||||
|
||||
|
||||
class Early_Stop:
|
||||
def __init__(self, eps = -1e-3, stop_threshold = 10) -> None:
|
||||
self.min_loss=float('inf')
|
||||
self.eps=eps
|
||||
self.stop_threshold=stop_threshold
|
||||
self.satis_num=0
|
||||
|
||||
def update(self, loss):
|
||||
delta = (loss - self.min_loss) / self.min_loss
|
||||
if float(loss) < self.min_loss:
|
||||
self.min_loss = float(loss)
|
||||
update_res=True
|
||||
else:
|
||||
update_res=False
|
||||
if delta >= self.eps:
|
||||
self.satis_num += 1
|
||||
else:
|
||||
self.satis_num = max(0,self.satis_num-1)
|
||||
return update_res, self.satis_num >= self.stop_threshold
|
||||
|
||||
|
||||
def init(smpl_layer, target, device, cfg):
|
||||
params={}
|
||||
params["pose_params"] = torch.rand(target.shape[0], 72) * 0.0
|
||||
params["shape_params"] = torch.rand(target.shape[0], 10) * 0.03
|
||||
params["scale"] = torch.ones([1])
|
||||
|
||||
smpl_layer = smpl_layer.to(device)
|
||||
params["pose_params"] = params["pose_params"].to(device)
|
||||
params["shape_params"] = params["shape_params"].to(device)
|
||||
target = target.to(device)
|
||||
params["scale"] = params["scale"].to(device)
|
||||
|
||||
params["pose_params"].requires_grad = True
|
||||
params["shape_params"].requires_grad = True
|
||||
params["scale"].requires_grad = False
|
||||
|
||||
optimizer = optim.Adam([params["pose_params"], params["shape_params"]],
|
||||
lr=cfg.TRAIN.LEARNING_RATE)
|
||||
|
||||
index={}
|
||||
smpl_index=[]
|
||||
dataset_index=[]
|
||||
for tp in cfg.DATASET.DATA_MAP:
|
||||
smpl_index.append(tp[0])
|
||||
dataset_index.append(tp[1])
|
||||
|
||||
index["smpl_index"]=torch.tensor(smpl_index).to(device)
|
||||
index["dataset_index"]=torch.tensor(dataset_index).to(device)
|
||||
|
||||
return smpl_layer, params,target, optimizer, index
|
||||
|
||||
|
||||
def train(smpl_layer, target,
|
||||
logger, writer, device,
|
||||
args, cfg):
|
||||
res = []
|
||||
pose_params = torch.rand(target.shape[0], 72) * 0.0
|
||||
shape_params = torch.rand(target.shape[0], 10) * 0.03
|
||||
scale = torch.ones([1])
|
||||
|
||||
smpl_layer = smpl_layer.to(device)
|
||||
pose_params = pose_params.to(device)
|
||||
shape_params = shape_params.to(device)
|
||||
target = target.to(device)
|
||||
scale = scale.to(device)
|
||||
|
||||
pose_params.requires_grad = True
|
||||
shape_params.requires_grad = True
|
||||
scale.requires_grad = False
|
||||
smpl_layer.requires_grad = False
|
||||
|
||||
optimizer = optim.Adam([pose_params, shape_params],
|
||||
lr=cfg.TRAIN.LEARNING_RATE)
|
||||
smpl_layer, params,target, optimizer, index = \
|
||||
init(smpl_layer, target, device, cfg)
|
||||
pose_params = params["pose_params"]
|
||||
shape_params = params["shape_params"]
|
||||
scale = params["scale"]
|
||||
|
||||
min_loss = float('inf')
|
||||
data_map=torch.tensor(cfg.DATASET.DATA_MAP.UTD_MHAD)[0].to(device)
|
||||
# for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
|
||||
for epoch in range(cfg.TRAIN.MAX_EPOCH):
|
||||
early_stop = Early_Stop()
|
||||
for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
|
||||
# for epoch in range(cfg.TRAIN.MAX_EPOCH):
|
||||
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
