initial commit

This commit is contained in:
Iridoudou
2021-08-05 11:59:22 +08:00
parent a18b0197d8
commit 791f02f280
10 changed files with 275 additions and 6 deletions

25
fit/configs/config.json Normal file
View File

@ -0,0 +1,25 @@
{
"MODEL": {
"GENDER": "male"
},
"TRAIN": {
"LEARNING_RATE":2e-2,
"MAX_EPOCH": 5,
"WRITE": 1,
"SAVE": 10,
"BATCH_SIZE": 1,
"MOMENTUM": 0.9,
"lr_scheduler": {
"T_0": 10,
"T_mult": 2,
"eta_min": 1e-2
},
"loss_func": ""
},
"USE_GPU": 1,
"DATA_LOADER": {
"NUM_WORKERS": 1
},
"TARGET_PATH":"../Action2Motion/HumanAct12/HumanAct12/P01G01R01F0069T0143A0102.npy",
"DATASET_PATH":"../Action2Motion/HumanAct12/HumanAct12/"
}

116
fit/tools/main.py Normal file
View File

@ -0,0 +1,116 @@
import matplotlib as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules import module
from torch.optim import lr_scheduler
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import sampler
import torchvision.datasets as dset
import torchvision.transforms as T
import numpy as np
from tensorboardX import SummaryWriter
from easydict import EasyDict as edict
import time
import inspect
import sys
import os
import logging
import argparse
import json
from tqdm import tqdm
sys.path.append(os.getcwd())
from display_utils import display_model
from smplpytorch.pytorch.smpl_layer import SMPL_Layer
from train import train
from transform import transform
from save import save_pic
torch.backends.cudnn.benchmark=True
def parse_args():
parser = argparse.ArgumentParser(description='Fit SMPL')
parser.add_argument('--exp', dest='exp',
help='Define exp name',
default=time.strftime('%Y-%m-%d %H-%M-%S', time.localtime(time.time())), type=str)
parser.add_argument('--config_path', dest='config_path',
help='Select configuration file',
default='fit/configs/config.json', type=str)
parser.add_argument('--dataset_path', dest='dataset_path',
help='select dataset',
default='', type=str)
args = parser.parse_args()
return args
def get_config(args):
with open(args.config_path, 'r') as f:
data = json.load(f)
cfg = edict(data.copy())
return cfg
def set_device(USE_GPU):
if USE_GPU and torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
return device
def get_logger(cur_path):
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
handler = logging.FileHandler(os.path.join(cur_path, "log.txt"))
handler.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
writer = SummaryWriter(os.path.join(cur_path, 'tb'))
return logger, writer
if __name__ == "__main__":
args = parse_args()
cur_path = os.path.join(os.getcwd(), 'exp', args.exp)
assert not os.path.exists(cur_path), 'Duplicate exp name'
os.mkdir(cur_path)
cfg = get_config(args)
json.dump(dict(cfg), open(os.path.join(cur_path, 'config.json'), 'w'))
logger, writer = get_logger(cur_path)
logger.info("Start print log")
device = set_device(USE_GPU=cfg.USE_GPU)
logger.info('using device: {}'.format(device))
smpl_layer = SMPL_Layer(
center_idx = 0,
gender='neutral',
model_root='smplpytorch/native/models')
for root,dirs,files in os.walk(cfg.DATASET_PATH):
for file in files:
logger.info('Processing file: {}'.format(file))
target_path=os.path.join(root,file)
target = np.array(transform(np.load(cfg.TARGET_PATH)))
logger.info('File shape: {}'.format(target.shape))
target = torch.from_numpy(target).float()
res = train(smpl_layer,target,
logger,writer,device,
args,cfg)
# save_pic(target,res,smpl_layer,file)

38
fit/tools/save.py Normal file
View File

@ -0,0 +1,38 @@
import sys
import os
import re
sys.path.append(os.getcwd())
from display_utils import display_model
def create_dir_not_exist(path):
if not os.path.exists(path):
os.mkdir(path)
def save_pic(target, res, smpl_layer, file):
pose_params, shape_params, verts, Jtr = res
name=re.split('[/.]',file)[-2]
gt_path="fit/output/HumanAct12/picture/gt/{}".format(name)
fit_path="fit/output/HumanAct12/picture/fit/{}".format(name)
create_dir_not_exist(gt_path)
create_dir_not_exist(fit_path)
for i in range(target.shape[0]):
display_model(
{'verts': verts.cpu().detach(),
'joints': target.cpu().detach()},
model_faces=smpl_layer.th_faces,
with_joints=True,
kintree_table=smpl_layer.kintree_table,
savepath=os.path.join(gt_path+"/frame_{}".format(i)),
batch_idx=i,
show=False,
only_joint=True)
display_model(
{'verts': verts.cpu().detach(),
'joints': Jtr.cpu().detach()},
model_faces=smpl_layer.th_faces,
with_joints=True,
kintree_table=smpl_layer.kintree_table,
savepath=os.path.join(fit_path+"/frame_{}".format(i)),
batch_idx=i,
show=False)

66
fit/tools/train.py Normal file
View File

@ -0,0 +1,66 @@
import matplotlib as plt
from matplotlib.pyplot import show
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.modules import module
from torch.optim import lr_scheduler
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.datasets as dset
import torchvision.transforms as T
import numpy as np
from tensorboardX import SummaryWriter
from easydict import EasyDict as edict
import time
import inspect
import sys
import os
import logging
import argparse
import json
from tqdm import tqdm
sys.path.append(os.getcwd())
from smplpytorch.pytorch.smpl_layer import SMPL_Layer
from display_utils import display_model
def train(smpl_layer, target,
logger, writer, device,
args, cfg):
res = []
pose_params = torch.rand(target.shape[0], 72) * 0.0
shape_params = torch.rand(target.shape[0], 10) * 0.1
scale = torch.ones([1])
smpl_layer = smpl_layer.to(device)
pose_params = pose_params.to(device)
shape_params = shape_params.to(device)
target = target.to(device)
scale = scale.to(device)
pose_params.requires_grad = True
shape_params.requires_grad = True
scale.requires_grad = True
optimizer = optim.Adam([pose_params],
lr=cfg.TRAIN.LEARNING_RATE)
min_loss = float('inf')
for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
loss = F.smooth_l1_loss(Jtr * 100, target * 100)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if float(loss) < min_loss:
min_loss = float(loss)
res = [pose_params, shape_params, verts, Jtr]
if epoch % cfg.TRAIN.WRITE == 0:
# logger.info("Epoch {}, lossPerBatch={:.9f}, scale={:.6f}".format(
# epoch, float(loss), float(scale)))
writer.add_scalar('loss', float(loss), epoch)
writer.add_scalar('learning_rate', float(
optimizer.state_dict()['param_groups'][0]['lr']), epoch)
logger.info('Train ended, loss = {:.9f}'.format(float(loss)))
return res

12
fit/tools/transform.py Normal file
View File

@ -0,0 +1,12 @@
import numpy as np
def transform(arr: np.ndarray):
for i in range(arr.shape[0]):
origin = arr[i][0].copy()
for j in range(arr.shape[1]):
arr[i][j] -= origin
arr[i][j][1] *= -1
arr[i][j][2] *= -1
arr[i][0] = [0.0, 0.0, 0.0]
return arr