update code
This commit is contained in:
@ -24,13 +24,12 @@ def display_model(
|
||||
verts, joints = model_info['verts'][batch_idx], model_info['joints'][batch_idx]
|
||||
if model_faces is None:
|
||||
ax.scatter(verts[:, 0], verts[:, 1], verts[:, 2], alpha=0.2)
|
||||
else:
|
||||
elif not only_joint:
|
||||
mesh = Poly3DCollection(verts[model_faces], alpha=0.2)
|
||||
face_color = (141 / 255, 184 / 255, 226 / 255)
|
||||
edge_color = (50 / 255, 50 / 255, 50 / 255)
|
||||
mesh.set_edgecolor(edge_color)
|
||||
mesh.set_facecolor(face_color)
|
||||
if not only_joint:
|
||||
ax.add_collection3d(mesh)
|
||||
if with_joints:
|
||||
draw_skeleton(joints, kintree_table=kintree_table, ax=ax)
|
||||
@ -43,10 +42,11 @@ def display_model(
|
||||
ax.view_init(azim=-90, elev=100)
|
||||
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
|
||||
if savepath:
|
||||
print('Saving figure at {}.'.format(savepath))
|
||||
# print('Saving figure at {}.'.format(savepath))
|
||||
plt.savefig(savepath, bbox_inches='tight', pad_inches=0)
|
||||
if show:
|
||||
plt.show()
|
||||
plt.close()
|
||||
return ax
|
||||
|
||||
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
},
|
||||
"TRAIN": {
|
||||
"LEARNING_RATE":2e-2,
|
||||
"MAX_EPOCH": 5,
|
||||
"MAX_EPOCH": 500,
|
||||
"WRITE": 1,
|
||||
"SAVE": 10,
|
||||
"BATCH_SIZE": 1,
|
||||
|
||||
@ -26,7 +26,7 @@ from display_utils import display_model
|
||||
from smplpytorch.pytorch.smpl_layer import SMPL_Layer
|
||||
from train import train
|
||||
from transform import transform
|
||||
from save import save_pic
|
||||
from save import save_pic,save_params
|
||||
torch.backends.cudnn.benchmark=True
|
||||
|
||||
def parse_args():
|
||||
@ -104,7 +104,7 @@ if __name__ == "__main__":
|
||||
logger.info('Processing file: {}'.format(file))
|
||||
target_path=os.path.join(root,file)
|
||||
|
||||
target = np.array(transform(np.load(cfg.TARGET_PATH)))
|
||||
target = np.array(transform(np.load(target_path)))
|
||||
logger.info('File shape: {}'.format(target.shape))
|
||||
target = torch.from_numpy(target).float()
|
||||
|
||||
@ -112,5 +112,6 @@ if __name__ == "__main__":
|
||||
logger,writer,device,
|
||||
args,cfg)
|
||||
|
||||
# save_pic(target,res,smpl_layer,file)
|
||||
# save_pic(target,res,smpl_layer,file,logger)
|
||||
save_params(res,file,logger)
|
||||
|
||||
@ -1,6 +1,10 @@
|
||||
import sys
|
||||
import os
|
||||
import re
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import json
|
||||
|
||||
|
||||
sys.path.append(os.getcwd())
|
||||
from display_utils import display_model
|
||||
@ -9,14 +13,15 @@ def create_dir_not_exist(path):
|
||||
if not os.path.exists(path):
|
||||
os.mkdir(path)
|
||||
|
||||
def save_pic(target, res, smpl_layer, file):
|
||||
def save_pic(target, res, smpl_layer, file,logger):
|
||||
pose_params, shape_params, verts, Jtr = res
|
||||
name=re.split('[/.]',file)[-2]
|
||||
gt_path="fit/output/HumanAct12/picture/gt/{}".format(name)
|
||||
fit_path="fit/output/HumanAct12/picture/fit/{}".format(name)
|
||||
create_dir_not_exist(gt_path)
|
||||
create_dir_not_exist(fit_path)
|