|
||||
loss = F.smooth_l1_loss(Jtr.index_select(1, data_map) * 100, target * 100)
|
||||
loss = F.smooth_l1_loss(Jtr.index_select(1, index["smpl_index"]) * 100,
|
||||
target.index_select(1, index["dataset_index"]) * 100)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if float(loss) < min_loss:
|
||||
min_loss = float(loss)
|
||||
|
||||
update_res, stop = early_stop.update(float(loss))
|
||||
if update_res:
|
||||
res = [pose_params, shape_params, verts, Jtr]
|
||||
if stop:
|
||||
logger.info("Early stop at epoch {} !".format(epoch))
|
||||
break
|
||||
|
||||
if epoch % cfg.TRAIN.WRITE == 0:
|
||||
logger.info("Epoch {}, lossPerBatch={:.9f}, scale={:.6f}".format(
|
||||
epoch, float(loss), float(scale)))
|
||||
# logger.info("Epoch {}, lossPerBatch={:.6f}, EarlyStopSatis: {}".format(
|
||||
# epoch, float(loss), early_stop.satis_num))
|
||||
writer.add_scalar('loss', float(loss), epoch)
|
||||
writer.add_scalar('learning_rate', float(
|
||||
optimizer.state_dict()['param_groups'][0]['lr']), epoch)
|
||||
if epoch % cfg.TRAIN.SAVE == 0 and epoch > 0:
|
||||
for i in tqdm(range(Jtr.shape[0])):
|
||||
display_model(
|
||||
{'verts': verts.cpu().detach(),
|
||||
'joints': Jtr.cpu().detach()},
|
||||
model_faces=smpl_layer.th_faces,
|
||||
with_joints=True,
|
||||
kintree_table=smpl_layer.kintree_table,
|
||||
savepath="fit/output/UTD_MHAD/picture/frame_{}".format(str(i).zfill(4)),
|
||||
batch_idx=i,
|
||||
show=True,
|
||||
only_joint=True)
|
||||
logger.info('Train ended, min_loss = {:.9f}'.format(float(min_loss)))
|
||||
|
||||
|
||||
logger.info('Train ended, min_loss = {:.9f}'.format(float(early_stop.min_loss)))
|
||||
return res
|
||||
|
||||
@ -1,13 +1,23 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def transform(arr: np.ndarray, rotate=[1.,-1.,-1.]):
|
||||
for i in range(arr.shape[0]):
|
||||
origin = arr[i][3].copy()
|
||||
for j in range(arr.shape[1]):
|
||||
arr[i][j] -= origin
|
||||
for k in range(3):
|
||||
arr[i][j][k] *= rotate[k]
|
||||
arr[i][3] = [0.0, 0.0, 0.0]
|
||||
print(arr[0])
|
||||
def transform(name, arr: np.ndarray):
|
||||
if name == 'HumanAct12':
|
||||
rotate = [1., -1., -1.]
|
||||
for i in range(arr.shape[0]):
|
||||
origin = arr[i][0].copy()
|
||||
for j in range(arr.shape[1]):
|
||||
arr[i][j] -= origin
|
||||
for k in range(3):
|
||||
arr[i][j][k] *= rotate[k]
|
||||
arr[i][0] = [0.0, 0.0, 0.0]
|
||||
elif name == 'UTD_MHAD':
|
||||
rotate = [-1., 1.,-1.]
|
||||
for i in range(arr.shape[0]):
|
||||
origin = arr[i][3].copy()
|
||||
for j in range(arr.shape[1]):
|
||||
arr[i][j] -= origin
|
||||
for k in range(3):
|
||||
arr[i][j][k] *= rotate[k]
|
||||
arr[i][3] = [0.0, 0.0, 0.0]
|
||||
return arr
|
||||
|
||||
@ -3,5 +3,5 @@ import imageio, os
|
||||
images = []
|
||||
filenames = sorted(fn for fn in os.listdir('./fit/output/UTD_MHAD/picture/') )
|
||||
for filename in filenames:
|
||||
images.append(imageio.imread('./fit/output/UTD_MHAD/picture/'+filename))
|
||||
images.append(imageio.imread('./fit/output/UTD_MHAD/picture/fit/a10_s1_t1_skeleton/'+filename))
|
||||
imageio.mimsave('./fit.gif', images, duration=0.3)
|
||||
Reference in New Issue
Block a user