initial commit
This commit is contained in:
66
fit/tools/train.py
Normal file
66
fit/tools/train.py
Normal file
@ -0,0 +1,66 @@
|
||||
import matplotlib as plt
|
||||
from matplotlib.pyplot import show
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.modules import module
|
||||
from torch.optim import lr_scheduler
|
||||
import torch.optim as optim
|
||||
from torch.utils.data import DataLoader
|
||||
import torchvision.datasets as dset
|
||||
import torchvision.transforms as T
|
||||
import numpy as np
|
||||
from tensorboardX import SummaryWriter
|
||||
from easydict import EasyDict as edict
|
||||
import time
|
||||
import inspect
|
||||
import sys
|
||||
import os
|
||||
import logging
|
||||
|
||||
import argparse
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
sys.path.append(os.getcwd())
|
||||
from smplpytorch.pytorch.smpl_layer import SMPL_Layer
|
||||
from display_utils import display_model
|
||||
|
||||
def train(smpl_layer, target,
|
||||
logger, writer, device,
|
||||
args, cfg):
|
||||
res = []
|
||||
pose_params = torch.rand(target.shape[0], 72) * 0.0
|
||||
shape_params = torch.rand(target.shape[0], 10) * 0.1
|
||||
scale = torch.ones([1])
|
||||
|
||||
smpl_layer = smpl_layer.to(device)
|
||||
pose_params = pose_params.to(device)
|
||||
shape_params = shape_params.to(device)
|
||||
target = target.to(device)
|
||||
scale = scale.to(device)
|
||||
|
||||
pose_params.requires_grad = True
|
||||
shape_params.requires_grad = True
|
||||
scale.requires_grad = True
|
||||
|
||||
optimizer = optim.Adam([pose_params],
|
||||
lr=cfg.TRAIN.LEARNING_RATE)
|
||||
|
||||
min_loss = float('inf')
|
||||
for epoch in tqdm(range(cfg.TRAIN.MAX_EPOCH)):
|
||||
verts, Jtr = smpl_layer(pose_params, th_betas=shape_params)
|
||||
loss = F.smooth_l1_loss(Jtr * 100, target * 100)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if float(loss) < min_loss:
|
||||
min_loss = float(loss)
|
||||
res = [pose_params, shape_params, verts, Jtr]
|
||||
if epoch % cfg.TRAIN.WRITE == 0:
|
||||
# logger.info("Epoch {}, lossPerBatch={:.9f}, scale={:.6f}".format(
|
||||
# epoch, float(loss), float(scale)))
|
||||
writer.add_scalar('loss', float(loss), epoch)
|
||||
writer.add_scalar('learning_rate', float(
|
||||
optimizer.state_dict()['param_groups'][0]['lr']), epoch)
|
||||
logger.info('Train ended, loss = {:.9f}'.format(float(loss)))
|
||||
return res
|
||||
Reference in New Issue
Block a user