add HumanAct12, UTD_MHAD

This commit is contained in:
Iridoudou
2021-08-07 21:19:21 +08:00
parent 9f6274fc19
commit 2b3e65e2a2
9 changed files with 329 additions and 117 deletions

115
fit/configs/HumanAct12.json Normal file
View File

@ -0,0 +1,115 @@
{
"MODEL": {
"GENDER": "neutral"
},
"TRAIN": {
"LEARNING_RATE": 2e-2,
"MAX_EPOCH": 500,
"WRITE": 1
},
"USE_GPU": 1,
"DATASET": {
"NAME": "UTD-MHAD",
"PATH": "../Action2Motion/HumanAct12/HumanAct12/",
"TARGET_PATH": "",
"DATA_MAP": [
[
0,
0
],
[
1,
1
],
[
2,
2
],
[
3,
3
],
[
4,
4
],
[
5,
5
],
[
6,
6
],
[
7,
7
],
[
8,
8
],
[
9,
9
],
[
10,
10
],
[
11,
11
],
[
12,
12
],
[
13,
13
],
[
14,
14
],
[
15,
15
],
[
16,
16
],
[
17,
17
],
[
18,
18
],
[
19,
19
],
[
20,
20
],
[
21,
21
],
[
22,
22
],
[
23,
23
]
]
},
"DEBUG": 0
}

83
fit/configs/UTD_MHAD.json Normal file
View File

@ -0,0 +1,83 @@
{
"MODEL": {
"GENDER": "neutral"
},
"TRAIN": {
"LEARNING_RATE": 2e-2,
"MAX_EPOCH": 500,
"WRITE": 1
},
"USE_GPU": 1,
"DATASET": {
"NAME": "UTD-MHAD",
"PATH": "../UTD-MHAD/Skeleton/Skeleton/",
"TARGET_PATH": "",
"DATA_MAP": [
[
12,
1
],
[
0,
3
],
[
16,
4
],
[
18,
5
],
[
20,
6
],
[
22,
7
],
[
17,
8
],
[
19,
9
],
[
21,
10
],
[
23,
11
],
[
1,
12
],
[
4,
13
],
[
7,
14
],
[
2,
16
],
[
5,
17
],
[
8,
18
]
]
},
"DEBUG": 0
}

View File

@ -54,5 +54,5 @@
]
}
},
"DEBUG": 1
"DEBUG": 0
}

View File

@ -13,4 +13,4 @@ def load(name, path):
new_arr[i][j][k] = arr[j][k][i]
return new_arr
elif name == 'HumanAct12':
return np.load(path)
return np.load(path,allow_pickle=True)

View File

@ -1,14 +1,4 @@
import matplotlib as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules import module
from torch.optim import lr_scheduler
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import sampler
import torchvision.datasets as dset
import torchvision.transforms as T
import numpy as np
from tensorboardX import SummaryWriter
from easydict import EasyDict as edict
@ -35,17 +25,15 @@ def parse_args():
parser.add_argument('--exp', dest='exp',
help='Define exp name',
default=time.strftime('%Y-%m-%d %H-%M-%S', time.localtime(time.time())), type=str)
parser.add_argument('--config_path', dest='config_path',
help='Select configuration file',
default='fit/configs/config.json', type=str)
parser.add_argument('--dataset_path', dest='dataset_path',
parser.add_argument('--dataset_name', dest='dataset_name',
help='select dataset',
default='', type=str)
args = parser.parse_args()
return args
def get_config(args):
with open(args.config_path, 'r') as f:
config_path='fit/configs/{}.json'.format(args.dataset_name)
with open(config_path, 'r') as f:
data = json.load(f)
cfg = edict(data.copy())
return cfg
@ -100,31 +88,18 @@ if __name__ == "__main__":
gender=cfg.MODEL.GENDER,
model_root='smplpytorch/native/models')
if not cfg.DEBUG:
for root,dirs,files in os.walk(cfg.DATASET_PATH):
for file in files:
logger.info('Processing file: {}'.format(file))
target_path=os.path.join(root,file)
target = np.array(transform(np.load(target_path)))
logger.info('File shape: {}'.format(target.shape))
target = torch.from_numpy(target).float()
res = train(smpl_layer,target,
logger,writer,device,
args,cfg)
# save_pic(target,res,smpl_layer,file,logger)
save_params(res,file,logger)
else:
target = np.array(transform(load('UTD_MHAD',cfg.DATASET.TARGET_PATH),
rotate=[-1,1,-1]))
target = torch.from_numpy(target).float()
data_map_dataset=torch.tensor(cfg.DATASET.DATA_MAP.UTD_MHAD[1])
target = target.index_select(1, data_map_dataset)
print(target.shape)
res = train(smpl_layer,target,
logger,writer,device,
args,cfg)
for root,dirs,files in os.walk(cfg.DATASET.PATH):
for file in files:
logger.info('Processing file: {}'.format(file))
target = torch.from_numpy(transform(args.dataset_name,
load(args.dataset_name,
os.path.join(root,file)))).float()
res = train(smpl_layer,target,
logger,writer,device,
args,cfg)
# save_pic(res,smpl_layer,file,logger,args.dataset_name)
save_params(res,file,logger, args.dataset_name)