||||
for i in range(target.shape[0]):
|
||||
logger.info('Saving pictures at {} and {}'.format(gt_path,fit_path))
|
||||
for i in tqdm(range(target.shape[0])):
|
||||
display_model(
|
||||
{'verts': verts.cpu().detach(),
|
||||
'joints': target.cpu().detach()},
|
||||
@ -36,3 +41,26 @@ def save_pic(target, res, smpl_layer, file):
|
||||
savepath=os.path.join(fit_path+"/frame_{}".format(i)),
|
||||
batch_idx=i,
|
||||
show=False)
|
||||
logger.info('Pictures saved')
|
||||
|
||||
def save_params(res,file,logger):
|
||||
pose_params, shape_params, verts, Jtr = res
|
||||
name=re.split('[/.]',file)[-2]
|
||||
fit_path="fit/output/HumanAct12/params/"
|
||||
create_dir_not_exist(fit_path)
|
||||
logger.info('Saving params at {}'.format(fit_path))
|
||||
pose_params=pose_params.cpu().detach()
|
||||
pose_params=pose_params.numpy().tolist()
|
||||
shape_params=shape_params.cpu().detach()
|
||||
shape_params=shape_params.numpy().tolist()
|
||||
Jtr=Jtr.cpu().detach()
|
||||
Jtr=Jtr.numpy().tolist()
|
||||
params={}
|
||||
params["pose_params"]=pose_params
|
||||
params["shape_params"]=shape_params
|
||||
params["Jtr"]=Jtr
|
||||
f=open(os.path.join((fit_path),
|
||||
"{}_params.json".format(name)),'w')
|
||||
json.dump(params,f)
|
||||
logger.info('Params saved')
|
||||
|
||||
|
||||
@ -30,7 +30,7 @@ def train(smpl_layer, target,
|
||||
args, cfg):
|
||||
res = []
|
||||
pose_params = torch.rand(target.shape[0], 72) * 0.0
|
||||
shape_params = torch.rand(target.shape[0], 10) * 0.1
|
||||
shape_params = torch.rand(target.shape[0], 10) * 0.03
|
||||
scale = torch.ones([1])
|
||||
|
||||
smpl_layer = smpl_layer.to(device)
|
||||
@ -41,9 +41,10 @@ def train(smpl_layer, target,
|
||||
|
||||
pose_params.requires_grad = True
|
||||
shape_params.requires_grad = True
|
||||
scale.requires_grad = True
|
||||
scale.requires_grad = False
|
||||
smpl_layer.requires_grad = False
|
||||
|
||||
optimizer = optim.Adam([pose_params],
|
||||
optimizer = optim.Adam([pose_params, shape_params],
|
||||
lr=cfg.TRAIN.LEARNING_RATE)
|
||||
|
||||
min_loss = float('inf')
|
||||
@ -62,5 +63,5 @@ def train(smpl_layer, target,
|
||||
writer.add_scalar('loss', float(loss), epoch)
|
||||
writer.add_scalar('learning_rate', float(
|
||||
optimizer.state_dict()['param_groups'][0]['lr']), epoch)
|
||||
logger.info('Train ended, loss = {:.9f}'.format(float(loss)))
|
||||
logger.info('Train ended, min_loss = {:.9f}'.format(float(min_loss)))
|
||||
return res
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import imageio, os
|
||||
images = []
|
||||
filenames = sorted(fn for fn in os.listdir('./output/') )
|
||||
filenames = sorted(fn for fn in os.listdir('./fit/output/HumanAct12/picture/fit/P01G01R01F0449T0505A0201') )
|
||||
for filename in filenames:
|
||||
images.append(imageio.imread('./output/'+filename))
|
||||
imageio.mimsave('./output/gif.gif', images, duration=0.5)
|
||||
images.append(imageio.imread('./fit/output/HumanAct12/picture/fit/P01G01R01F0449T0505A0201/'+filename))
|
||||
imageio.mimsave('./fit.gif', images, duration=0.3)
|
||||
Reference in New Issue
Block a user