View File

@ -15,25 +15,13 @@ def create_dir_not_exist(path):
os.mkdir(path)
def save_pic(target, res, smpl_layer, file, logger):
pose_params, shape_params, verts, Jtr = res
name = re.split('[/.]', file)[-2]
gt_path = "fit/output/HumanAct12/picture/gt/{}".format(name)
fit_path = "fit/output/HumanAct12/picture/fit/{}".format(name)
create_dir_not_exist(gt_path)
def save_pic(res, smpl_layer, file, logger, dataset_name):
_, _, verts, Jtr = res
file_name = re.split('[/.]', file)[-2]
fit_path = "fit/output/{}/picture/fit/{}".format(dataset_name,file_name)
create_dir_not_exist(fit_path)
logger.info('Saving pictures at {} and {}'.format(gt_path, fit_path))
for i in tqdm(range(target.shape[0])):
display_model(
{'verts': verts.cpu().detach(),
'joints': target.cpu().detach()},
model_faces=smpl_layer.th_faces,
with_joints=True,
kintree_table=smpl_layer.kintree_table,
savepath=os.path.join(gt_path+"/frame_{}".format(i)),
batch_idx=i,
show=False,
only_joint=True)
logger.info('Saving pictures at {}'.format(fit_path))
for i in tqdm(range(Jtr.shape[0])):
display_model(
{'verts': verts.cpu().detach(),
'joints': Jtr.cpu().detach()},
@ -42,14 +30,15 @@ def save_pic(target, res, smpl_layer, file, logger):
kintree_table=smpl_layer.kintree_table,
savepath=os.path.join(fit_path+"/frame_{}".format(i)),
batch_idx=i,
show=False)
show=False,
only_joint=False)
logger.info('Pictures saved')
def save_params(res, file, logger):
def save_params(res, file, logger, dataset_name):
pose_params, shape_params, verts, Jtr = res
name = re.split('[/.]', file)[-2]
fit_path = "fit/output/HumanAct12/params/"
file_name = re.split('[/.]', file)[-2]
fit_path = "fit/output/{}/params/".format(dataset_name)
create_dir_not_exist(fit_path)
logger.info('Saving params at {}'.format(fit_path))
pose_params = pose_params.cpu().detach()
@ -58,11 +47,13 @@ def save_params(res, file, logger):
shape_params = shape_params.numpy().tolist()
Jtr = Jtr.cpu().detach()
Jtr = Jtr.numpy().tolist()
verts = verts.cpu().detach()
verts = verts.numpy().tolist()
params = {}
params["pose_params"] = pose_params
params["shape_params"] = shape_params
params["Jtr"] = Jtr
params["mesh"] = verts
f = open(os.path.join((fit_path),
"{}_params.json".format(name)), 'w')
"{}_params.json".format(file_name)), 'w')
json.dump(params, f)
logger.info('Params saved')

View File

@ -1,3 +1,4 @@
from fit.tools.save import save_pic
import matplotlib as plt
from matplotlib.pyplot import show
import torch
@ -27,57 +28,94 @@ from smplpytorch.pytorch.smpl_layer import SMPL_Layer
from display_utils import display_model
from map import mapping
class Early_Stop:
def __init__(self, eps = -1e-3, stop_threshold = 10) -> None:
self.min_loss=float('inf')
self.eps=eps
self.stop_threshold=stop_threshold
self.satis_num=0
def update(self, loss):
delta = (loss - self.min_loss) / self.min_loss
if float(loss) < self.min_loss:
self.min_loss = float(loss)
update_res=True
else:
update_res=False
if delta >= self.eps:
self.satis_num += 1
else:
self.satis_num = max(0,self.satis_num-1)
return update_res, self.satis_num >= self.stop_threshold
def init(smpl_layer, target, device, cfg):
params={}
params["pose_params"] = torch.rand(target.shape[0], 72) * 0.0
params["shape_params"] = torch.rand(target.shape[0], 10) * 0.03
params["scale"] = torch.ones([1])
smpl_layer = smpl_layer.to(device)
params["pose_params"] = params["pose_params"].to(device)
params["shape_params"] = params["shape_params"].to(device)
target = target.to(device)
params["scale"] = params["scale"].to(device)
params["pose_params"].requires_grad = True
params["shape_params"].requires_grad = True
params["scale"].requires_grad = False
optimizer = optim.Adam([params["pose_params"], params["shape_params"]],
lr=cfg.TRAIN.LEARNING_RATE)
index={}
smpl_index=[]
dataset_index=[]
for tp in cfg.DATASET.DATA_MAP:
smpl_index.append(tp[0])
dataset_index.append(tp[1])
index["smpl_index"]=torch.tensor(smpl_index).to(device)
index["dataset_index"]=torch.tensor(dataset_index).to(device)
return smpl_layer, params,target, optimizer, index
def train(smpl_layer, target,
logger, writer, device,
args, cfg):
res = []
pose_params = torch.rand(target.shape[0], 72) * 0.0
shape_params = torch.rand(target.shape[0], 10) * 0.03
scale = torch.ones([1])
smpl_layer = smpl_layer.to(device)
pose_params = pose_params.to(device)
shape_params = shape_params.to(device)
target = target.to(device)
scale = scale.to(device)
pose_params.requires_grad = True
shape_params.requires_grad = True
scale.requires_grad = False
smpl_layer.requires_grad = False
optimizer = optim.Adam([pose_params, shape_params],
lr=cfg.TRAIN.LEARNING_RATE)
smpl_layer, params,target, optimizer, index = \
init(smpl_layer, target, device, cfg)
pose_params = params["pose_params"]
shape_params = params["shape_params"]
scale = params["scale"]
min_loss = float('inf')
data_map=torch.tensor(cfg.DATASET.DATA_MAP.UTD_MHAD)[0].to(device)
# for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
for epoch in range(cfg.TRAIN.MAX_EPOCH):
early_stop = Early_Stop()
for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
# for epoch in range(cfg.TRAIN.MAX_EPOCH):
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
loss = F.smooth_l1_loss(Jtr.index_select(1, data_map) * 100, target * 100)
loss = F.smooth_l1_loss(Jtr.index_select(1, index["smpl_index"]) * 100,
target.index_select(1, index["dataset_index"]) * 100)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if float(loss) < min_loss:
min_loss = float(loss)
update_res, stop = early_stop.update(float(loss))
if update_res:
res = [pose_params, shape_params, verts, Jtr]
if stop:
logger.info("Early stop at epoch {} !".format(epoch))
break
if epoch % cfg.TRAIN.WRITE == 0:
logger.info("Epoch {}, lossPerBatch={:.9f}, scale={:.6f}".format(
epoch, float(loss), float(scale)))
# logger.info("Epoch {}, lossPerBatch={:.6f}, EarlyStopSatis: {}".format(
# epoch, float(loss), early_stop.satis_num))
writer.add_scalar('loss', float(loss), epoch)
writer.add_scalar('learning_rate', float(
optimizer.state_dict()['param_groups'][0]['lr']), epoch)
if epoch % cfg.TRAIN.SAVE == 0 and epoch > 0:
for i in tqdm(range(Jtr.shape[0])):
display_model(
{'verts': verts.cpu().detach(),
'joints': Jtr.cpu().detach()},
model_faces=smpl_layer.th_faces,
with_joints=True,
kintree_table=smpl_layer.kintree_table,
savepath="fit/output/UTD_MHAD/picture/frame_{}".format(str(i).zfill(4)),
batch_idx=i,
show=True,
only_joint=True)
logger.info('Train ended, min_loss = {:.9f}'.format(float(min_loss)))
logger.info('Train ended, min_loss = {:.9f}'.format(float(early_stop.min_loss)))
return res

View File

@ -1,13 +1,23 @@
import numpy as np
def transform(arr: np.ndarray, rotate=[1.,-1.,-1.]):
for i in range(arr.shape[0]):
origin = arr[i][3].copy()
for j in range(arr.shape[1]):
arr[i][j] -= origin
for k in range(3):
arr[i][j][k] *= rotate[k]
arr[i][3] = [0.0, 0.0, 0.0]
print(arr[0])
def transform(name, arr: np.ndarray):
if name == 'HumanAct12':
rotate = [1., -1., -1.]
for i in range(arr.shape[0]):
origin = arr[i][0].copy()
for j in range(arr.shape[1]):
arr[i][j] -= origin
for k in range(3):
arr[i][j][k] *= rotate[k]
arr[i][0] = [0.0, 0.0, 0.0]
elif name == 'UTD_MHAD':
rotate = [-1., 1.,-1.]
for i in range(arr.shape[0]):
origin = arr[i][3].copy()
for j in range(arr.shape[1]):
arr[i][j] -= origin
for k in range(3):
arr[i][j][k] *= rotate[k]
arr[i][3] = [0.0, 0.0, 0.0]
return arr

View File

@ -3,5 +3,5 @@ import imageio, os
images = []
filenames = sorted(fn for fn in os.listdir('./fit/output/UTD_MHAD/picture/') )
for filename in filenames:
images.append(imageio.imread('./fit/output/UTD_MHAD/picture/'+filename))
images.append(imageio.imread('./fit/output/UTD_MHAD/picture/fit/a10_s1_t1_skeleton/'+filename))
imageio.mimsave('./fit.gif', images, duration=0.3)